
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



  

 

 

 

39x26mm (300 x 300 DPI)  

 

 

Page 1 of 30 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 1 of 29                                      RSC Advances 

Identifying MurI Uncompetitive Inhibitors by Correlating Decomposed Binding 1 
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Xiu Le, Qiong Gu* and Jun Xu* 
3 

Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 4 

Guangzhou 510006, China 5 

Abstract 6 

The glutamate racemase (MurI) is essential for Helicobacter pylori (H. pylori) cell wall 7 

biosynthesis. In this work, we report a new method that correlates decomposed binding 8 

free energies with MurI inhibition based upon the data from pyrazolopyrimidinedione 9 

series MurI uncompetitive inhibitors. With the molecular mechanics/generalized Born 10 

surface areas (MM/GBSA) approach, we were able to decompose the binding interaction 11 

into van der Waals, electrostatic, and polar solvation surfaces. The decomposed binding 12 

energies were correlated with MurI inhibitory activity with partial least squares 13 

regression (PLSR). Hence, the method is termed as MM/GBSA-PLSR. The non-cross-14 

validation (R2) and leave-one-out cross-validation (LOOCV) (Q2) correlation coefficients 15 

of the 3D-QSAR model are 0.962 and 0.822, respectively. The external testing yields a 16 

predicted correlation coefficient (R2
pred) of 0.817. This study demonstrated that the 17 

activity-contribution fractions from the three types of ligand-receptor interactions are 18 

29.5% from van der Waal interactions, 38.2% from electrostatic interactions, and 32.3% 19 

from polar solvation interactions. Comparing with molecular field analysis (CoMFA) and 20 

comparative molecular similarity index analysis (CoMSIA), we find that the 21 

CoMFA/CoMSIA steric interaction fields can be interpreted as the MM/GBSA-PLSR 22 
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van der Waals interactions; CoMFA/CoMSIA electrostatic and H-bond acceptor/donor 23 

interaction fields can be interpreted as the MM/GBSA-PLSR electrostatic interactions. 24 

However, there is no explicit association between MM/GBSA-PLSR solvation 25 

interactions (polar or non-polar) and CoMFA/CoMSIA fields. It is worth to note that the 26 

solvation interaction is important for ligand design. Moreover, MM/GBSA-PLSR map 27 

the decomposed binding interactions on to pharmacophore surfaces (van der Waals, 28 

electrostatic, and polar solvation surfaces) to aid drug design. 29 

Keywords: Helicobacter pylori; MurI; structure-based QSAR; MM/GBSA-PLSR; 30 

CoMFA; CoMSIA; pharmacophore surface. 31 

Page 3 of 30 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 3 of 29                                      RSC Advances 

1. Introduction 32 

The human pathogen Helicobacter pylori (H. pylori) is a key cause of gastric 33 

inflammation and cancer. H. pylori-induced gastric inflammation does not cause 34 

symptoms in most infected people but is associated with an increased risk of developing 35 

duodenal ulcer disease, gastric ulcer disease, gastric adenocarcinoma, and gastric 36 

lymphoma.1-5
  Approximately 50% of the world’s population suffers from H. pylori 37 

infection.6 Currently, a cocktail therapy consisting of a proton pump inhibitor (e.g. 38 

omeprazole) and two broad-spectrum antibiotics (i.e. clarithromycin and amoxicillin) is 39 

most often used for the treatment of H. pylori infections; it is given over a one-week 40 

period.7, 8 However, the treatment success is compromised by poor patient compliance 41 

due to diarrhea and other side effects resulting from the suppression of commensal 42 

bacteria. Additionally, H. pylori resistance to current therapies prompts the need for an 43 

alternative therapy with a new mode-of-action (MOA).6, 9, 10  44 

Glutamate racemase (MurI) is a bacterial cytoplasmic enzyme that catalyzes the 45 

conversion of L-glutamate to D-glutamate, one of the essential amino acids in 46 

peptidoglycan synthesis.11-13 Deletion of MurI prevents peptidoglycan construction and 47 

bacterial viability by disrupting the supply of D-glutamate.14, 15 Therefore, MurI 48 

represents a promising target for the design of antibacterial drugs.16
 Glutamate analogs 49 

were reported to be competitive inhibitors that bound at the active site17 of MurI and 50 

showed potent antibacterial activity.18 However, it was not until AstraZeneca identified a 51 

series of uncompetitive inhibitors via high-throughput screening (HTS) that specifically 52 

bind to a cryptic allosteric site of MurI, the structural, kinetic and mutational studies of 53 

uncompetitive inhibitors emerged.19
  54 
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The co-crystal structure of MurI and D-glutamate indicates that the MurI inhibitor can 55 

occupy an allosteric binding site that resides away from the substrate. The C-terminal 56 

helix movement induces Trp252 side-chain displacement and rotation to form a surface 57 

for π-stacking with the pyrazolopyrimidinedione core of the inhibitors among which 58 

compound 1 shows the best inhibitory activity at 6 nM (Figure 1). Sequence analyses of 59 

diverse, clinically relevant H. pylori isolates revealed that almost all the interacting 60 

residues in this binding pocket were conserved, demonstrating the suitability of the site 61 

for H. pylori MurI inhibition. Site-specific mutagenesis highlighted the importance of 62 

maintaining the interactions with these residues, which include Val10, Gly11, His183, 63 

