This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Very efficient and broad-in-scope palladium-catalyzed Hiyama cross-coupling. The role of water and copper(I) salts.

Carla I. Traficante, Ernesto G. Mata,* and Carina M. L. Delpiccolo*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A very high-yielding Pd-catalyzed cross-coupling between aryl halides and aryl(trialkoxy)silanes is achieved in the presence of Cu(I) and a measured amount of water. This novel methodology is useful for the generation of a wide range of biaryls, particularly non-para substituted derivatives, which are usually less reported.

Metal-catalyzed carbon-carbon bond forming reactions have become crucial synthetic tools for preparing complex molecules from simple precursors. Among them, Hiyama reaction is drawing increasing attention as a very attractive methodology for obtaining biaryl and alkyl and vinyl aromatic derivatives. Hiyama coupling is achieved by treating aryl or alkyl halides or pseudo halides with organosilicon compounds under palladium catalysis and activation by a fluoride ion or a base.

Particularly, the synthesis of unsymmetrical biaryl moieties have wide applications as polymers, agrochemicals, and pharmaceutical intermediates. While Stille and Suzuki reactions have been widely recognized for generating aryl-aryl coupling products, the value of Hiyama reaction lays on the use of organosilanes as coupling partners, due to their ease of preparation and handling, stability toward air/moisture, and low toxicity compared to tin and boron reagents. Besides, Hiyama coupling is interesting from the environmental point of view since silicon waste is easily converted to innocuous silicon dioxide by incineration.

The importance of this methodology was established by Hiyama and Hatanaka when they demonstrated that the high affinity between silicon and fluoride ions can accelerate the rate-determining transmetalation step (Scheme 1).

\[
\text{R-SiR}_3 + \text{F}^- \rightarrow \text{R-SiF} + \text{R}^+ \rightarrow \text{R-SiF} + \text{R}^+ \rightarrow \text{R-SiR}_3
\]

Scheme 1 Cross-coupling Hiyama reaction.

Better results were later obtained when fluoroephilicity of the silanes was increased by introducing F-Si bounds. However, Hiyama coupling did not achieve great success in its early days. The reason was probably the intrinsic resistance of the organosilicon compounds to undergo cross-coupling reactions in the absence of a significant polarity at the C-Si bond. After the introduction by Tamao et al. of silicon species containing oxygen atoms, Hiyama coupling has expanded its use to a wide range of substrates by improving reactivity and selectivity since oxygen facilitate coordination to palladium atom, apart from increasing polarity at the C-Si bond. Since then, an extensive research has been carried out within this field, establishing different and very useful variants, such as those introduced by DeShong, and Denmark.

As part of our research dealing with the generation of libraries of biologically promising compounds, we were particularly interested in carboxy-substituted biaryl derivatives, which have demonstrated attractive antimitotic properties as modulators of tubulin dynamics. We notice that, despite of the success of Hiyama coupling, most of the examples involving synthetically accessible aryl(trialkoxy)silanes are referring to the preparation of 4'-substituted 1,1'-biphenyl derivatives. Reaction of ortho and para-substituted aryl iodide with (3-substituted-phenyl)(triethoxysilanes is less described and, in many cases, achieved in low to moderate yields.

Hence, we decided to study the synthesis of methyl 3'-methoxybiphenyl-4-carboxylate (3aa) as model compound, starting from methyl 4-iodobenzoate (1a) and the corresponding aryl(triethoxy)silane (2a) in the presence of palladium catalyst and TBAF (Table 1). Using standard conditions, 1.5 equivalents of 2a and TBAF, catalytic tetrais(triphenylphosphine)-palladium(0) (0.025 equiv.), at 80 °C in dry THF, for 18 h, the expected biaryl 3aa was obtained in only 19% isolated yield (Entry 1). Interestingly, the ethyl ester analogue 4 was the major product (33%). Formation of 4 could be explained by a Pd-catalyzed transesterification with an ethoxy group which can be generated by a nucelophilic cleavage of one Si-O bond by the fluoride coming from the TBAF. Yield of 3aa increased from 19 to 45% without evidence of ethyl ester formation, under the same conditions but using non-anhydrous THF (Entry 2). Later, by adding 2 equivalents of CuI, isolated yield of 3aa was improved to 85% (Entry 3). The addition of stoichiometric copper(I) salts has been suggested to improve efficiency in Pd-catalyzed cross-coupling reactions, including Hiyama coupling. CuI has also proven to have a beneficial effect by preventing homocoupling of the aryl halide.

Recently, the role of water in Hiyama reaction has began to be considered. Denmark noticed that hydration level of TBAF was crucial for the success of this cross-coupling during the synthesis of natural product Isodomoic Acid H, while Sajiki found that the addition of a measured amount of water significantly increase the yield of Hiyama cross-coupling between aryl halides and...
aryltriethoxysilanes. For this reason we decided to add 5% of water to the best conditions obtained until that moment. To our delight, methyl 3'-methoxybiphenyl-4-carboxylate (3aa) was isolated by column chromatography in 93% yield (Entry 4).

Based on Entry 5, we could assume that CuI is only a co-catalyst, since no reaction was observed in the absence of Pd. Furthermore, TBAF is absolutely necessary since no reaction occurred in its absence (Entry 6). Nevertheless, TBAF is not the only fluoride source that can be used, CsF was equally efficient, giving similar yield of the coupling product 3aa (Entry 7). The addition increasing amount of water (Entry 8), produced a mixture of 3aa, the starting material and homocoupling product 5. Such result was in agreement with a report by Saji ki and co-workers, where they assumed that the addition of a large excess of water might speed up the formation of an inactive silanol polymer which decreases the reactivity of the silane. Regarding palladium source, Pd(OAc)$_2$ was not as efficient as Pd(PPh$_3$)$_4$ giving a mixture of 3aa and the homocoupling product 5 (Entry 9).

