High rate capabilities of Li4Ti5-xVxO12 (0 ≤ x ≤ 0.3) anode materials prepared by sol-gel method for power lithium ion battery

<table>
<thead>
<tr>
<th>Journal</th>
<th>RSC Advances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>RA-ART-02-2015-003549.R1</td>
</tr>
<tr>
<td>Article Type</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author</td>
<td>11-May-2015</td>
</tr>
<tr>
<td>Complete List of Authors</td>
<td>Chang, Chien-Min; Chung Yuan Christian University, Chemistry Chen, Yi-Chih; Chung Yuan Christian University, Chemistry Ma, Wei-Lun; Chung Yuan Christian University, Chemistry Chen, yuiwhei; Chung Yuan Christian University, Chemistry</td>
</tr>
</tbody>
</table>
Graphical Abstract

(a) Charge-discharge curves of the LTOV06 electrode at various rates. (b) The rate capabilities of the Li_{4+\delta}Ti_{5-x}V_{x}O_{12} (0 \leq x \leq 0.3) electrodes at various rates in 1 - 2.5 V for coin half-cell. The results show that the highest capacities, 208 (0.2 C), 198 (0.5 C), 189 (1 C), 179 (2 C), 157 mAh g\(^{-1}\) (5 C), are obtained from the LTOV06 electrode, which are higher than those of the LTO electrodes reported.
High rate capabilities of Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (0 ≤ x ≤ 0.3) anode materials prepared by sol-gel method for power lithium ion battery

Chien-Min Changa, Yi-Chih Chena, Wei-Lun Maa, Yui Whei Chen-Yanga,b,c

In this study, the spinel-type vanadium-doped Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (0 ≤ x ≤ 0.3) samples (LTOVs) are synthesized by the sol-gel method. It is found that the LTOVs are formed with the nano-particles of 5 - 15 nm in diameter. The V-doping does not cause any phase change in its structure and barely affects the lattice parameter, while varies the ratio of Ti$^{4+}$ and Ti$^{3+}$ oxidation states. The electrochemical analyses demonstrate that the best discharge capacities are obtained from the Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (x = 0.06) electrode (LTOV06 electrode) in the voltage range of 1 - 2.5 V at 0.2, 0.5, 1, 2 and 5 C with 208, 198, 189, 179 and 157 mAh g$^{-1}$, respectively. At 1 C the discharge capacity remains at 186 mAh g$^{-1}$ after 50 cycles, keeping good cyclic performance. Besides, in the voltage range of 0 - 2.5 V at 5 C, the initial discharge capacity of the LTOV06 electrode is at 243 mAh g$^{-1}$ and retains 89 % after 250 cycles. The results indicate that LTOV06 is a promising high-rate anode material for lithium ion batteries.