Leu186, Glu150, Ser152, and Trp244.19  64 

 65 

Figure 1. Chemical structure of the MurI uncompetitive inhibitor, Compound 1. 66 

On the basis of the MurI co-crystal structure, a number of studies were conducted on 67 

the competitive inhibitors, which utilized structure-based methods20, HTS19, docking 68 

virtual screening (VS)21, and quantitative structure-activity relationship (QSAR) studies18. 69 

However, these results have proven problematic due to the flexibility of the enzyme and 70 
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species-specific hydrophobic pocket proximal to the active site. Therefore, the discovery 71 

of uncompetitive inhibitors is attractive. So far, there is only a type of SAR study towards 72 

molecular modeling of the MurI uncompetitive inhibitors that has been conducted on the 73 

aforementioned series of pyrazolopyrimidinedione derivatives.22-26  74 

Empirical correlations between affinities and a set of physicochemical descriptors of a 75 

series of ligands have long been used in drug design, and extension to the three-76 

dimensional properties of the ligands, namely 3D-QSAR, have proven greatly 77 

successful.27-30 Comparative molecular field analysis (CoMFA)31 and comparative 78 

molecular similarity index analysis (CoMSIA)32 are two ligand-based 3D-QSAR methods 79 

among those which do not use structural data regarding the receptor. To compensate the 80 

underlying adverse impact irrespective of receptor, conformational alignment is required, 81 

whether based on the maximum common substructure (MCS), or fields (e.g. Surflex-82 

Sim’s morphological similarity33, OpenEye’s shape34 and electrostatic35 fields or 83 

Cresset’s XED36 force field), or using other methods (e.g. MOE’s Flexible Alignment37). 84 

But this would still lead to excellent but unreliable statistical results. In contrast, 85 

structure-based (i.e. receptor-based) 3D-QSAR approaches modeling receptor-ligand 86 

interactions rely on receptor conformation data and receptor-ligand interaction 87 

calculations, which would effectively overcome such a problem. The molecular 88 

mechanics/generalized Born surface areas (MM/GBSA) free-energy calculation has been 89 

successfully used in structure-based studies.38-41 Herein, we explore a new structure-90 

based 3D-QSAR approach, which employs partial least squares regression (PLSR)42 to 91 

correlate the decomposed binding free energies calculated from MM/GBSA with the 92 

MurI uncompetitive inhibitory activity. The 3D-QSAR approach is termed MM/GBSA-93 
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PLSR; it takes structural information on receptor-ligand interactions and thus induced-fit 94 

effects as well as solvent effects into account.  95 

To elucidate the model derived from the MM/GBSA-PLSR approach, we created 96 

ligand-based 3D-QSAR models with CoMFA and CoMSIA. By referencing the ligand-97 

based 3D-QSAR models, we attempt to reveal the relationships between the MM/GBSA 98 

interactions and the CoMFA/CoMSIA fields to describe MurI uncompetitive inhibitor 99 

activity at the residue level. Our goal is to find a rational and efficient method for 100 

designing or optimizing MurI uncompetitive inhibitors. 101 

2. Methods  102 

2.1 Compounds and biological data 103 

By an exhaustive literature search, a total of 69 pyrazolopyrimidinediones as potent 104 

MurI inhibitors were collected from literatures25, 26 for modeling studies. This work 105 

focuses on describing the pharmacophore features of existing actives and it will be 106 

difficult to describe the pharmacophore features for the in-actives due to great structural 107 

diversity. Therefore, compounds used here are all active. The in vitro biological activities 108 

(i.e. IC50) of these compounds were converted into the corresponding negative 109 

logarithmic values (pIC50) and used as dependent variables for QSAR analyses. The 110 

structures and biological data, expressed in pIC50, are listed in Table S1. 111 

2.2 Ligand-receptor systems energy minimization 112 

The co-crystal structure of MurI (PDB code: 2JFZ19; Resolution: 1.86 Å) containing 113 

compound 67 is used as the initial structure for construction of all ligand-receptor 114 

systems. The chain A and the substrate were preserved while water molecules were 115 
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removed, and missed residues were repaired by using the Clean Protein tool in Discovery 116 