To evaluate the scope and efficiency of the optimized methodology, we have synthesized a range of biaryl derivatives, including those bearing strong electron-donating groups (Entries 27-30). Following our aim to apply the Hiyama reaction to compounds of greater complexity and interest, we decided to use the optimized conditions on β-lactam derivatives. Thus, biaryl-contained β-lactams (3id and 3ie) where obtained in very high isolated yield (Entries 31 and 32, Table 2).

Since biaryl derivatives substituted with heteroatoms are present in biologically active structures, we have extended the scope to the reaction with heteroaryl iodides and silanes. The 3-iodopyridine (1j), 2-iodothiophene (1k) and triethoxy(thiophen-2-yl)silane (2g) successfully underwent the coupling reaction to give the desired products in very high yields (Scheme 2).

![Scheme 2](image)

Scheme 2 Hiyama reaction using 3-iodopyridine (1j), 2-iodothiophene (1k) and triethoxy(thiophen-2-yl)silane (2g) as substrates.

A tentative mechanism for this undescribed version of the
Table 2 Synthesis of a variety of biaryl compounds by optimized reaction conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aryl iodide</th>
<th>Silane</th>
<th>Product</th>
<th>Yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3aa</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3ab</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=4-Me (2c)</td>
<td>3ac</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3ad</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=4-Cl (2e)</td>
<td>3ae</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=4-CF<sub>3</sub> (2f)</td>
<td>3af</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>4-I, R<sub>1</sub>=COOMe (1a)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3aa</td>
<td>90<sup>b</sup></td>
</tr>
<tr>
<td>8</td>
<td>3-I, R<sub>1</sub>=COOMe (1b)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3ba</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>3-I, R<sub>1</sub>=COOMe (1b)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3bb</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>3-I, R<sub>1</sub>=COOMe (1b)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3bb</td>
<td>78<sup>b</sup></td>
</tr>
<tr>
<td>11</td>
<td>3-I, R<sub>1</sub>=COOMe (1b)</td>
<td>R<sub>2</sub>=4-Me (2c)</td>
<td>3bc</td>
<td>76</td>
</tr>
<tr>
<td>12</td>
<td>3-I, R<sub>1</sub>=COOMe (1b)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3bd</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>3-I, R<sub>1</sub>=COOMe (1b)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3be</td>
<td>85</td>
</tr>
<tr>
<td>14</td>
<td>2-I, R<sub>1</sub>=COOMe (1c)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3ca</td>
<td>82<sup>c</sup></td>
</tr>
<tr>
<td>15</td>
<td>2-I, R<sub>1</sub>=COOMe (1c)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3cb</td>
<td>90<sup>c</sup></td>
</tr>
<tr>
<td>16</td>
<td>2-I, R<sub>1</sub>=COOMe (1c)</td>
<td>R<sub>2</sub>=4-Me (2c)</td>
<td>3cc</td>
<td>88<sup>c</sup></td>
</tr>
<tr>
<td>17</td>
<td>4-L R<sub>1</sub>=COMe (1d)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3da</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>4-L R<sub>1</sub>=COMe (1d)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3db</td>
<td>88</td>
</tr>
<tr>
<td>19</td>
<td>4-L R<sub>1</sub>=COMe (1d)</td>
<td>R<sub>2</sub>=4-Me (2c)</td>
<td>3dc</td>
<td>93</td>
</tr>
<tr>
<td>20</td>
<td>4-L R<sub>1</sub>=COMe (1d)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3dd</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>4-L R<sub>1</sub>=COMe (1d)</td>
<td>R<sub>2</sub>=4-Cl (2e)</td>
<td>3de</td>
<td>91</td>
</tr>
<tr>
<td>22</td>
<td>4-I, R<sub>1</sub>=Me (1e)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3ea</td>
<td>76</td>
</tr>
<tr>
<td>23</td>
<td>4-I, R<sub>1</sub>=Me (1e)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3ed</td>
<td>93</td>
</tr>
<tr>
<td>24</td>
<td>4-I, R<sub>1</sub>=Me (1e)</td>
<td>R<sub>2</sub>=4-Cl (2e)</td>
<td>3ee</td>
<td>62<sup>d</sup></td>
</tr>
<tr>
<td>25</td>
<td>I, R<sub>1</sub>=H (1f)</td>
<td>R<sub>2</sub>=3-OMe (2a)</td>
<td>3fa</td>
<td>88</td>
</tr>
<tr>
<td>26</td>
<td>I, R<sub>1</sub>=H (1f)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3fd</td>
<td>93</td>
</tr>
<tr>
<td>27</td>
<td>4-I, R<sub>1</sub>=NEt<sub>2</sub> (1g)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3gb</td>
<td>65</td>
</tr>
<tr>
<td>28</td>
<td>4-I, R<sub>1</sub>=NEt<sub>2</sub> (1g)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3gd</td>
<td>71</td>
</tr>
<tr>
<td>29</td>
<td>4-I, R<sub>1</sub>=OMe (1h)</td>
<td>R<sub>2</sub>=H (2b)</td>
<td>3fd</td>
<td>95</td>
</tr>
<tr>
<td>30</td>
<td>4-I, R<sub>1</sub>=OMe (1h)</td>
<td>R<sub>2</sub>=4-Me (2c)</td>
<td>3ed</td>
<td>92</td>
</tr>
<tr>
<td>31</td>
<td>4-I, R<sub>1</sub>= (1i)</td>
<td>R<sub>2</sub>=4-OMe (2d)</td>
<td>3id</td>
<td>68</td>
</tr>
<tr>
<td>32</td>
<td>4-I, R<sub>1</sub>= (1i)</td>
<td>R<sub>2</sub>=4-Cl (2e)</td>
<td>3ie</td>
<td>90</td>
</tr>
</tbody>
</table>

