

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Nb-doped VO_x/CeO_2 catalyst for NH ₃ -SCR of NO _x at low					
2	temperatures					
3	Zhihua Lian, Fudong Liu ^{*†} , Hong He [*] , Kuo Liu					
4						
5	State Key Joint Laboratory of Environment Simulation and Pollution Control,					
6	Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,					
7	Beijing 100085, PR China					
8	*Corresponding author. Fax: +86 10 62849123; Tel: +86 10 62849123; E-mail:					
9	fudongliu@lbl.gov, lfd1982@gmail.com (F. Liu); honghe@rcees.ac.cn (H. He)					
10	[†] Present address: Materials Sciences Division, Lawrence Berkeley National					
11	Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States					
12						

13 Abstract

The promotion effect of Nb addition to VO_r/CeO_2 catalyst for the selective catalytic 14 15 reduction of NO_x by NH₃ was fully investigated. VO_x/CeO_2 and NbO_x doped VO_x/CeO₂ catalysts were characterized by N₂ physisorption, XRD, H₂-TPR and 16 NH₃-TPD. The results showed that the addition of Nb could significantly promote the 17 SCR activity of the VO_x/CeO_2 catalyst, especially in the low temperature range. 18 VO_x/CeO_2 with 30 wt.% NbO_x catalyst showed the best catalytic performance and 19 better SO₂/H₂O tolerance than VO_x/CeO₂ catalyst. 30Nb-1VO_x/CeO₂ also exhibited 20 21 higher NH₃-SCR activity than 3V₂O₅-WO₃/TiO₂. The lower crystallinity, the stronger 22 redox capability and the more Brønsted acid sites of the Nb-VO_x/CeO₂ catalyst were all responsible for the more excellent NH₃-SCR performance. Based on kinetic 23 experiments and in situ DRIFTS results, it was concluded that the 24 Langmuir-Hinshelwood mechanism existed for selective catalytic reduction of NO 25 over Nb-VO_x/CeO₂, in which adsorbed NO_x species reacted with adsorbed NH₃ to 26 27 finally form N₂ and H₂O.

28 Keywords

Selective catalytic reduction of NO_x with NH₃; Low temperature activity;
Vanadium-cerium catalyst; Niobium oxide

31

SC Advances Accepted Manuscript

32 **1 Introduction**

Nitrogen oxides (NO and NO₂), which result from automobile exhaust gas and 33 34 industrial combustion of fossil fuels, have been major pollutants for air pollution.¹ They contribute to a variety of environmentally harmful effects such as 35 photochemical smog, acid rain, and haze formation.² The selective catalytic reduction 36 of NO_x with NH_3 (NH_3 -SCR) in the presence of excess oxygen is now the most 37 efficient technology for the removal of nitrogen oxides from stationary sources.^{2, 3} 38 V₂O₅-WO₃(MoO₃)/TiO₂ has been widely applied as an industrial catalyst for several 39 decades. ^{4, 5} However, some problems still remain for V₂O₅-WO₃(MoO₃)/TiO₂, such 40 as the relatively narrow operating temperature window of 300-400 °C, low N₂ 41 selectivity and high conversion of SO₂ to SO₃ at high temperatures. ^{4, 6, 7} Besides, the 42 high concentration of ash containing K₂O, CaO, As₂O₃ in the flue gas reduces the 43 performance and longevity of V₂O₅-WO₃(MoO₃)/TiO₂ catalysts.^{8,9} These could be 44 avoided by locating the SCR unit downstream of the electrostatic precipitator unit and 45 even downstream of the desulfurizer, through the development of a highly efficient 46 low temperature SCR system. 47

In our previous study, we have developed a VO_x/CeO_2 catalyst, prepared by a homogeneous precipitation method, showing excellent NH₃-SCR activity, N₂ selectivity and SO₂ durability. ¹⁰ However, the catalytic activity was not high enough for the application in the deNO_x process of exhaust gas with low temperature, such as the flue gas after dust removal and desulfurization from coal-fired power plants.

RSC Advances Accepted Manuscript

RSC Advances

Therefore, it is very necessary to modify this vanadium-cerium catalyst to improvethe low temperature activity, which is crucial for its practical utilization.