Studio 3.543. All compounds were then superimposed to the conformation of compound 117 

67. Each system’s energy was minimized within the protein pocket using MOE 201337 118 

with the built-in Amber12EHT force field (an all-atom force field combining 2D 119 

Extended Hueckel Theory44 and Amber ff1245). The 69 aligned compounds are depicted 120 

in Figure 2. 121 

 122 

Figure 2. 69 compounds were aligned on the core structure (top left). 123 

    For construction of MM/GBSA models, an explicit solvent minimization protocol is 124 

required. It was applied within the AMBER 12 package45 with the FF12SB force field. 125 

Hydrogen atoms were added to the system with tLEaP. The geometries of the small 126 

molecules were completely optimized at HF/6-31G* level of theory with Gaussian 09 127 

suite46. The electrostatically derived atomic charges were computed via the RESP47 128 

method. All complexes were neutralized by adding sodium ions and solvated in a 129 

periodic truncated octahedron box of TIP3P48 molecules with a margin of 10 Å. 130 
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The solvated system was initially minimized to remove bad van der Waals contacts via 131 

five stages, employing the steepest descent algorithm (800, 1000, 2000, 5000, and 0 132 

cycles, respectively) and the conjugate gradient algorithm (1200, 2000, 3000, 5000, and 133 

10000 cycles, respectively) with a non-bonded cutoff of 10.0 Å. The system incorporated 134 

gradually reduced positional restraints with force constants of 10.0, 5.0, 1.0, 1.0, and 0 135 

kcal mol-1 Å-2, respectively. In the first stage, all atoms were restrained except the solvent 136 

such that the added TIP3P water molecules could adjust their orientation. In the second 137 

and third stages, the protein backbone and the key residues Glu150, Leu186, Trp244, and 138 

Gln248 were restrained while the amino acid side-chains were allowed to move, which 139 

allowed the ligand to achieve a lower-energy position. In the fourth stage, a weak 140 

restraint potential was imposed only on Gln248 due to its relatively large flexibility 141 

identified in our previous molecular dynamic (MD) simulations (unpublished), and in the 142 

final stage, the whole system was fully minimized. 143 

2.3 Binding free energy calculations 144 

Averaging over snapshots during the MD trajectory is often required to improve 145 

binding free energy estimation, but this is not always the case.49-52
 The binding free 146 

energy was computed using the final snapshots of the energy minimization to reduce 147 

computational complexity. The binding free energy change is computed via Equation 1:  148 

∆Gbind = Gcomplex – (Gfree-protein + Gfree-ligand) 149 

                       = ∆GMM + ∆Gsol – T∆S     (1) 150 

    In a molecular mechanics system, the energy consists of electrostatic and van der 151 

Waals interaction terms:  152 
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∆GMM = ∆Gele + ∆Gvdw                 (2) 153 

    The solvation free energy consists of the polar and nonpolar terms: 154 

∆Gsol = ∆Gele,sol + ∆Gnonpol,sol      (3) 155 

where ∆Gele,sol is obtained by solving the Poisson-Boltzmann (PB) equation or the 156 

generalized Born (GB) equation. ∆Gnonpol,sol is calculated via Equation 4: 157 

  ∆Gnonpol,sol = γSASA + b       (4) 158 

where γ represents the surface tension, and b is a constant (0.0072 or 0 kcal mol-1 Å-2). 159 

SASA is the solvent-accessible surface area (Å2) determined via a linear combination of 160 

pairwise overlapping models. The conformational entropy contributions (translation, 161 

rotation, and vibration) are neglected. This method using the GB equation is termed 162 

MM/GBSA, and the binding free energies were then decomposed to residue-wise energy 163 

terms as a basis for the construction of the MM/GBSA-PLSR model.  164 

2.4 Building the MM/GBSA-PLSR model 165 

PLSR constructs linear combinations of the original variables and has been used to 166 

predict the biological behavior of peptides and their analogs.53, 54 It assumes that the 167 

binding free energies or inhibition constants (i.e. pKi or pIC50) measured in experiments 168 

can be correlated by PLSR with weighted theoretical interaction energy terms. All 169 

compounds were divided into a training set consisting of 50 compounds and a test set of 170 

19 compounds based on the distribution of biological data and structural diversity. The 171 

data source for the MM/GBSA-PLSR model is a matrix encompassing the MM/GBSA 172 

energy terms for the optimized receptor-ligand structures as well as their biological 173 
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activities. The statistical method underlying analysis has been previously described.55-57 174 

The residue-wise interaction energy terms were acquired via MM/GBSA approach. The 175 

terms are the electrostatic, van der Waals, polar, and nonpolar solvation free energies. 176 