^aYield calculated after purification by column chromatography. ^bReaction carried out using 0.5 equiv. of CuI. ^cReaction time: 40 h. ^dYield calculated by ¹H NMR from an inseparable mixture of cross-coupling product 3ee and homocoupling product from the silane 2e.

aryl(trialkoxy)silane-type Hiyama coupling, involving the combination of adding copper salts and a measured amount of water, is outlined in Scheme 3. It was theorized that a small amount of water could lead to a partial hydrolysis of the
arylalkoxysilanes (A) giving a mixture of the corresponding arilsilanol derivatives (B). The electrophilic character of the silicon atom is strengthened by the formation of silanols (C), facilitating the attack of the fluoride from TBAF to give the pentacoordinate arylsilicate anion (D). After the active complex (E) is formed, a transmetalation occurs in the presence of CuI to give the organocuprate intermediate (F), which, in turn, is subjected to further transmetalation to give the organopalladium species which finally undergoes a reductive elimination to give the desired biaryl compound and regenerate the palladium (0) catalyst.

Scheme 3 Plausible metal catalyzed mechanism of the Hiyama cross-coupling with copper iodide and measured amount of water.

Conclusions

In summary, we have developed a novel version of the Hiyama reaction in which the role of Cu(I) and a small amount of water is crucial for achieving very high yields, after purification by column chromatography. The reaction conditions were found to be applicable to the preparation of unsymmetrical biaryl compounds. Particularly outstanding is the generation of non-linearly substituted biphenyl derivatives, such as, for instance, 3,3’, 3,4’ and 4,3’-disubstituted biphenyl derivatives, which syntheses are scarcely reported and often achieved in low to moderate yields. From the best of our knowledge, the combination of adding copper salts and a measured amount of water has not been yet applied to Hiyama coupling involving synthetically accessible aryl(trialkoxysilanes). Further studies are in progress to extend use of this protocol to the generation of libraries of biologically promising compounds.

Support from CONICET, ANPCyT, Fundación Prats and Universidad Nacional de Rosario from Argentina is gratefully acknowledged. C.I.T. thanks CONICET for fellowship.

Notes and references

23. Since we proposed that Cu(I) may be regenerated after the transmetalation process, a couple of test reactions were performed using 0.5 equiv. of CuI, obtaining similar yields to those using 2 equiv. of the Cu salt (Table 2, Entries 7 and 10).
Electronic Supplementary Information

Very efficient and broad-in-scope palladium-catalyzed Hiyama cross-coupling. The role of water and copper(I) salts.

Carla I. Traficante, Ernesto G. Mata* and Carina M.L. Delpiccolo*

Instituto de Química Rosario (CONICET – UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 – Rosario, Argentina

Content

<table>
<thead>
<tr>
<th>Content</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Experimental Section</td>
<td>2</td>
</tr>
<tr>
<td>1.1.- General</td>
<td>2</td>
</tr>
<tr>
<td>1.2.- General Procedure 1: Hiyama Cross-coupling in Homogeneous Phase.</td>
<td>2</td>
</tr>
<tr>
<td>Characterization of compounds</td>
<td>3-13</td>
</tr>
<tr>
<td>2.- References</td>
<td>14</td>
</tr>
<tr>
<td>3.- 1H NMR and 13C NMR Spectra</td>
<td>15-43</td>
</tr>
</tbody>
</table>
1.- Experimental Section

1.1.- General. 1H NMR spectra were recorded in a Bruker Avance spectrometer at 300 MHz in CDCl$_3$ with tetramethylsilane (TMS) as internal standard. 13C NMR spectra were recorded on the same apparatus at 75 MHz with CDCl$_3$ as solvent and reference (76.9 ppm). The chemical shifts (δ) are reported in ppm downfield from TMS and coupling constants (J) are expressed in hertz. Mass spectra were recorded on a Shimadzu QP2010 Plus apparatus at an ionization voltage of 70 eV equipped with a SPBTM-1 capillary column (internal diameter 0.25 mm, length 30 m). The high resolution mass spectra were obtained with a Bruker MicroTOF-Q II instrument (Bruker Daltonics, Billerica, MA). Detection of the ions was performed in electrospray ionization, positive ion mode. Solvents were dried using an MBraun solvent system (SPS-800). Analytical thin–layer chromatography (TLC) was carried out with silica gel 60 F254 pre–coated aluminum sheets. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). Elution was carried out with hexane-EtOAc mixtures, under positive pressure and employing gradient of solvent polarity techniques. Chemical reagents were purchased from commercial sources and were used without further purification unless noted otherwise. Solvents were analytical grade or were purified by standard procedures prior to use. Triethoxysilanes were commercially available except 2f and 2g which were prepared following the methodology described by DeShong1.