1. Introduction

Recently, the research focus of rechargeable lithium ion battery (LIB) in application has been transferred from energy battery to power battery because its high power density and high-rate capability can meet the requirement of the application in electric vehicles (EVs), hybrid electric vehicles (HEVs) and other load-leveling applications.1, 2 Nevertheless, the safety issues of LIB are always concerned especially for the large batteries.3 Compared to the currently used carbonaceous materials such as graphite, the spinel-type Li$_4$Ti$_{5-x}$O$_{12}$ (LTO) has been regarded as the potential materials of the next generation anode due to the negligible change of volume during electrochemical cycling and the high redox platforms at around 1.55 V vs. Li/Li$^+$, avoiding the reduction of electrolyte.4, 5 Although LTO is more stable and safer than the carbonaceous materials, its poor electronic conductivity, leading to a lower specific capacity, is the disadvantage to be improved.6 Hence, the methods, such as reducing particle size, coating with carbon or metallic conducting layer and doping with metal ions, have been reported to enhance the conductivity and rate capability of LTO.7-10 For the metal ion-doped LTO (LTOM), the increase in electronic conductivity was ascribed to the generation of some Ti$^{3+}$ by charge compensation.11 Table 1 lists the electrochemical cycling data of the LTOMs with various doping metal ions in the Ti site.6, 11-22 As can be seen, most of the LTOM electrode materials were prepared with solid state method. This is because it is a convenient and low cost process, having the commercial application potential. On the other hand, although few LTOMs prepared with sol-gel method were reported, it was found that the sol-gel method was not only able to dope the metal ions in the spinel structure but also produce nanoparticles, leading to the better electrochemical properties.23 Especially, the Nb-doped Li$_4$Ti$_{5-x}$Nb$_x$O$_{12}$ (x = 0.05) prepared with sol-gel method by Wang et al.6 exhibited a high discharge capacity of 179 mAh g$^{-1}$ at 0.5 C and an initial capacity of 145 mAh g$^{-1}$ at 10 C with a capacity of 116 mAh g$^{-1}$ at the 100th cycle. Nevertheless, the Nb is relatively expensive and rare on earth. On the other hand, vanadium was considered to be a cheaper and more abundant metal than Nb. Yi et al.21, 22 prepared a series of V-doped LTOs, Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (0 ≤ x ≤ 0.3), with solid state method and obtained good capacities for Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (x = 0.05). However, the high rate capacities were not studied. Wang et al.21 used high-speed ball milled method to down size the Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (x = 0.1) particles and found that the reduction of the particle size did improve the electrochemical properties. Yet, the capacity was still no better than that of Nb-doped LTO mentioned above, possibly because the particle size was not smaller enough. These results revealed that synthesis of a high-rate performance anode material with a good combination of cheaper metal doper and proper method, such as V-doped LTO and sol-gel method is still worth to pursue. Although Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ with sol-gel method had been prepared by Jumas,23 its discharge capacity was only 74 mAh g$^{-1}$ at less than 0.1 C, and the rate capability was not reported. Since the product of sol-gel process depends on the precursor, temperature, calcination condition etc., in this study, we synthesized a series of the vanadium-doped Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ (x = 0.00 - 0.30) (LTOVs) by the sol-gel process under a proper condition and studied their electrochemical properties. Moreover, the oxidation states of titanium and vanadium and morphologies of the as-prepared LTOVs were examined in detail to study the loading effect of V-doping at the high-rate and the cycle stability of the LTOVs in the voltage range of 1 - 2.5 V and 0 - 2.5 V vs. Li/Li$^+$.
Table 1 Summary of electrochemical cycling data of Li$_4$Ti$_5$O$_{12}$ with different doping metal ions in the Ti site