The multivariate PLSR58 technique, implemented in the R59 statistical package, was used 177 

to extract the relevant trends between the binding free energies and pIC50 values. A 178 

threshold of 0.0027 for standard-deviation-weighted PLSR coefficients (StDev*Coeff) 179 

was used to filter energy terms. The regression coefficient (R2) was calculated as follows: 180 

( ) ( ) ( ) ( )
2

222

1 1 1

ˆ ˆ ˆ ˆ
N N N

i i i i

i i i

y y y y y y y yR
= = =

 
= − − − − 
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  (5) 181 

where 
1

ˆ ˆ
N

i

y y N
=

=∑ . 182 

The third step is to perform LOOCV and predict the dependent variable for certain 183 

complexes that were excluded during model derivation. This method is often used to 184 

check whether the derived correlation is spurious and to assess the robustness of the 185 

resulting statistical model. The performance of the model was quantified with the cross-186 

validated correlation coefficient Q2 (Equation 6) and the root-mean-square error of 187 

prediction (RMSEP, Equation 7):  188 

( ) ( )22
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=

= −∑                  (7) 190 

where �� is the average value of activities. 191 
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In addition, to validate whether the performance of the MM/GBSA-PLSR model is a 192 

result of chance correlation, 100 trials of Y-randomization of the experimental activity 193 

values were executed. It consists of repeating the calculation procedure several times 194 

after shuffling the Y vector randomly.  195 

The residuals of the experimental and predicted activities of compounds in the test set 196 

as well as R2
pred were used to measure the predictive capacity of the model.  197 

2.5 Building CoMFA and CoMSIA models 198 

The data were divided into a training set (56 compounds) for model generation and a 199 

test set (13 compounds) for model validation based on the same rule of thumb as the 200 

MM/GBSA-PLSR model but with different proportion of training set compounds to 201 

obtain the optimal results. The 3D-QSAR models were built using the program SYBYL-202 

X 1.160. All molecules were placed within a lattice of 1.0 Å with a 2.0 Å margin for each 203 

dimension. To construct a CoMFA model, a probe atom having the van der Waals 204 

properties of sp3 carbon and a charge of +1.0 was used to calculate the steric (Lennard-205 

Jones 6-12 potential) and electrostatic (Coulombic potential) field energies. To construct 206 

a CoMSIA model, five similarity indices were computed, including steric contributions, 207 

electrostatics, hydrophobic, hydrogen-bonding donor, and hydrogen-bonding acceptor 208 

using a probe atom with 1.0 Å radius, +1.0 charge, +1.0 hydrophobicity, and +1.0 H-209 

bond donor and acceptor property. In PLSR analysis, the LOOCV was employed to 210 

determine the ONC, and the final 3D-QSAR models of CoMFA and CoMSIA were 211 

derived from each non-cross-validated analysis with the ONC. 212 

3. Results and discussion 213 
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3.1 Quality of the MM/GBSA-PLSR, CoMFA, and CoMSIA models  214 

   The statistical parameters of the MM/GBSA-PLSR, CoMFA, and CoMSIA models are 215 

listed in Table 1. For simplicity, the best CoMSIA model constituted by electrostatic and 216 

hydrogen-bonding receptor components is displayed only. The cross-validated PLSR 217 

analysis of the training set resulted in correlation coefficients Q2 of 0.822, 0.684, and 218 

0.687 with the optimal number of components (ONC) of 8, 6, and 12 for the three models. 219 

The non-cross-validated PLSR yields R2 coefficients of 0.962, 0.937, and 0.955, 220 

respectively. All models obtained by the Y-randomization test have much lower values 221 

for R2 and Q2 statistics, which verifies that the high internal validation performance of the 222 

MM/GBSA-PLSR model is not due to a chance correlation or structural dependency of 223 

the training set (see Supplementary Information Table S2). For the MM/GBSA-PLSR 224 

model, the proportions of receptor-ligand interactions for van der Waals, electrostatic, 225 

and polar solvation interactions are 0.295, 0.382, and 0.323, respectively. For the 226 

CoMFA model, the contributions of steric and electrostatic interaction fields were 0.446 227 

and 0.554. And for the CoMSIA model, the electrostatic and H-bond acceptor interaction 228 

fields provide 0.633 and 0.367 contributions to the model, respectively. 229 

Table 1. Summary of the ligand-based and structure-based 3D-QSAR Models a 
230 

Statistics 
Ligand-based  Structure-based 

CoMFA CoMSIA  MM/GBSA-PLSR 

Q2 0.684 0.687  0.822 

ONC 6 12  8 

R2 0.937 0.955  0.962 

SEE 0.138 0.125  0.103 
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F 121.758 75.675  129.743 