1.2.- General Procedure: Aryl halide 1 (0.11 mmol), Pd(PPh$_3$)$_4$ (0.025 equiv.) and CuI (2 equiv.) were combined in a round bottom flask and placed under argon. THF (4 mL) were added, followed by phenyltriethoxysilane 2 (1.5 equiv.), TBAF (1.5 equiv., 1.0 M in THF) and H$_2$O (0.2 mL). The flask was fitted with a condenser and the reaction mixture was stirred 7 h at 80 °C. The reaction mixture was evaporated and the crude product was analyzed by 1H NMR and GC/MS and then purified by column chromatography (hexane-EtOAc).
Methyl 3′-methoxy-(1,1′-biphenyl)-4-carboxylate (3aa): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3aa was isolated in 93% yield.

Characterization of 3aa: \(^{2}\) \(^{1}\)H NMR (CDCl\(_3\), 300 MHz) δ: 3.87 (s, 3H), 3.94 (s, 3H), 6.94 (dd, \(J = 8.1\) and 1.9 Hz, 1H), 7.15 (t, \(J = 1.9\) Hz, 1H), 7.21 (da, \(J = 8.1, 1H\)), 7.38 (t, \(J = 8.1\) Hz, 1H), 7.65 (d, \(J = 8.5\) Hz, 2H), 8.10 (d, \(J = 8.5\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) δ: 52.2, 55.4, 113.0, 113.5, 119.8, 127.1, 129.0, 129.9, 130.1, 141.5, 145.5, 160.0, 167.0. GC/MS: \(t_R\) 21.66 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 242 (M\(^+\)), 211 (100).

Methyl-4-biphenylcarboxylate (3ab): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3ab was isolated in 84% yield.

Characterization of 3ab: \(^{3}\) \(^{1}\)H NMR (CDCl\(_3\), 300 MHz) δ: 3.95 (s, 3H), 7.36-7.51 (m, 3H), 7.60-7.70 (m, 4H), 8.12 (d, \(J = 8.26\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) δ: 52.1, 127.0, 127.2, 128.1, 128.9, 130.1, 140.0, 145.6, 167.0. GC/MS: \(t_R\) 20.0 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 212 (M\(^+\)), 181 (100).

Methyl 4′-methyl-(1,1′-biphenyl)-4-carboxylate (3ac): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(p-tolyl)silane (2c), desired product 3ac was isolated in 98% yield.

Characterization of 3ac: \(^{4}\) \(^{1}\)H NMR (CDCl\(_3\), 300 MHz) δ: 2.41 (s, 3H), 3.94 (s, 3H), 7.27 (d, \(J = 8.4\) Hz, 2H), 7.53 (d, \(J = 8.4\) Hz, 2H), 7.65 (d, \(J = 8.5\) Hz, 2H), 8.09 (d, \(J = 8.5\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) δ: 21.1, 52.1, 126.7, 127.1, 128.5, 129.6, 130.0, 137.1, 138.1, 145.5, 167.0. GC/MS: \(t_R\) 21.16 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 226 (M\(^+\)), 195 (100).
Methyl 4′-methoxy-(1,1′-biphenyl)-4-carboxylate (3ad): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3ad was isolated in 86% yield.

Characterization of 3ad: \(^{2}\) \(^{1}\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\): 3.86 (s, 3H), 3.93 (s, 3H), 6.99 (d, \(J = 8.6\) Hz, 2H), [7.57 (d, \(J = 8.6\) Hz), 7.61 (d, \(J = 8.3\) Hz), 4H], 8.08 (d, \(J = 8.3\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\): 52.1, 55.4, 114.4, 126.6, 128.4, 128.5, 130.1, 132.4, 145.2, 159.8, 167.0. GC/MS: \(t_R\) 22.95 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 242 (M\(^+\), 100).

Methyl 4′-chloro-(1,1′-biphenyl)-4-carboxylate (3ae): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(4-chlorophenyl) silane (2e), desired product 3ae was isolated in 93% yield.

Characterization of 3ae: \(^{5}\) \(^{1}\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\): 3.94 (s, 3H), 7.43 (d, \(J = 8.6\) Hz, 2H), 7.55 (d, \(J = 8.6\) Hz, 2H), 7.61 (d, \(J = 8.6\) Hz, 2H), 8.10 (d, \(J = 8.6\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\): 52.2, 126.9, 128.5, 129.1, 129.2, 130.2, 134.3, 138.4, 144.3, 166.9. GC/MS: \(t_R\) 22.1 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 246 (M\(^+\)), 215 (100).

Methyl 4′-Trifluoromethyl-(1,1′-biphenyl)-4-carboxylate (3af): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(4-(trifluoromethyl)phenyl)silane (2f), desired product 3af was isolated in 77% yield.

Characterization of 3af: \(^{6}\) \(^{1}\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 3.96 (s, 3H), 7.67 (d, \(J = 8.3\) Hz, 2H), 7.73 (s, 4H), 8.14 (d, \(J = 8.3\) Hz, 2H). \(^{13}\)C NMR (75 MHz, CDCl3): \(\delta\) 52.4, 126.0 (q, \(J = 3.8\) Hz), 126.1, 127.4, 127.8, 129.9, 130.4, 143.7, 143.7, 144.2, 166.9. GC/MS: \(t_R\) 19.8 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 280 (M\(^+\)), 249 (100).
Methyl 3′-methoxy-(1,1′-biphenyl)-3-carboxylate (3ba):
employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3ba was isolated in 93% yield.