<table>
<thead>
<tr>
<th>Doping Metal ions</th>
<th>Preparation method</th>
<th>AMa (%)</th>
<th>Reversible capacity at C-rate (mAh g$^{-1}$ @ C)</th>
<th>Cyclic performance</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = Al, $x = 0.05$</td>
<td>Sol-gel</td>
<td>83</td>
<td>169 @ 0.1 C; 116 @ 5 C</td>
<td>110 @ 5 C; 50</td>
<td>12</td>
</tr>
<tr>
<td>M = Al, $x = 0.05$</td>
<td>Solid state</td>
<td>80</td>
<td>227 @ 0.2 C</td>
<td>160 @ 0.2 C; 50</td>
<td>13</td>
</tr>
<tr>
<td>M = Al, $x = 0.15$</td>
<td>Cellulose combustion</td>
<td>85</td>
<td>212 @ 1 C; 180 @ 5 C</td>
<td>Capacity retention 95% @ 5C; 50</td>
<td>14</td>
</tr>
<tr>
<td>M = Zr, $x = 0.1$</td>
<td>Solid state</td>
<td>80</td>
<td>196b @ 0.15 mA cm$^{-2}$</td>
<td>Capacity retention 167b @ 0.15 mA cm$^{-2}$; 30</td>
<td>15</td>
</tr>
<tr>
<td>M = Nb, $x = 0.05$</td>
<td>Solid-gel</td>
<td>82</td>
<td>179 @ 0.5 C; 145 @ 10 C; 82 @ 40 C</td>
<td>163 @ 5 C; 100</td>
<td>16</td>
</tr>
<tr>
<td>M = Mo, $x = 0.1$</td>
<td>Solid state</td>
<td>80</td>
<td>276c @ 0.1 C; 243c @ 6 C</td>
<td>Capacity retention 211c @ 6 C; 100</td>
<td>17</td>
</tr>
<tr>
<td>M = Ru, $x = 0.05$</td>
<td>Solid state</td>
<td>80</td>
<td>233c @ 1 C; 154c @ 10 C</td>
<td>Capacity retention 132c @ 10 C; 100</td>
<td>18</td>
</tr>
<tr>
<td>M = La, $x = 0.05$</td>
<td>Solid state</td>
<td>82</td>
<td>~220c @ 0.5 C; 201c @ 5 C</td>
<td>Capacity retention 181c @ 5 C; 200</td>
<td>19</td>
</tr>
<tr>
<td>M = Ni and Mn, $x = 0.10$</td>
<td>Sol-gel</td>
<td>85</td>
<td>172 @ 0.5 C</td>
<td>Capacity retention 143 @ 0.5 C; 100</td>
<td>20</td>
</tr>
<tr>
<td>M = V, $x = 0.05$</td>
<td>Solid state</td>
<td>82</td>
<td>171 @ 0.1 C</td>
<td>Capacity retention 157 @ 0.1 C; 110</td>
<td>21</td>
</tr>
<tr>
<td>M = V, $x = 0.05$</td>
<td>Solid state</td>
<td>80</td>
<td>Higher than theoretical capacity (298)f @ 0.2 C</td>
<td>Capacity retention 218f @ 0.2 C; 50</td>
<td>22</td>
</tr>
<tr>
<td>M = V, $x = 0.1$</td>
<td>High-speed ball milled</td>
<td>80</td>
<td>178 @ 0.1 C; 114 @ 5 C</td>
<td>Capacity retention 93% @ 5C; 4374</td>
<td>11</td>
</tr>
<tr>
<td>M = V, $x = 0.06$</td>
<td>Sol-gel</td>
<td>80</td>
<td>208 @ 0.2 C; 157 @ 5 C</td>
<td>Capacity retention 186 @ 1 C; 243 @ 5 C; 250</td>
<td>24</td>
</tr>
</tbody>
</table>

a The weight percentage of active material in the electrode

b The capacity in the voltage range of 0.5 - 2.5 V

c The capacity in the voltage range of 0.5 - 2.5 V

This work
2. Experimental

2.1. Materials Preparation

The spinel-type oxide with nominal compositions of Li$_2$Ti$_5$V$_{12}$O$_{31}$ (x = 0, 0.06, 0.12, 0.18, 0.24, 0.30) were synthesized by sol-gel method from the mixture of lithium acetate (CH$_3$COOLi, Alfa Aesar), vanadium oxide (V$_2$O$_4$, 99.3%, SHOWA) and titanium isopropoxide (Ti(OC(CH$_3$)$_3$)$_4$, 97 %, ALDRICH). Lithium acetate was dissolved in ethanol and vanadium oxide was added. The titanium isopropoxide / iso propanol ((CH$_3$)$_2$CHOH, 99 %, ALDRICH) solution was then added. After stirring for 20 min, the solution was set, allowing to gel and then aging for 2 days to form the set-gels. The as-prepared wet gels were dried and followed by calcination at 800 °C for 12 hours under N$_2$ gas, separately, to prepare Li$_2$Ti$_5$V$_{12}$O$_{31}$, x = 0.06, 0.12, 0.18, 0.24, 0.30, and were abbreviated with LTO, LTOV06, LTOV12, LTOV18, LTOV24 and LTOV30, respectively.

2.2. Cell fabrication

For the electrode fabrication, the active material i.e. the LTOV prepared, was mixed with acetylene carbon black (DENKA HS-100) and polyvinylidene fluoride (PC) with a volume ratio EC:PC:DEC = 1: 1: 1 as the electrolyte and Celgard 2400 polypropylene as the separator. The electrochemical properties were studied in the half-cell with CR2032 coin cells assembled in an argon-filled glove box, where the H$_2$O and O$_2$ concentrations were less than 1 ppm.