55 Niobium compound materials are of current interest as important catalysts for various reactions, such as the removal of nitrogen oxides, the hydrogenation and 56 oxidative dehydrogenation of alkanes, acting as a catalyst promoter, catalyst support 57 or solid acid catalyst. ¹¹ It was reported that when the niobium oxides were introduced 58 into V₂O₅/TiO₂ catalysts, the conversion of NO in NH₃-SCR reaction increased 2-4 59 times at low temperatures. ¹² The addition of Nb to MnO_r -CeO₂ was also found to be 60 very effective in improving the NH₃-SCR activity and N₂ selectivity. $^{13, 14}$ Mn₂Nb₁O_x 61 catalyst exhibited higher NH₃-SCR activity than MnO_x catalyst. ¹⁵ In addition, it was 62 reported that the introduction of the third main group element (such as Mn, Fe, Co, 63 Mo) could also improve the activity, stability or SO₂ durability of the SCR catalysts. 64 ¹⁶⁻¹⁹ Therefore, based on our V-Ce catalyst, we can add other elements to adjust its 65 physicochemical properties, expecting to enhance the low temperature SCR activity. 66

67 In this study, a series of $M-VO_x/CeO_2$ catalysts (M = Mn, Fe, Co, Nb, Mo) were prepared by the homogeneous precipitation method and were applied to the 68 low-temperature NH₃-SCR reaction. The addition of Nb could significantly promote 69 the SCR activity over the VO_x/CeO₂ catalyst. Among the catalysts with different 70 NbO_x contents, VO_x/CeO_2 with 30 wt.% NbO_x catalyst showed the best catalytic 71 performance and better SO₂/H₂O tolerance compared to VO_x/CeO₂ catalyst. The 72 lower crystallinity, the stronger redox capability and the more Brønsted acid sites of 73 the Nb-VO_x/CeO₂ catalyst were all responsible for its higher SCR activity. 74

75 **2 Experiments**

76 2.1 Catalyst synthesis and activity tests

The VO_x/CeO_2 oxide catalysts were prepared by a homogeneous precipitation 77 method. Aqueous solutions of NH₄VO₃ (H₂C₂O₄ was added to facilitate the 78 dissolution of NH₄VO₃) and Ce(NO₃)₂ were mixed with the desired molar ratios (the 79 mass ratio of vanadium oxide was controlled at 1 wt.%). An excess of aqueous urea 80 solution was then added to the mixed solution. The solution was heated to 90 $\,$ ${\rm C}$ and 81 held there for 12 h under vigorous stirring. After filtration and washing with deionized 82 water, the resulting precipitate was dried at 100 °C overnight and subsequently 83 calcined at 350 °C for 3 h in air. M-VO_x/CeO₂ catalysts (the mass ratio of MO_x were 84 controlled at 30 wt.%) were also prepared by homogeneous precipitation methods 85 using Mn(NO₃)₂, Co(NO₃)₃, Fe(NO₃)₃, NbCl₅, and (NH₄)₆Mo₇O₂₄ as precursors, 86 respectively. Nb-VO_x/CeO₂ catalysts with different Nb contents (10, 30, 50 wt.%) and 87 the unpromoted 3 wt.% VO_x/CeO_2 catalyst were also prepared by the same method. 88 For comparison, the conventional 3 wt.% V₂O₅-10 wt.% WO₃/TiO₂ and 1 wt.% 89 V₂O₅-10 wt.% WO₃/TiO₂ were prepared by impregnation method using NH₄VO₃, 90 (NH₄)₁₀W₁₂O₄₁, H₂C₂O₄ 2H₂O as precursors and anatase TiO₂ as support. After 91 impregnation, the excess water was removed in a rotary evaporator at 60 °C. The 92 samples dried at 100 °C overnight and then calcined at 500 °C for 3h in air condition. 93