P < 0.01 < 0.01  < 0.01 

R2
pred 0.561b 0.748  0.817 

Contributions     

Steric 0.446    

Electrostatic 0.554 0.633  0.382 

H-bond acceptor  0.367   

Van der Waals    0.295 

Polar solvation    0.323 

a Abbreviations used: Q2, leave-one-out cross-validation (LOOCV) correlation 231 

coefficient; ONC, optimum number of principal components; R2, non-cross-validation 232 

correlation coefficient; SEE, standard error of the estimate. 233 

b R2
pred for the test set without the outlier compound 68. 234 

    The external testing set consisted of 19 compounds, which were predicted by the 235 

MM/GBSA-PLSR model and yielded a correlation coefficient R2
pred of 0.817. Another 236 

external testing set consisted of 13 compounds, which were predicted by both the 237 

CoMFA and CoMSIA models, and R2
pred values were 0.561 (CoMFA) and 0.748 238 

(CoMSIA). Figure 3 depicts the correlations between the observed activities and the 239 

predicted activities for the training set and testing set. Apparently, the predicted and 240 

observed activities agree significantly except for an outlier (detailed discussion on the 241 

outlier seen in the Supplementary Information) from the CoMFA model. The observed 242 

pIC50 values, the predicted pIC50 values, and the residuals between them are listed in the 243 

Supplementary Information Table S3.  244 
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 245 

Figure 3. CoMFA (A), CoMSIA (B), and MM/GBSA-PLSR (C) predictions for the 246 

training sets (blue circle dots) and test sets (red square dots) regarding inhibitory 247 

activities against MurI. The solid line is the regression line for the training set predictions.  248 

3.2 Mapping MM/GBSA-PLSR model and CoMFA model 249 

StDev*Coeff is a quantitative index of relative contribution of the energy component 250 

to the inhibitory activity. A higher absolute value of the StDev*Coeff indicates a more 251 

crucial interaction in MurI inhibition. Notably, a negative coefficient corresponds to a 252 

favorable interaction and a positive coefficient corresponds to an unfavorable interaction. 253 

The key interaction energy components from the MM/GBSA-PLSR model include 14 254 

van der Waals, 22 electrostatic, and 18 polar solvation interactions (Figure 4, 255 

Supplementary Information Table S4). By comparing the three models, we recognized 256 

that the van der Waals and electrostatic interactions generated from the MM/GBSA-257 

PLSR model can be interpreted by the binding requirements demonstrated in the contour 258 

maps of the CoMFA and CoMSIA models (Figure 5). The MM/GBSA-PLSR model 259 

indicates that the van der Waals interactions at Trp244, Gln248, and Trp252 can improve 260 

binding affinities. For example, compound 32 is more active than compound 57 due to its 261 

additional nitrile group in the 1-methyl-1H-pyrrole moiety at the R2 position providing 262 

more van der Waals interaction with the target. However, the van der Waals interactions 263 
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at Ile149, Glu150, Ser152, Leu154, and Leu186 are not favored to the binding affinities. 264 

For example, compound 52 is less potent than compound 17 because of the former has 265 

more van der Waals interactions with these residues by its substituent in the R1 position. 266 

The green region close to Gln248 (side chain) and Trp252 (side chain) indicates a more 267 

bulky substituent is preferred (e.g. compounds 32 and 57). The yellow regions close to 268 

Glu150 (backbone), Leu154 (side chain), Leu186, and Trp252 (side chain) indicate that a 269 

smaller substituent is preferred (e.g. compounds 52 and 17). The observation, so far, 270 

suggests that the MM/GBSA van der Waals interactions correlate with the CoMFA steric 271 

interaction fields. A green polyhedron close to Glu150 (backbone) and Ser152 (side chain) 272 

suggests a steric contribution to the binding affinities, but it is unfavorable for van der 273 

Waals interactions according to the MM/GBSA-PLSR model. As a consequence, these 274 

results appear to be inconsistent. In reality, both van der Waals interaction of 275 

MM/GBSA-PLSR and steric field of CoFMA are Lennard-Jones potential. Hence, it is 276 

unsurprising that there is high correlation between both. However, the MM/GBSA-PLSR 277 

van der Waals interaction is calculated between atoms of ligand and residues while the 278 

CoMFA steric field is obtained between ligand atoms and a probe atom (usually sp3 279 

carbon). This may be the substantial reason why in some region they do not agree. The 280 

different binding property in this region may also be due to the flexible conformation of 281 

the R2 substituents. In modeling, we replace MD simulation with a simple energy 282 

minimization in order to reduce computational time, which may lead to a wrong 283 

conformational speculation of the R2 group. To summarize, steric bulky group 284 

requirements (CoMFA) can be elucidated as van der Waals interactions (MM/GBSA-285 
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PLSR). The smaller steric group requirements can be explained as a means of 286 

circumventing van der Waals repulsions (Figure 5A). 287 

 288 

Figure 4. Partial least squares regression (PLSR) standard-deviation-weighted 289 

coefficients (StDev*Coeff) for interaction components in side-chain (red) and backbone 290 
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(blue) used in the MM/GBSA-PLSR model: A) van der Waals, B) electrostatic, and C) 291 

polar solvation interactions.  292 

 293 

Figure 5. Correspondence between the key interactions identified by the MM/GBSA-294 