2.3. Characterization

The crystalline structures of the samples prepared were characterized on a PANalytical X’Pert Pro MRD X-ray diffraction spectroscopy (XRD) with Cu K$_\alpha$ radiation source (\(\lambda = 1.5418\) Å). The element compositions of metals in the samples were determined by inductively coupled plasma optical emission spectrometer (ICP-OES, Agilent 725). The electronic conductivity measurements were performed with a four-point probe connected to a Keithley 2400 voltmeter constant-current source system. The X-Ray photoelectron spectroscopy (XPS) measurements were performed on Perkin Elmer PHI 5900. Nitrogen adsorption/desorption isotherms were determined on Micromeritics Tristar 3000. The scanning electron microscopy (SEM) images of samples were obtained at two magnifications (20kX and 100kX) using JEOL JEM-7600F. The transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) images of the samples were taken by JEOL JEM2000FX II and JEOL JEM2100, respectively.

Both the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were performed on AUTOLAB PGSTAT30. The cyclic voltammetry data was collected in the range of 1 - 2.5 V vs. Li/Li$^+$ at the various scan rates of 1, 2 and 5 mV s$^{-1}$. The EIS data was collected by applying AC amplitude of 5 mV over the frequency range of 10^2 - 10^5 Hz. Both the rate capability and galvanostatic charge-discharge cycling tests were performed on Land CT2001A (5 V, 2 mA) in the range of 1 - 2.5 V or 0 - 2.5 V. The C-rate was calculated from the weight and theoretical capacity of the LTO and LTOV electrodes. (1C = 175 mA g$^{-1}$)

3. Results and discussion

3.1. Characterization of the Li$_2$Ti$_5$V$_{12}$O$_{31}$ samples

The element compositions of metals in LTOVs were measured by ICP-OES and the data are listed in Table 2. As expected, with increasing the amount of V$_2$O$_5$ the V concentration was increased and Ti concentration was decreased in LTOVs due to decrease the organic precursor (titanium isopropoxide) used.

Fig. 1a shows the XRD patterns of LTOVs with different vanadium contents (x) synthesized. As is observed, the main diffraction patterns of all the samples are the same and according to JCPDS card No-26-1198 the pattern is indexed to Fd3m space of the cubic spinel structured Li$_2$Ti$_5$O$_{12}$. Unlike the Li$_2$Ti$_5$O$_{12}$ prepared by the solid state method reported,21 in which VO$_2$ phase was found in those with x \geq 0.15, only very weak peaks at 2\(\theta = 25.5\)° and 27.5° for the anatase structure TiO$_2$ are observed in LTO, which was formed due to loss of the Li ion calcination at 800 °C.25 However, the anatase phase was significantly diminished and no V-based phase was found. Besides, as indicated by the perpendicular dash lines, the shifts of the diffraction peak positions of the cubic spinel structures from that of pure LTO are negligible for all the LTOVs. This implies that the vanadium ions successfully replaced the titanium ions by the sol-gel method applied. The lattice parameters calculated from the XRD patterns using a Jade program according to the Rietveld method are listed in Table 2. The various lattice change of LTOVs after annealing are believed to be influenced by (1) the oxygen defect concentration under the heat treatment in nitrogen atmosphere26 (2) the smaller ionic radii of vanadium ions (0.54 and 0.58 Å for V$^{5+}$ and V$^{4+}$, while 0.605 and 0.67 Å for Ti$^{4+}$ and Ti$^{3+}$, respectively)27 (3) the valence transition from Ti$^{4+}$ to Ti$^{3+}$ by charge compensation14,28,29 as evidenced by XPS discussed below. Since these factors do not have the same trend as the vanadium concentration is increased, there is no trend for the lattice parameters resulted by the combination of these factors. Nevertheless, most of the lattice parameters of LTOVs were slightly smaller than that of the pure LTO (< 0.18 %) may be mainly ascribed to the smaller radii of the vanadium ions doped.