Characterization of 3ba:7 1H NMR (CDCl₃, 300 MHz) δ: 3.88 (s, 3H), 3.95 (s, 3H), 6.93 (ddd, J = 8.0 and 2.6 Hz, 1H), 7.15 (t, J = 2.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.78 (ddd, 7.7, 1.6 and 1.2 Hz, 1H), 8.02 (dt, J = 7.7 and 1.6 Hz, 1H), 8.28 (t, J = 1.6 Hz, 1H). 13C NMR (CDCl₃, 75 MHz) δ: 52.1, 55.3, 112.9, 113.1, 119.6, 128.2, 128.5, 128.8, 129.9, 130.6, 131.5, 141.3, 141.6, 160.0, 167.0. GC/MS: tR 21.2 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 242 (M⁺, 100).

Methyl-3-biphenylcarboxylate (3bb):
employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3bb was isolated in 78% yield.

Characterization of 3bb:4 1H NMR (CDCl₃, 300 MHz) δ: 3.95 (s, 3H), 7.34-7.56 (m, 4H), 7.63 (d, J = 7.1 Hz, 2H), 7.79 (d, J = 7.7 Hz, 1H), 8.02 (d, J = 7.7 Hz, 1H), 8.28 (s, 1H). 13C NMR (CDCl₃, 75 MHz) δ: 52.2, 127.1, 127.7, 128.2, 128.3, 128.8, 130.7, 131.5, 140.1, 141.4, 167.0. GC/MS: tR 18.98 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 212 (M⁺, 100).

Methyl 4′-methyl-(1,1′-biphenyl)-3-carboxylate (3bc):
employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(p-tolyl)silane (2c), desired product 3bc was isolated in 76% yield.

Characterization of 3bc:8 1H NMR (CDCl₃, 300 MHz) δ: 2.41 (s, 3 H), 3.95 (s, 3H), 7.27 (d, J = 8.3 Hz, 2 H), 7.47-7.55 (m, 3H), 7.77 (dt, J = 7.5 and 1.3 Hz, 1H), 8.0 (dt, J = 7.5 and 1.3 Hz, 1H), 8.28 (t, J = 1.3 Hz, 1H). 13C NMR (CDCl₃, 75 MHz) δ: 21.1, 52.1, 126.9, 128.0, 128.8, 129.6, 130.6, 131.3, 137.2, 137.6, 141.4, 167.1. GC/MS: tR 19.9 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 226 (M⁺, 100).
Methyl 4′-methoxy(1,1′-biphenyl)-3-carboxylate (3bd):
employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3bd was isolated in 92% yield.

Characterization of 3bd:\h{1}H NMR (CDCl\textsubscript{3}, 300 MHz) δ: 3.86 (s, 3H), 3.95 (s, 3H), 7.00 (d, J = 8.7 Hz, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 7.7 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H), 8.24 (s, 1H). 13C NMR (CDCl\textsubscript{3}, 75 MHz) δ: 52.2, 55.2, 127.1, 127.7, 128.2, 128.3, 128.8, 130.7, 131.5, 140.1, 141.4, 167.0. GC/MS: 19R 21.9 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 242 (M+, 100).

Methyl 4′-chloro-(1,1′-biphenyl)-3-carboxylate (3be):
employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and (4-chlorophenyl)triethoxysilane (2e), desired product 3be was isolated in 85% yield.

Characterization of 3be:\h{1}H NMR (CDCl\textsubscript{3}, 300 MHz) δ: 3.95 (s, 3H), 7.42 (d, J = 8.6 Hz, 2H), 7.48-7.56 (m, 3H), 7.73 (dd, J = 7.6 and 1.5 Hz, 1H), 8.03 (dt, J = 7.6 and 1.3 Hz, 1H), 8.23 (t, J = 1.5 Hz, 1H). 13C NMR (CDCl\textsubscript{3}, 75 MHz) δ: 52.2, 128.0, 128.4, 128.6, 129.0, 129.0, 130.8, 131.3, 133.9, 138.5, 140.2, 166.8. GC/MS: 19R 20.8 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 246 (M+, 100).

Methyl 3′-methoxy-(1,1′-biphenyl)-2-carboxylate (3ca):
employing General Procedure, with methyl 2-iodobenzoate (1c) (30 mg, 0.11 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3ca was isolated in 82% yield.

Characterization of 3ca:\h{1}H NMR (CDCl\textsubscript{3}, 300 MHz) δ: 3.65 (s, 3H), 3.83 (s, 3H), 6.87-6.92 (m, 3H), 7.30 (t, J = 7.7 Hz, 1H), 7.37-7.44 (m, 2H), 7.52 (dt, J = 7.5 and 1.4 Hz, 1H), 7.79-7.82 (m, 1H). 13C NMR (CDCl\textsubscript{3}, 75 MHz) δ: 52.0, 55.2, 112.8, 113.8, 120.9, 127.2, 129.0, 129.6, 130.5, 131.0, 131.1, 142.2,
Methyl-(1,1′-biphenyl)-2-carboxylate (3cb): employing General Procedure, with methyl 2-iodobenzoate (1c) (30 mg, 0.11 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3cb was isolated in 90% yield.

Characterization of 3cb:¹⁰ ¹H NMR (CDCl₃, 300 MHz) δ: 3.64 (s, 3H), 7.30-7.44 (m, 7H), 7.52 (td, J = 7.5 and 1.4 Hz, 1H), 7.83 (dd, J = 7.7 and 0.9 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 51.9, 127.1, 127.2, 128.0, 128.3, 129.7, 169.1, 130.8, 131.2, 141.3, 142.4, 169.1. GC/MS: tR 16.5 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 212 (M+), 181 (100).