PLSR model and the CoMFA and CoMSIA contour maps. Colored atoms indicate 295 

regions where: (A) van der Waals (marine or green) and (B, C, D) electrostatic (red or 296 

magenta) interactions are favorable or unfavorable. Polyhedra contour maps represent 297 

regions where: (A) more steric bulky (green) or less steric bulky (yellow) groups, (B, C) 298 

negative charge (red) or positive charge (blue) groups, and (D) groups having H-bond 299 

acceptor (magenta) or not (cyan) are preferred to enhance activity. 300 
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In a CoMFA electrostatic map, a red shape represents a negatively charged group 301 

increasing binding affinity and a blue shape represents positively charged group 302 

increasing binding affinity. However, the MM/GBSA-PLSR model does not recognize 303 

electrostatic types (positive or negative) since electrostatic interactions are calculated 304 

with different residue atoms rather than a unified +1.0 charged probe atom. Nevertheless, 305 

it can be recognized by residue types. Figure 5B demonstrates that negatively charged 306 

groups can increase binding affinities by interacting with Trp244 (side chain) and Gln248 307 

(side chain), and positively charged groups can increase binding affinities by interacting 308 

with Ile149 (backbone), Glu150 (backbone), Ser152 (side chain), Gln248 (side chain), 309 

and Trp252 (side chain). The MM/GBSA-PLSR model supports favorable electrostatic 310 

interactions with Gln248 and Glu150 in agreement with the fact that Glu150 and Gln248 311 

provide hydrogen bond acceptors. However, the electrostatic interactions do not always 312 

contribute to the binding affinities. Except for the controversial interaction with Trp252, 313 

the CoMFA electrostatic contour maps are apparently consistent with the fact that the 314 

indole ring of Trp244 is positively charged and Glu150, Ile149, Ser152, and Gln248 can 315 

provide electrons. However, the receptor-ligand interactions are not always independent 316 

of each other; increasing electrostatic interactions with Trp244 or Trp252 may reduce the 317 

electrostatic interactions with Gln248 because electrostatic type (positive charge) 318 

required for Gln248s is opposite to the electrostatic type of Trp244 or Trp252 (negative 319 

charge). In fact, several compounds (13, 59, 29, and 1) are found to form hydrogen bonds 320 

with the amido oxygen atom of Gln248. But none are found to have hydrogen bonds with 321 

Trp244. And Trp255 is barely capable of forming hydrogen bonds, either. There is only 322 

one compound (compound 68) that forms hydrogen bond with Trp255, but its activity is 323 
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low (IC50 = 1500 nM). Therefore, the CoMFA electrostatic fields derived simply based 324 

on ligands is not always in line with the actual circumstance while the MM/GBSA-PLSR 325 

model gives a more correct judgment. Nevertheless, they show a certain correspondence 326 

to each other both in theory and in practice. 327 

3.3 Mapping MM/GBSA-PLSR model and CoMSIA model 328 

A CoMSIA electrostatic map approximates the corresponding CoMFA map with 329 

slight differences. Negative electrostatic interactions are predominantly favorable in three 330 

regions, one of them close to Leu186, and the others close to the MM/GBSA-PLSR 331 

electrostatic-interaction favorable residues, Gln248 (Figure 5C). However, the amido 332 

oxygen atom of Leu186 does not have enough positive charge to attract an electron-333 

donating group. The red polyhedron is close to Leu186 (side chain) and surrounded by 334 

Phe13, Ser14, Gly11, Thr182, and His183 (not shown in Figure 5). In this region, 335 

CoMSIA is unable to provide the correct structure activity relation. Observation and the 336 

MM/GBSA-PLSR model indicates that this region has a deep hydrophobic pocket and 337 

requires hydrophobic interactions instead of electrostatic interactions. On the other hand, 338 

the amido oxygen atoms of Glu150 (backbone) and Gln248 (side chain) are potential 339 

hydrogen-bond acceptors, but the CoMSIA model indicates that a hydrogen-bond 340 

acceptor is not allowed near Trp244 and Gln248 (Figure 5D). This is inconsistent with 341 

the prediction of the MM/GBSA-PLSR model. As shown in Figure 5D, the larger 342 

magenta polygon indicates that hydrogen-bond acceptor (HBA) between Glu150 and 343 