Before NH₃-SCR activity tests, the catalysts were pressed, crushed and sieved to
40-60 mesh. The SCR activity tests were carried out in a fixed-bed quartz flow reactor

at atmospheric pressure. The reaction conditions were controlled as follows: 500 ppm 96 NO, 500 ppm NH₃, 5 vol.% O₂, 100 ppm SO₂ (when used), N₂ balance. Under 97 98 ambient conditions, the total flow rate was 500 ml/min and the gas hourly space velocity (GHSV) was 50 000 h⁻¹. The amount of catalysts used in activity tests was 99 100 0.6 ml (about 0.7 g). The effluent gas including NO, NH₃, NO₂ and N₂O was continuously analyzed by an FTIR spectrometer (Nicole Nexus 670) equipped with a 101 heated, low-volume multiple-path gas cell (2m). The FTIR spectra were collected 102 after the SCR reaction reached a steady state, and the NO_x conversion and N_2 103 104 selectivity were calculated as follows:

$$NO_{x}conversion = \left(1 - \frac{[NO]_{out} + [NO_{2}]_{out}}{[NO]_{in} + [NO_{2}]_{in}}\right) \times 100\%$$

$$N_{2}selectivity = \frac{[NO]_{in} + [NH_{3}]_{in} - [NO_{2}]_{out} - 2[N_{2}O]_{out}}{[NO]_{in} + [NH_{3}]_{in}} \times 100\%$$

105 2.2 Characterization of catalysts

The surface area and pore characterization of the catalysts were obtained from N_2 106 107 adsorption/desorption analysis at -196 °C using a Quantachrome Quadrasorb SI-MP. Prior to the N_2 physisorption, the catalysts were degassed at 300 °C for 5 h. Surface 108 109 areas were determined by the BET equation in the 0.05-0.35 partial pressure range. 110 Pore volumes and average pore diameters were determined by the Barrett-Joyner-Halenda (BJH) method from the desorption branches of the isotherms. 111

Powder X-ray diffraction (XRD) measurements of the catalysts were carried out on a computerized PANalytical X'Pert Pro diffractometer with Cu K α ($\lambda = 0.15406$ nm)

radiation. The data of 2θ from 10 to 80° were collected at 8° /min with the step size of 0.07°.

The H₂-TPR experiments were carried out on a Micromeritics Auto Chem 2920 chemisorption analyzer. The samples (30 mg) were pretreated at 300 °C in a flow of 20 vol.% O₂/Ar (50 ml/min) for 0.5 h in a quartz reactor and cooled down to room temperature (30 °C) followed by Ar purging for 0.5 h. A 50 mL/min gas flow of 10% H₂ in Ar was then passed over the samples through a cold trap to the detector. The reduction temperature was raised at 10 °C min⁻¹ from 30 to 1000 °C.

122 2.3 NH₃-TPD studies

NH₃-TPD experiments were performed in the same instrument as the H₂-TPR, 123 equipped with a quadrupole mass spectrometer (MKS Cirrus) to record the signals of 124 NH₃ (m/z = 17 for NH₃, the interference of H₂O was eliminated by using a cold trap 125 126 before the detector). Prior to TPD experiments, the samples (100 mg) were pretreated at 300 °C in a flow of 20 vol.% O₂/Ar (50 ml/min) for 0.5 h and cooled down to room 127 temperature (30 °C). The samples were then exposed to a flow of 2500 ppm NH₃/Ar 128 (50 ml/min) at 30 °C for 1 h, followed by Ar purging for another 1 h. Finally, the 129 temperature was raised to 600 °C in Ar flow at the rate of 10 °C min⁻¹. 130

131 2.4 *In situ* DRIFTS studies

In situ DRIFTS experiments were performed on an FTIR spectrometer (Nicolet Nexus 670) equipped with a smart collector and an MCT/A detector cooled by liquid nitrogen. The reaction temperature was controlled precisely by an Omega

programmable temperature controller. Prior to each experiment, the sample was pretreated at 300 °C for 0.5 h in a flow of 20 vol.% O_2/N_2 and then cooled down to 175 °C. The background spectra were collected in flowing N_2 and automatically subtracted from the sample spectrum. The reaction conditions were controlled as follows: 200 ml/min total flow rate, 500 ppm NH₃ or/and 500 ppm NO + 5 vol.% O_2 , and N_2 balance. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm⁻¹.