The oxidation states of the titanium and the vanadium in LTOVs were investigated by the XPS measurement and the Ti 2pα and V 2pα XPS curves of LTO, LTOV06 and LTOV18 measured are shown in Fig. 2 as the representatives. Besides, the spectra were deconvoluted by using the XPSPEAK program and the
corresponding analysis data are listed in Table 2. As shown in Fig. 2a-c for the Ti 2p_{3/2} XPS spectra, the deconvoluted binding energy peak located at about 458.7 and 457.3 eV is assigned to Ti^{4+} and Ti^{3+}, respectively. As listed in Table 2, no Ti^{4+} was reduced to Ti^{3+} in LTO and the Ti^{3+} content of LTOVs was increased from LTOV06 to LTOV18 then decreased for LTOV24 and LTOV30. On the other hand, although relatively low intensities of the peaks are found in the V 2p_{3/2} XPS spectra due to the low V3doping amount, the deconvoluted binding energy peaks located at around 517.3 and 516.2 eV, respectively, are seen in Fig. 2b’ and 2c’. Fig. 2b’ shows 100 % of the V^{5+} oxidation state in LTOV06 due to the lower V3doping amount, while only part of the V^{5+} was reduced to V^{4+} in LTOV18 as observed in Fig. 2c’. It confirms that the mixed valence of Ti^{4+} and Ti^{3+} as well as V^{5+} and V^{4+} were occurred due to the change in electronic structure and oxygen defect concentration under the heat treatment in nitrogen atmosphere. Since the electrochemical properties of the LTOV materials are related to their bulk electronic conductivities, which could be increased with increasing the percentage of the reduced forms of vanadium and titanium ions, therefore, it was anticipated that the best electrochemical properties would be obtained from LTOV06.

3.2. Electronic conductivity and textural properties of the Li$_4$Ti$_{5-x}$V$_x$O$_{12}$ samples

The electronic conductivities of LTOVs were investigated by the four-point probe DC method and the data is listed in Table 2. It clearly indicates that the highest electronic conductivity (4.512 × 10^{-8} S cm^{-1}) was obtained from LTOV06 and was about 35 % higher than that of LTO (3.349 × 10^{-8} S cm^{-1}).

The textural properties of LTOVs were measured by the nitrogen adsorption/desorption isotherms and listed in Table 2. As usually occurred in the samples synthesized by sol-gel process, the pores were formed in LTO and LTOVs prepared in this study. As shown in Fig. 3 the pore size distribution of LTO is peaked at 2.3 nm and the average pore size and the total pore volume is 13.85 nm and 0.010 cm3 g$^{-1}$, respectively. The average pore diameter and total pore volumes of LTOV06 - LTOV18 were all higher than that of LTO and increased to about 25.64 - 28.63 nm and 0.011 - 0.018 cm3 g$^{-1}$, respectively. These increases are believed to benefit the penetration of the electrolyte, resulting in a decrease in the resistance of the Li ion migration at the electrode/electrolyte interface. However, the large decrease in total pore volume for LTOV24 and LTOV30 decreased the Li ion migration opportunity between the electrode and the electrolyte, leading to higher resistance.
3.3. Morphologies of the Li$_4$Ti$_{5x}$V$_x$O$_{12}$ samples

The SEM images of LTOVs with different vanadium contents are depicted in Fig. 4 at two magnifications (20kX and 100kX). The high magnification images (a - f) demonstrate that as commonly found in the materials prepared by the sol-gel method the micron-particles in all the samples were formed by the nano-particles (5 - 15 nm). In the low magnification images (a’ - f’), it is observed that the chunks were clumped by the micron-particles and evenly coated with the carbon layer formed from the calcination of the organic precursors, lithium acetate and titanium isopropoxide, in the inert gas. The micron-particles in LTO and LTOV06 - LTOV18 were in the sizes of 0.3 - 1.5 µm and formed pores, while the larger micron-particles, ranged between 2 - 3 µm, were found in LTOV24 and LTOV30, resulting in the incomplete carbon layer and less pores. This reveals that for LTO and LTOV06 - LTOV18, the smaller micron-particles provided shorter Li ion diffusion distances, the evenly coated carbon layer enhanced the electron transport speed and more pores offered more active sites for the Li ions insertion/desertion process than for LTOV24 and LTOV30. That is the porous structures of LTO and LTOV06 - LTOV18 benefit the penetration of the electrolyte, profiting the Li ion migration at the electrode/electrolyte interface and the smaller micron-particles in LTO and LTOV06 - LTOV18 effectively shorten the diffusion distance for the Li ion in the center of particle to the surface, accelerating the Li ion movement in the bulk, consequently increasing the electronic conductivity. These results not only agree with their textural properties but also support that the electronic conductivities of LTO and LTOV06 - LTOV18 were higher than that of LTOV24 and LTOV30 as mentioned above and anticipated to have better performance.