Trp244 may improve the activity. However, there is no evidence allowing a ligand to 344 

form a hydrogen bond at this point. This observation agrees with MM/GBSA-PLSR 345 

model, which proves that Ser152, Trp244, and Trp252 are not favorable for the formation 346 
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of hydrogen bonds in this region in order to enhance the activity. Therefore, the CoMSIA 347 

electrostatic and H-bond acceptor fields can be uniformly deciphered by the MM/GBSA-348 

PLSR electrostatic interactions and MM/GBSA-PLSR model can identify CoMSIA 349 

models’ defects.  350 

3.4 Interpreting 3D-QSAR with the MM/GBSA-PLSR model 351 

MM/GBSA-PLSR interaction components can be correlated to CoMFA and CoMSIA 352 

interaction fields. Consequently, the fields are mapped to the interacting sites of the 353 

receptor. The MM/GBSA-PLSR model results in three interacting factors contributing to 354 

the MurI inhibitory activity, i.e. van der Waals (29.5%), electrostatic (38.2%), and polar 355 

solvation (32.3%) interactions, which are elucidated as van der Waals and electrostatic 356 

interaction maps in Figure 6 and a polar solvation interaction map in Figure 7. A marine 357 

region formed by Val10, Phe13, Trp244, Gln248, and Trp252 suggests that increasing 358 

van der Waals interactions with those residues will improve binding affinity (Figure 6A 359 

and 5B). For example, compound 32 (IC50 = 70 nM) is more potent than compound 57 360 

(IC50 = 260 nM). Compound 32 has a nitrile group surrounded by Trp244, Gln248, and 361 

Trp252, which enables compound 32 to have more van der Waals interactions with these 362 

residues than compound 57 has although the nitrile group is polar. For the same reason, 363 

compound 37 is more potent (86 nM) than compound 47 (170 nM). The favorable van 364 

der Waals interactions are also observed for compounds 6, 16, 38, 26, and 50 which have 365 

MurI inhibitory activities of 25, 39, 87, 60, and 220 nM, respectively. At the receptor side, 366 

the Phe13 side chain is a van der Waals favorable moiety. Compound 41 (IC50 = 103 nM) 367 

has stronger inhibitory activity than compound 69 (IC50 = 2200 nM) due to an additional 368 

chlorine atom attached to the indole ring for more van der Waals interactions with the 369 
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moiety. On the other hand, van der Waals interactions with Ser4, Ile149, Glu150, Ser152, 370 

Leu154, and Leu186 can reduce the binding affinity between the ligand and receptor. For 371 

example, compound 17 is more potent (IC50 = 41 nM) than compound 52 (IC50 = 220 nM) 372 

because compound 52 has more van der Waals interactions with these residues through 373 

its substituent in the R1 position of 2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 374 

moiety.  375 

 376 

Figure 6. MM/GBSA-PLSR van der Waals and electrostatic interaction surfaces of 377 

compound 32 (A) and its counterpart 57 (B) as well as compound 1 (C) and its 378 

counterpart 13 (D). Marine regions indicate that van der Waals interactions are favorable 379 
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in activity enhancement, whereas green regions display that the interactions are 380 

unfavorable (A, B). Red areas suggest that electrostatic interactions increase activity, 381 

while the magenta area represents electrostatic interactions that can reduce inhibition (C, 382 

D).  383 

Electrostatic interactions are more complicated, as demonstrated by the mixed red and 384 

magenta regions in Figure 6C and 5D. The model shows a multi-layered pattern of 385 

electrostatic interactions in the right flank of the pocket; electrostatic interactions with 386 

Trp244, Trp252, Glu251, and Lys21 are not preferred for the binding affinity, whereas 387 

those with Gln248, Arg247, Lys17, and Lys254 are preferred. Substituents at the R2 388 

position of 2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione can improve binding affinity 389 

through electrostatic interactions (e.g. hydrogen bonding with Gln248 side chain). 390 

However, there are one red and two magenta regions nearby as well. A substituent for 391 

this area has to accommodate multiple types of binding interactions. For example, 392 

compound 1 (IC50 = 6 nM) is five-fold more potent than compound 13 (IC50 = 36 nM). 393 

The former has a –CONHCH3 group at the 1-methyl-1H-pyrrole ring, while the latter has 394 

an –SO2NHOCH3 group (bulkier), generating more electrostatic interactions with Trp244 395 

and Ser152 and reducing the binding affinity. A longer substituent group, such as 396 

compound 13, may weaken hydrogen bonding with Gln248 but strengthens the van der 397 

Waals interaction with Glu150. Compound 13 still forms a hydrogen bond with Glu150 398 

with a moderate activity although it experiences unfavorable interactions (Figure 6C, D). 399 