Methyl 4′-methyl-(1,1′-biphenyl)-2-carboxylate (3cc): employing General Procedure, with methyl 2-iodobenzoate (1c) (30 mg, 0.11 mmol) as starting material and triethoxy(p-tolyl)silane (2c), desired product 3cc was isolated in 88% yield.

Characterization of 3cc:¹¹ ¹H NMR (CDCl₃, 300 MHz) δ: 2.40 (s, 3H), 3.67 (s, 3H), 7.21 (s, 4H), 7.36-7.42 (m, 2H), 7.49-7.54 (m, 1H), 7.81 (d, J = 7.8 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 21.2, 51.9, 126.9, 128.8, 128.2, 129.7, 130.7, 130.8, 131.2, 136.9, 138.3, 142.4, 169.2. GC/MS: tR 17.7 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 226 (M+), 195 (100).

1-(3′-methoxy-[1,1′-biphenyl]-4-yl)ethanone (3da):
employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3da was isolated in 91% yield.

Characterization of 3da:¹⁶ ¹H NMR (CDCl₃, 300 MHz) δ: 2.63 (s, 3H), 3.87 (s, 3H), 6.95 (ddd, J = 7.9, 2.50 and 1.2 Hz, 1H), 7.15 (t, J = 1.2 Hz, 1H), 7.21 (dt, J = 7.9 and 1.2 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.67 (d, J = 8.5 Hz, 2H), 8.02 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ: 26.6, 55.3, 113.0, 113.5, 119.7,
employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3db was isolated in 88% yield. Characterization of 3db: \(^{1}H\) NMR (CDCl\(_3\), 300 MHz) \(\delta\): 2.64 (s, 2H), 7.40-7.50 (m, 3H), 7.63 (d, \(J = 8.0 \text{ Hz}, 2H\)), 7.69 (d, \(J = 8.0 \text{ Hz}, 2H\)), 8.04 (d, \(J = 8.0 \text{ Hz}, 2H\)). \(^{13}C\) NMR (CDCl\(_3\), 75 MHz) \(\delta\): 26.6, 127.2, 128.2, 128.9, 128.9, 135.8, 139.8, 145.7, 197.7. GC/MS: \(^{1}R\) 18.4 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 196 (M\(^+\)), 181 (100).

1-(4′-methoxy-[1,1′-biphenyl]-4-yl)ethanone (3dd): employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3dd was isolated in 85% yield. Characterization of 3dd: \(^{1}H\) NMR (CDCl\(_3\), 300 MHz) \(\delta\): 2.62 (s, 3H), 3.86 (s, 3H), 7.00 (d, \(J = 8.8 \text{ Hz}, 2H\)), 7.58 (d, \(J = 8.8 \text{ Hz}, 2H\)), 7.64 (d, \(J = 8.4 \text{ Hz}, 2H\)), 8.00 (d, \(J = 8.4 \text{ Hz}, 2H\)). \(^{13}C\) NMR (CDCl\(_3\), 75 MHz) \(\delta\): 26.6, 55.3, 114.4, 126.6, 128.3, 128.9, 132.2, 135.2, 145.3, 159.9, 197.7. GC/MS: \(^{1}R\) 21.4 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%) 226 (M\(^+\)), 211 (100).
1-(4′-chloro-[1,1′-biphenyl]-4-yl)ethanone (3de):
employing General Procedure, with 4-iodoacetophenone
(1d) (30 mg, 0.12 mmol) as starting material and (4-
chlorophenyl)triethoxysilane (2e), desired product 3de was
isolated in 91% yield.
Characterization of 3de:\(^{12}\) \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\): 2.64 (s, 3H), 7.44 (d, \(J = 8.5\) Hz, 2H), 7.55 (d, \(J = 8.5\) Hz, 2H), 7.65 (d, \(J = 8.5\) Hz, 2H), 8.03 (d, \(J = 8.5\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\): 26.6, 127.0, 128.5, 129.0, 129.1, 134.4, 136.1, 138.2, 144.4, 197.5. GC/MS: \(t_R\) 20.6 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%): 230 (M\(^+\)), 215 (100).

3-methoxy-4′-methyl-1,1′-biphenyl (3ea):
employing General Procedure, with 4-iodotoluene (1e) (30 mg, 0.14 mmol) as starting material and triethoxy(3-
methoxyphenyl)silane (2a), desired product 3ea was isolated
in 76% yield.
Characterization of 3ea:\(^{13}\) \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\): 2.42 (s, 3H), 3.88 (s, 3H), 6.90 (d, \(J = 7.9\) and 1.9 Hz, 1H), 7.14 (t, \(J = 1.9\) Hz, 1H), 7.19 (d, \(J = 7.6\) Hz, 1H), 7.27 (d, \(J = 8.0\) Hz, 2H), 7.36 (dd, \(J = 7.9\) and 7.6 Hz, 1H), 7.52 (d, \(J = 8.0\), 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\): 21.1, 29.7, 55.2, 112.4, 112.7, 112.9, 119.5, 119.7, 127.0, 127.2, 127.4, 128.7, 129.4, 129.7, 137.2, 138.2, 142.7, 159.9. GC/MS: \(t_R\) 18.2 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%): 198 (M\(^+\), 100).