The TEM image of LTO is shown in Fig. 5a. It exhibits that LTO is composed of the primary particles with size of 5 - 15 nm and is in agreement with the SEM result. The high-resolution transmission electron microscopy energy dispersion spectroscopy (HRTEM-EDS) mapping for LTOV06 is depicted in Fig. 5b-5c. As can be seen, the Ti and V were uniformly distributed in the sample. The TEM image in Fig. 5d shows that the lattice space of LTOV06 is 0.48 nm, corresponding to the lattice spaces (111) planes of spinel Li$_4$Ti$_{5x}$O$_{12}$. The lattice fringe indicates well-crystallinity of the nanoparticles in LTOV06. Besides, the SAED pattern of LTOV06 depicted in Fig. 5e shows a well-resolved concentric rings with bright spots, corresponding to the (111), (220), (311), (400) and (440) diffraction planes of the spinel Li$_4$Ti$_{5x}$O$_{12}$ and indicating that the particles are polycrystalline, which is in good agreement with the XRD result.

3.4. Cyclic voltammetry performance of the Li$_4$Ti$_{5x}$V$_x$O$_{12}$ electrodes

The electrochemical properties of all the LTO electrodes were investigated by the coin cells with half-cell configurations. The cyclic voltammograms (CVs) between 1 and 2.5 V vs. Li/Li$^+$ measured with a scan rate of 1 mV s$^{-1}$ are shown in Fig. 6a. As can be seen, the CVs of all the electrodes are similar, suggesting that the V-doping only slightly affected the electrochemical reactions. The anodic (oxidation) potential peaked at about 1.78 - 1.81 V and the cathodic (reduction) potential peaked at about 1.49 - 1.53 V correspond to the Li ions desertion and insertion process in the electrode, respectively. The higher current densities for the LTO and LTOV06 electrodes than for the others reveal that the electrochemical activities were higher in these two electrodes. Fig. 6b shows the CVs of the LTO and LTOV06 electrodes scanned with various rates. It indicates that the CV curves were broadened with increasing the scan rate and the current density of the LTOV06 electrode was slightly higher than that of the LTO electrode at all the scanning rates, suggesting that the electrochemical activity of the LTOV06 electrode was slightly better than that of the LTO electrode due to the V-doping. This is consistent with the electronic conductivities discussed above.

3.5. Rate capability and galvanostatic charge-discharge capacity of the Li$_4$Ti$_{5x}$V$_x$O$_{12}$ electrodes

The rate capabilities of the LTO electrodes in the voltage range of 1 - 2.5 V at rates between 0.2 and 5 C are shown in Fig. 7. The discharge capacities of the pristine LTO electrode
Fig. 4 SEM images of the Li\textsubscript{4}Ti\textsubscript{5-}\textsubscript{x}V\textsubscript{x}O\textsubscript{12} samples. (a) LTO, (b) LTOV06, (c) LTOV12, (d) LTOV18, (e) LTOV24 and (f) LTOV30 at 100kX magnification. (a') LTO, (b') LTOV06, (c') LTOV12, (d') LTOV18, (e') LTOV24 and (f') LTOV30 at 20kX magnification.