142 **3 Results and Discussion**

143 3.1 Catalytic performance

144 3.1.1 SCR activity over $30M-1VO_x/CeO_2$

145 Fig. 1 shows the NO_x conversion and N₂ selectivity over VO_x/CeO₂ and doped VO_x/CeO_2 catalysts. The VO_x/CeO_2 catalyst presented 80% NO_x conversion at 200 °C. 146 Mn doped VO_x/CeO₂ exhibited nearly 100% NO_x conversion at 100-200 $^{\circ}$ C, but the 147 NO_x conversion decreased rapidly above 200 °C. It also showed lower N₂ selectivity 148 in the whole temperature that we investigated. NH₃-SCR activities over Fe, Co and 149 Mo doped VO_x/CeO_2 catalysts were all lower than that over VO_x/CeO_2 . Among these 150 catalysts, Co doped VO_x/CeO_2 catalyst presented the lowest NO_x conversion and the 151 maximal NO_x conversion was only 50%. Furthermore, the N_2 selectivity over 152 Co-VO_x/CeO₂ was rather low. Contrarily, Nb doped VO_x/CeO₂ catalyst exhibited 153 higher catalytic performance than the VO_x/CeO₂ catalyst. The addition of Nb 154 enhanced the NO_x conversion and N₂ selectivity over VO_x/CeO₂ simultaneously. It 155

showed 60% and 90% NO_x conversion at 150 and 175 °C, respectively, and 100% N₂ selectivity was obtained in the temperature range of 100-350 °C. The best NH₃-SCR activity was obtained over the Nb doped VO_x/CeO₂ catalyst, therefore we chose Nb to further investigate the influence of doping amount on the catalyst structure and catalytic performance.

161 3.1.2 SCR activity over Nb-1VO_x/CeO₂ catalysts

The effect of NbO_x addition amount to VO_x/CeO_2 catalyst on NO_x conversion was 162 shown in Fig. 2. 10 wt.% NbO_x doped VO_x/CeO₂ catalyst showed higher NH₃-SCR 163 activity than unpromoted VO_x/CeO_2 catalyst. The 30Nb- VO_x/CeO_2 catalyst presented 164 the best catalytic activity, over which NO_x was completely reduced at about 175 $^{\circ}$ C. 165 Any further increase in Nb content resulted in a decline in activity. These indicated 166 that Nb content had a significant effect on the SCR activity over VO_x/CeO₂ catalysts, 167 and 30 wt.% NbO_x was optimal. Although, for the $30Nb-VO_x/CeO_2$ catalyst, the 168 content of 1% V seems to be negligible comparing with 30% Nb, V indeed played an 169 important role in NH₃-SCR reaction and 30Nb-VO_x/CeO₂ exhibited much higher 170 catalytic activity than 30Nb/CeO₂ (as shown in Fig. S1). At lower than 175 °C, the 171 reaction rates normalized by surface area over 30Nb-VO_x/CeO₂ was higher than that 172 over VO_x/CeO_2 (as shown in Fig. S2). The highest reaction rate over $30Nb-VO_x/CeO_2$ 173 was obtained at 175-350 °C. The lower reaction rates over 30Nb-VO_x/CeO₂ than 174 VO_x/CeO_2 above 200 °C were due to its larger specific surface area and similar NO_x 175 conversion. 30Nb-1VO_x/CeO₂ and 1VO_x/CeO₂ catalyst were chosen as the model 176 catalysts to carry out further investigation, such as the effect of Nb on H₂O/SO₂ 177

tolerance and the relationship between catalyst structure and catalytic activity.