4-methoxy-4′-methyl-1,1′-biphenyl (3ed):
employing General Procedure, with 4-iodotoluene (1e) (30 mg, 0.14 mmol) as starting material and triethoxy(4-
methoxyphenyl)silane (2d), desired product 3ed was isolated in 93% yield.
Characterization of 3ed:\(^{5}\) \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\): 2.40 (s, 3H), 3.86 (s, 3H), 6.99 (d, \(J = 8.8\) Hz, 2H), 7.25 (d, \(J = 8.2\) Hz, 2H), 7.47 (d, \(J = 8.2\) Hz, 2H), 7.53 (d, \(J = 8.8\) Hz, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\): 21.0, 55.3, 114.1, 126.6, 126.7, 127.9, 128.1, 128.7, 129.4, 133.7, 136.3, 137.9, 158.9. GC/MS: \(t_R\) 18.0 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). \(m/z\) (%): 198 (M\(^+\), 100).
3-methoxy-1,1'-biphenyl (3fa): employing General Procedure, with 4-iodobenzene (1f) (36.6 mg, 0.18 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3fd was isolated in 88% yield.

Characterization of 3fa.14 1H NMR (CDCl\textsubscript{3}, 300 MHz) δ: 3.88 (s, 3H), 6.92 (dd, J = 5.7 and 2.3 Hz, 1H), 7.15-7.22 (m, 2H), 7.34-7.48 (m, 4H), 7.60-7.63 (m, 2H). 13C NMR (CDCl\textsubscript{3}, 75 MHz) δ: 55.3, 112.7, 112.9, 119.7, 127.2, 127.4, 128.7, 129.7, 141.1, 142.8, 159.9. GC/MS: t\textsubscript{R} 16.4 min (50° C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 184 (M+, 100).

4-methoxy-1,1'-biphenyl (3fd): employing General Procedure, with 4-iodobenzene (1f) (36.6 mg, 0.18 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3fd was isolated in 93% yield.

Characterization of 3fd.5 1H NMR (CDCl\textsubscript{3}, 300 MHz) δ: 3.87 (s, 3H), 7.00 (d, J = 8.8 Hz, 2H), 7.31-7.35 (m, 1H), 7.41-7.45 (m, 2H), 7.55-7.60 (m, 4H). 13C NMR (CDCl\textsubscript{3}, 75 MHz) δ: 55.3, 114.2, 126.6, 126.7, 128.1, 128.7, 133.8, 140.8, 159.1. GC/MS: t\textsubscript{R} 16.6 min (50° C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 184 (M+, 100).

N,N-diethyl-[1,1'-biphenyl]-4-amine (3gb): employing General Procedure, with N,N-diethyl-4-iodoaniline (1g) (45 mg, 0.16 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3gb was isolated in 65% yield.

Characterization of 3gb.15 1H NMR (CDCl\textsubscript{3}, 300 MHz) δ: 1.20 (t, J = 7.1 Hz, 6H), 3.40 (q, J = 7.1 Hz, 4H), 6.75 (d, J = 8.8 Hz, 2H), 7.21-7.26 (m, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 7.1 Hz, 2H). 13C NMR (CDCl\textsubscript{3}, 75 MHz) δ: 12.6, 44.4, 111.9, 125.7, 126.1, 127.9, 128.1, 128.6, 141.3, 147.1. GC/MS: t\textsubscript{R} 20.27 min (50° C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 225 (M+), 210 (100).
N,N-diethyl-4’-methoxy-[1,1’-biphenyl]-4-amine (3gd): employing General Procedure, with N,N-diethyl-4-iodoaniline (1g) (34 mg, 0.12 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3gd was isolated in 71% yield.

Characterization of 3gd: ¹H NMR (CDCl₃, 300 MHz) δ: 1.19 (t, J = 7.1 Hz, 6H), 3.39 (q, J = 7.1 Hz, 4H), 3.83 (s, 3H), 6.74 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ: 12.9, 44.9, 55.5, 112.9, 115.1, 127.6, 128.0, 134.6, 159.3. HRMS (ESI) m/z 256.16933 [(M + H⁺); calcd for C₁₇H₂₂NO: 256.16959].

1-benzyl-4-(4’-methoxy-[1,1’-biphenyl]-4-yl)-3-phenoxyazetidin-2-one (3id): employing General Procedure, with 1-benzyl-4-(4-iodophenyl)-3-phenoxyazetidin-2-one (1i) (30 mg, 0.066 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3id was isolated in 68% yield.

Characterization of 3id: ¹H NMR (CDCl₃, 300 MHz) δ: 3.85 (s, 3H), 3.91 (d, J = 14.7 Hz, 1H), 4.79 (d, J = 4.2 Hz, 1H), 4.92 (d, J = 14.7 Hz, 1H), 5.43 (d, J = 4.2 Hz, 1H), 6.75 (d, J = 7.6 Hz, 2H), 6.87 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 7.11 (t, J = 7.6 Hz, 2H), 7.18-7.21 (m, 2H), 7.31-7.34 (m, 5H), 7.46-7.52 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ: 44.2, 55.3, 61.2, 82.2, 114.2, 115.6, 122.0, 126.4, 128.0, 128.0, 128.6, 128.9, 129.1, 129.2, 131.0, 132.9, 134.8, 134.8, 157.0, 159.3, 165.6. HRMS (ESI) m/z 458.1705 [(M + Na⁺); calcd for C₂₉H₂₅O₃Na: 458.17266].