Fig. 5. (a) TEM image of LTO; TEM-EDS element mapping of LTOV06. (b) Ti, (c) V; (d) TEM image and (e) SAED pattern of LTOV06.
obtained were 188 (0.2 C), 180 (0.5 C), 166 (1 C), 141 (2 C) and 96 mAh g\(^{-1}\) (5 C). The capacity at 0.2 C was slightly higher than the theoretical value of 175 mAh g\(^{-1}\) and that prepared with the solid state method (167 mAh g\(^{-1}\)).\(^{11}\) This is mainly ascribed to the presence of the nano-particles formed by the sol-gel process, resulting in an increase in the contact area with the electrolyte, and the smaller micron-particles that shortened the Li-ions diffusion distance.\(^{11}\) Besides, the discharge capacities of the LTOV06 and LTOV18 electrodes (208 and 202 mAh g\(^{-1}\) at 0.2 C, respectively) were higher than that of the pristine LTO electrode due to increase of the Ti\(^{3+}\) content by V doping. At 5 C, the capacity of the LTO, LTOV06 and LTOV18 electrodes was 92, 157 and 146 mAh g\(^{-1}\), respectively. However, the capacities of the LTOV12 electrode at the rates between 0.2 and 2 C were lower than that of the LTO, LTOV06 and LTOV18 electrodes but slightly higher than that of the LTO electrode at 5 C. The results suggest that the capacity of the LTOV electrode not only depends on the morphology of the materials but also the combination of the Ti\(^{3+}/\text{Ti}^{4+}\) and V\(^{4+}/\text{V}^{5+}\) ratios because higher percentages of Ti\(^{3+}\) and V\(^{4+}\) may benefit to the electronic conductivity.\(^{14}\) Similarly, the lower capacities for the LTOV24 and LTOV30 electrodes can be attributed to the lower percentage of Ti\(^{3+}\) and V\(^{4+}\), the larger particle size and the incomplete carbon coating. Nevertheless, they exhibited better rate capability than that prepared with high-speed ball milled method.\(^{11}\)

In addition, it is also found that all the capacities of the LTOV electrodes re-measured at 0.2 C after the high-rate capability tests were all similar to the corresponding initial capacities measured at 0.2 C, confirming the zero-strain of LTOVs in the cubic lattice that lead to the good capacity retention even at high-rate.

Fig. 8 shows the charge-discharge curves of rate capabilities for the LTO, LTOV06 and LTOV18 electrodes at various rates between 0.2 and 5 C. At 0.2 C the discharge plateaus appear at ~1.55 V vs. Li/Li\(^{+}\), corresponding to the
redox of Ti$^{4+}$/Ti$^{3+}$ for the LTO, LTOV06 and LTOV18 electrodes. Besides, the potential difference between charge and
discharge platform increased with increasing the rate, i.e.
increased the electrode polarization, implying that less Li ions
could insert into and desert out of the LTO electrodes at high-
rate. However, compared to that for the pristine LTO electrode,
the electrode polarization is smaller for the LTOV06 and
LTOV18 electrodes, especially at high-rate, indicating that the
V-doping not only increased the capacity but also decreased the
electrode polarization for the LTO electrodes at high-rate.
The cyclic performances of the Li$_4$Ti$_{4-x}$V$_x$O$_{12}$ electrodes at
1 C in the range of 1 - 2.5 V are shown in Fig. 9a. As can be
seen, good capacity retention was obtained for all the electrodes.
This is ascribed to the zero-strain of the cubic lattice. The fact
that some capacities were slightly higher than the initial
capacity is ascribed to that the electrolyte was better penetrated
into the electrode after several charge-discharge cycles. For
comparison with some of the results reported,$^{15, 17-19, 22}$ the
electrochemical behaviors of the LTO, LTOV06 and LTOV18
electrodes at lower voltage (0 - 2.5 V) were studied as well and
the cyclic performances at 5 C are shown in Fig. 9b. It shows
that the initial capacity of the LTO and LTOV06 electrode were
301 and 243 mAh g$^{-1}$, respectively, and the capacity of the 250th
cycle were 230 and 216 mAh g$^{-1}$, respectively. Although the
capacities of the LTOV06 electrode in this range were all lower
than that of the pristine LTO electrode in the cyclic tests, its
high capacity retention of 89 % after 250 cycles was much
higher than that of 76 % and 67 % for the pristine LTO and
LTOV18 electrodes. This less irreversible capacity for
LTOV06 implies that when discharge to 0 V, less solid
electrolyte interface (SEI) layer was formed on the LTOV06
electrode than the LTO and LTOV18 electrodes.$^{12, 22}$