To better evaluate the NH₃-SCR activity over Nb-VO_x/CeO₂ catalyst, we also 179 180 carried out the comparative SCR activity test over V₂O₅-WO₃/TiO₂ (Fig. 3). 30 wt.% Nb-1VO_x/CeO₂ exhibited higher NO_x conversion than $1VO_x/CeO_2$ and $3VO_x/CeO_2$. 181 However, there was not notable enhancement over 30Nb-3VO_x/CeO₂ in contrast to 182 $3VO_x/CeO_2$ (as shown in Fig. S3). Compared to $3VO_x/CeO_2$, the $30Nb-1VO_x/CeO_2$ 183 catalyst not only decreased the content of vanadium oxide, but also enhanced the 184 catalytic activity. The NH₃-SCR performance over 30Nb-1VO_x/CeO₂ catalyst was 185 186 also better than that over $3V_2O_5$ -10WO₃/TiO₂ and $1V_2O_5$ -10WO₃/TiO₂. The NO_x conversion over three catalysts at 175 °C was 96%, 63% and 15%, respectively. 187 Therefore, $30Nb-1VO_x/CeO_2$ showed excellent NH₃-SCR performance. 188

189 3.1.3 Influence of
$$H_2O$$
 and SO_2 on SCR activity

190 Fig. 4 shows the effect of SO₂ and H₂O on the catalytic activity over $1VO_x/CeO_2$ 191 and 30Nb-1VO_x/CeO₂ catalysts at 250 °C. When 100 ppm SO₂ was introduced to the inlet gas, the NO_x conversion over VO_x/CeO₂ decreased to 24% in 48 h and could not 192 recover to the initial activity after the removal of SO₂, which indicates that the 193 inhibiting effect of SO₂ on the SCR activity over the VO_x/CeO₂ catalyst was severe 194 and irreversible. However, the SO_2 inhibiting effect over Nb-VO_x/CeO₂ was quite 195 different. The NO_x conversion decreased slightly, and nearly 90% NO_x conversion 196 was obtained in the presence of 100 ppm SO₂ for a 48 h test. The NH₃-SCR 197 performance over VO_x/CeO₂ catalysts after SO₂ poisoning for 48 h is shown in Fig. 198

199 S4. The activity over Nb-VO_x/CeO₂ was still higher than that over VO_x/CeO₂. 95% 200 NO_x conversion could be obtained on the Nb-VO_x/CeO₂ catalyst at 250 °C and only 201 26% NO_x conversion on VO_x/CeO₂. This proved again that the Nb-VO_x/CeO₂ catalyst 202 showed higher SO₂ resistance than VO_x/CeO₂.

When 5% H₂O was introduced to the inlet gas, the NO_x conversion over VO_x/CeO₂ decreased rapidly to 56% and kept in 56% in 48 h test. The catalytic activity could recover to the original level after the removal of H₂O, indicating that the poison of H₂O was reversible. Meanwhile, H₂O had no influence on the catalytic activity over Nb-VO_x/CeO₂ catalyst and 100% NO_x conversion was maintained all the time. Nb-VO_x/CeO₂ exhibited much higher catalytic activity and stronger resistance to SO₂/H₂O than VO_x/CeO₂.

210 3.2 Catalyst Characterization

211 $3.2.1 \text{ N}_2$ physisorption

Table 1 shows the N₂ physisorption results of $1VO_x/CeO_2$ and $30Nb-1VO_x/CeO_2$ catalysts. Nb-VO_x/CeO₂ catalyst presented larger specific surface area and pore volume than VO_x/CeO₂. The addition of Nb to VO_x/CeO₂ resulted in bigger specific surface area and pore volume, which is beneficial to the enhancement of SCR activity.

216 3.2.2 XRD

The XRD patterns of $1VO_x/CeO_2$ and $30Nb-1VO_x/CeO_2$ catalysts are shown in Fig. 5. For both catalysts, all the peaks in the diffraction profiles attributed to CeO_2 of a cubic fluorite structure (43-1002). No vanadium species and niobium species were

RSC Advances Accepted Manuscript

detected, suggesting that V and Nb species were highly dispersed on the catalysts. The intensity of peaks of Nb doped catalyst was weaker than that of VO_x/CeO_2 , indicating a loss of crystallinity. The deceasing crystallinity may contribute to the increase of surface area.