Another tricky spot is at the unfavorable electrostatic interactions with the Glu150 side 400 

chain, Ser152 side chain, and Leu186 backbone, and favorable interactions with the 401 

Glu150 backbone. For example, compounds 13, 8, and 7 have IC50 of 36, 27, and 26 nM, 402 
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respectively, due to –SO2NHOCH3, –SO2NHCH3, and –SO2CH3 groups. Compound 13 403 

has the longest substituent which improves activity via the weakened hydrogen bond to 404 

the favored Glu150 backbone, but in the mean while its activity is reduced by 405 

unfavorable electrostatic and van der Waals interactions with the Glu150 side chain. The 406 

shorter substituent, –SO2NHCH3, reduces the conflict interaction to improve the activity 407 

for compound 8. The shortest substituent, –SO2CH3, further deceases the conflict 408 

interactions though weakening the hydrogen bond interaction. Compounds having an –409 

SO2R substituent with different R sizes demonstrate a consistent activity order: 410 

compound 3 (–SO2NH2, 16 nM) < compound 12 (–SO2CH3, 34 nM) < compound 18 (–411 

SO2NHCH3, 44 nM) < compound 21 (–SO2NHOCH3, 55 nM). The last electrostatically 412 

favorable region is at Glu155, but it cannot improve the activity because it is far away 413 

from the native ligand.  414 

The polar solvation interaction is only introduced by the MM/GBSA-PLSR approach. 415 

This type of interaction cannot be mapped onto a CoMFA field or CoMSIA field. 416 

Because polar solvation interactions are not for direct interactions between the ligand and 417 

receptor, they cannot be directly used for ligand design. However, the polar solvation 418 

interaction reflects an indispensable receptor-ligand interaction in solvent. By combining 419 

polar solvation interactions with steric and electrostatic interactions, the 3D-QSAR can 420 

be better articulated and mapped. For example, Trp252 colored in orange (Figure 6) 421 

representing favorable polar solvation interactions together with the van der Waals and 422 

electrostatic interactions indicates that a large hydrophobic group is required to interact 423 

with the Trp252 side chain, and fewer electrostatic interactions will improve the binding 424 

affinity. In Figure 7, Glu150 and Gln248 (in bright yellow) indicate there is a limit on 425 

Page 24 of 30RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



RSC Advances                                       Page 24 of 29 

activity enhancement. That is, the activity cannot be unlimitedly improved by increasing 426 

electrostatic and van der Waals interaction because polar solvation interactions (another 427 

factor that improves activity) will be reduced simultaneously and vice versa.  428 

 429 

Figure 7. The protein surfaces showing the polar solvation interactions. Favorable 430 

residues are depicted in orange, while unfavorable residues are represented in yellow. 431 

4. Conclusions 432 

The binding features of MurI uncompetitive inhibitors have been articulated with a 433 

new structure-based 3D-QSAR approach, MM/GBSA-PLSR. To better understand this 434 

model, the ligand-based 3D-QSAR models of CoMFA and CoMSIA have been created 435 

and compared against the model. The structure-based 3D-QSAR results are interpreted 436 

with respect to the relations of the activity and the interaction descriptors (van der Waals, 437 

electrostatic, polar solvation, and nonpolar solvation). For the MurI inhibitors, the 438 

interacting factors contributing to the activity are van der Waals (29.5%), electrostatic 439 

(38.2%), and polar solvation (32.3%). By associating the different types of interactions of 440 
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the MM/GBSA-PLSR model with the fields of CoMFA and CoMSIA, the 3D-QSAR 441 

models are better elucidated. MM/GBSA-PLSR van der Waals interactions can be 442 

mapped to CoMFA/CoMSIA steric interaction fields; MM/GBSA-PLSR electrostatic 443 

interactions can be mapped to CoMFA/CoMSIA electrostatic and H-bond acceptor/donor 444 

interactions fields. There is no explicit mapping between MM/GBSA-PLSR solvation 445 

interactions (polar or non-polar) and CoMFA/CoMSIA fields. However, this type of 446 

interaction is still useful for ligand design. In general, MM/GBSA-PLSR takes 447 

advantages of receptor-ligand interactions, models induced-fit effects, considers solvent 448 

effect, substitutes rough exclusion volumes in modeling, and avoids putative 449 

conformational alignment, which enables itself to surmount the defects of the ligand-450 

based models, and has distinguished itself from others. The information acquired in this 451 

study provides a tool for guiding further optimization of potent MurI uncompetitive 452 

inhibitors. And this approach may serve as a rational means for lead optimization and 453 

drug design by explicitly mapping the favorite/un-favorite pharmacophore regions onto 454 

the binding pocket. 455 
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