3.6. Electrochemical impedance spectroscopy

Fig. 10 shows the Nyquist plots of the LTO and LTOV06
electrodes and the equivalent circuit in the inset. The
electrochemical impedance spectroscopy (EIS) results were
fitted by the selected equivalent circuit using a ZView program
and the corresponding impedance parameters are listed in Table
3. It shows that all the plots are comprised of a depressed
semicircle in the high to medium frequency regions and a
straight line in the low frequency region. The plot in the high
frequency intercepted at the real axis corresponds to the ohmic
resistance of the cell mainly contributed from the electrolyte
(R_s). The semicircle in the high to medium frequency region
mainly represents the resistance in the migration of the Li ions
at the electrode/electrolyte interface (R_{ct}) in parallel with a
double-layer capacitance (CPE). The straight line in the low
frequency region is attributed to the diffusion of the Li ions into
the bulk of the electrode material, which is called Warburg
diffusion (Z_{w}).$^{11, 33}$ Table 3 indicates that the R_s values of the
LTO and LTOV06 electrodes are similar, but the R_{ct} value of
the LTOV06 electrode was about two times lower than that of
the LTO electrode, revealing that the migration of the Li ions at
the electrode/electrolyte interface was easier in the LTOV06
electrode. Moreover, EIS result can be used to calculate the
Warburg impedance coefficient (σ_w) from Eq. (1) and the Li
diffusion coefficient (D_{Li}) of the Li ions diffusing into the
electrode materials from Eq. (2)34

$$Z_{re} = R_s + R_{ct} + \sigma_w \omega^{-1/2}$$

$$D_{Li} = R^2T^2/2A^2n^4F^4C^2\sigma_w^2$$
As listed in Table 3, the σw value of the LTOV06 electrode was lower than that of the LTO electrode, implying that Li ions diffused in the LTOV06 electrode faster than in the LTO electrode. As the result, the Rs and σw values of the LTOV06 electrode were significantly lower than that of the LTO electrode, leading to the better electronic and ionic conductivity. This result is consistent with the conductivity result discussed above.

4. Conclusions

In this study, a series of the spinel-type vanadium-doped Li4Ti3.5V10.5O33 (0 ≤ x ≤ 0.3) (LTOVs) samples were successfully synthesized by the sol-gel method. It was found that the doping of V ions in the Ti sites of LTO did not change the original spinel-type structure while increased the ratio of Ti4+ and Ti3+ oxidation states that benefited the electron transport. The electronic conductivity of LTOV06 (4.512 × 10−8 S cm−1) was higher than that of the other Li4Ti3.5V10.5O33 samples, which enhanced the electrochemical activity. The SEM images revealed formation of the nano-particles (5 - 15 nm) by the sol-gel process that favored the electrochemical properties. Compared to the other electrodes prepared, the LTOV06 electrode exhibited the best electrochemical properties in rate capability and cyclic performance in the voltage range of 1 - 2.5 V at the various rates between 0.2 C (208 mAh g−1) and 5 C (157 mAh g−1). Besides, in the voltage range of 0 - 2.5 V at 5 C, the initial capacity of the LTOV06 electrode was as high as 243 mAh g−1 and its capacity retention was 89 % after 250 cycles. The results indicate that LTOV06 prepared is the best V3+doping electrode, leading to the better electronic and ionic conductivity. This result is consistent with the conductivity result discussed above.

Acknowledgements

The authors gratefully acknowledge the Ministry of Science and Technology, Taiwan, R.O.C. for supporting this research work under grant number: NSC 103-2113-M-033-002-MY3.

Notes

1. Department of Chemistry, 2Center for Nanotechnology, 3Center for Biomedical Technology, Chung Yuan Christian University, 200 Chung-Pei Rd., Chung-Li District, Tao-Yuan City, Taiwan 32023, R.O.C.

E-mail: yuiwhei@cvcu.edu.tw (Yui Whei Chen-Yang); Tel.: +886 3 265 3317; Fax: +886 3 265 3399.

References