1-benzyl-4-(4’-chloro-[1,1’-biphenyl]-4-yl)-3-phenoxyazetidin-2-one (3ie): employing General Procedure, with 1-benzyl-4-(4-iodophenyl)-3-phenoxyazetidin-2-one (1i) (30 mg, 0.066 mmol) as starting material and (4-chlorophenyl)triethoxysilane (2e), desired product 3ie was isolated in 90% yield.

Characterization of 3ie: ¹H NMR (CDCl₃, 300 MHz) δ: 3.91
(d, J = 14.7 Hz, 1H), 4.79 (d, J = 4.5 Hz, 1H), 4.91 (d, J = 14.7 Hz, 1H), 5.42 (d, J = 4.5 Hz, 1H), 6.75 (d, J = 8.0 Hz, 2H), 6.87 (t, J = 7.38 Hz, 1H), 7.09-7.14 (m, 2H), 7.18-7.20 (m, 2H), 7.32-7.41 (m, 7H), 7.46-7.49 (m, 4H). 13C NMR (CDCl$_3$, 75 MHz) δ: 44.2, 61.1, 82.2, 115.6, 122.0, 126.8, 128.0, 128.2, 128.6, 128.9, 129.2, 132.1, 133.6, 134.7, 138.8, 140.2, 156.9, 165.5. HRMS (ESI) m/z 462.12404 [(M + Na$^+$)]; calcd for C$_{28}$H$_{2}$ClNaO$_2$: 462.12313.

3-(3-methoxyphenyl)pyridine (3ja): employing General Procedure, with 3-iodopyridine (1j) (30 mg, 0.15 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3ja was isolated in 87% yield.

Characterization of 3ja: 1H NMR (CDCl$_3$, 300 MHz) δ: 3.87 (s, 3H), 6.95 (ddd, J = 8.3, 2.4 and 0.9 Hz, 1H), 7.10 (t, J = 2.4 Hz, 1H), 7.15-7.18 (m, 1H), 7.33-7.42 (m, 2H), 7.85 (dt, J = 7.9 and 1.6 Hz, 1H), 8.59 (dd, J = 4.8 and 1.6 Hz, 1H), 8.85 (d, J = 1.6 Hz, 1H). 13C NMR (CDCl$_3$, 75 MHz) δ: 55.3, 112.9, 113.4, 119.6, 123.5, 130.1, 134.4, 136.5, 139.3, 148.3, 148.6, 160.1. GC/MS: tR 17.15 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 185 (M$^+$, 100).

2-(3-methoxyphenyl)thiophene (3ka): employing General Procedure, with 2-iodothiophene (1k) (38 mg, 0.18 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3ka was isolated in 93% yield.

Characterization of 3ka: 1H NMR (CDCl$_3$, 300 MHz) δ: 3.86 (s, 3H), 6.85 (ddd, J = 8.0, 2.4 and 0.9 Hz, 1H), 7.08 (dd, J = 5.0 and 3.6 Hz, 1H), 7.17 (ta, J = 2.1 Hz, 1H), 7.21-7.24 (m, 1H), 7.28-7.33 (m, 3H). 13C NMR (CDCl$_3$, 75 MHz) δ: 55.3, 111.6, 112.9, 118.6, 123.3, 124.9, 127.9, 129.9, 135.7, 144.2, 159.9. GC/MS: tR 16.55 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 190 (M$^+$, 100).

2-(4-methoxycarbonylphenyl)thiophene (3ag): employing General Procedure, with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol) as starting material and triethoxy(thiophen-2-yl)silane (2g), desired product 3ag was isolated in 88% yield.
Characterization of 3ag: 1H NMR (CDCl$_3$, 300 Hz) 3.93 (s, 3 H) 7.11 (dd, $J = 5.3$ and 3.8 Hz, 1H), 7.35-7.37 (m, 1H) 7.41-7.43 (m, 1H) 7.67 (d, $J = 8.4$ Hz, 2H), 8.04 (d, $J = 8.4$ Hz, 2H). 13C NMR (CDCl$_3$, 75 MHz) δ: 52.1, 124.5, 125.5, 1126.3, 128.3, 128.8, 130.3, 138.6, 143.1, 166.7. GC/MS: 1R 18.97 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 187 (100), 218 (M$^+$).
2.- References

3. 1H NMR and 13C NMR Spectra

![Chemical Shift (ppm)]

3aa
Chemical Shift (ppm)

3cb

COOCH₃

Page 31 of 47
The 1H NMR spectrum of compound 3ed shows the following signals:

- A singlet at 8.0 ppm
- A multiplet at 7.5 ppm
- A multiplet at 7.0 ppm
- A multiplet at 6.5 ppm
- A multiplet at 6.0 ppm
- A multiplet at 5.5 ppm
- A multiplet at 5.0 ppm
- A multiplet at 4.5 ppm
- A multiplet at 4.0 ppm
- A multiplet at 3.5 ppm
- A multiplet at 3.0 ppm
- A multiplet at 2.5 ppm
- A multiplet at 2.0 ppm
- A multiplet at 1.5 ppm
- A multiplet at 1.0 ppm
- A multiplet at 0.5 ppm
- A multiplet at 0 ppm

The 13C NMR spectrum of compound 3ed shows the following signals:

- A signal at 158.96 ppm
- A signal at 137.99 ppm
- A signal at 136.37 ppm
- A signal at 133.77 ppm
- A signal at 129.46 ppm
- A signal at 127.97 ppm
- A signal at 126.60 ppm
- A signal at 114.18 ppm

The structure of compound 3ed is shown on the right side of the page.
3fa