224 3.2.3 H₂-TPR

The redox properties of 1VO_x/CeO₂ and 30Nb-1VO_x/CeO₂ catalysts were 225 investigated by H₂-TPR and the spectra are shown in Fig. 6. There are three peaks at 226 380, 460 and 710 °C (740 °C) over 1VO_x/CeO₂ and 30Nb-1VO_x/CeO₂. According to 227 the literatures $^{10, 20}$, the reduction peaks of surface Ce⁴⁺ to Ce³⁺ and the bulk Ce⁴⁺ to 228 Ce³⁺ were centered at 509 and 812 °C, respectively. The reduction peaks at 399, 523 229 and 766 °C over CeO₂ could be assigned to the reduction of surface oxygen species, 230 that of oxygen in deeper interior and that of oxygen in bulk, respectively.²¹ The 231 reduction peak around 400-500 °C is due to the surface vanadium oxide, while high 232 temperature peak over 700 °C is assigned to the reduction of bulk vanadium oxide.²² 233 Niobium oxide could be reduced at much higher temperature. ¹⁵ Therefore, the low 234 temperature peak at 380 °C and 460 °C could be due to the reduction of surface Ce⁴⁺ 235 and V^{5+} and that in deeper interior, respectively. The TPR peak at 710 °C (740 °C) 236 could be attributed to the reduction of bulk Ce and V. Both V and Ce possessed redox 237 capability and acted as reactive sites to catalyze NH₃-SCR reaction. The amount of H₂ 238 consumption of Nb-VO_x/CeO₂ catalyst was higher than that of VO_x/CeO₂ (1.15:1). 239 The intensity of the low temperature (380 $^{\circ}$ C) reduction peak of Nb-VO_x/CeO₂ was 240 much stronger than that of VO_x/CeO_2 (1.44:1). This could be due to the interaction of 241

V, Ce and Nb over Nb-VO_x/CeO₂ catalyst resulting in better dispersion of vanadium species and stronger redox capability. The active temperature window in NH₃-SCR reaction was between 150-400 °C. Stronger redox capability in this temperature range could enhance NH₃-SCR performance. Therefore, Nb doped VO_x/CeO₂ showed higher NH₃-SCR activity.

247 3.2.4 NH₃-TPD

Fig. 7 shows NH₃-TPD results over 1VO_x/CeO₂ and 30Nb-1VO_x/CeO₂ catalysts 248 using the fragment of m/z = 17 to identify NH₃. There were two NH₃ desorption peaks 249 around 100 and 250 °C on both catalysts. It is generally accepted that NH₄⁺ ions 250 bound to Brønsted acid sites are less thermally stable than coordinated NH₃ molecules 251 bound to Lewis acid sites and desorb at lower temperatures. ^{18, 23, 24} Therefore, the 252 desorption peak at 100 °C could be ascribed to the desorption of physisorbed NH₃ and 253 the partial ionic NH₄⁺ bound to the weak Brønsted acid sites, and the peak at 250 °C 254 could be assigned to the desorption of ionic NH_4^+ bound to strong Br ønsted acid sites 255 and coordinated NH₃ bound to the Lewis acid sites. The amount of acid sites over 256 Nb-VO_x/CeO₂ was remarkably larger than that of VO_x/CeO₂ (1.68:1). It indicates that 257 Nb-VO_x/CeO₂ catalyst presented more acid sites which could facilitate the adsorption 258 and activation of NH_3 during catalytic reaction even in the presence of H_2O and SO_2 259 thus enhances the catalytic activity in NH₃-SCR. In the presence of SO₂, more acid 260 sites over Nb-VO_x/CeO₂ catalyst inhibited the adsorption of SO₂ and the deposition of 261 262 sulfate thus enhanced the resistance to SO₂. More acid sites could also promote the adsorption of NH₃ in the presence of H₂O and weaken the competitive adsorption of 263

H₂O with NH₃. Furthermore, larger specific surface area was obtained over

Nb-VO_x/CeO₂. Therefore, Nb-VO_x/CeO₂ catalyst showed stronger resistance to H_2O/SO_2 .

267 3.3 In situ DRIFTS studies

264

To investigate NH₃/NO_x adsorption on $1VO_x/CeO_2$ and $30Nb-1VO_x/CeO_2$ catalysts 268 together with the SCR reaction mechanism, in situ DRIFTS were conducted at 175 °C 269 and the results of NH₃ adsorption on VO_x/CeO₂ and Nb-VO_x/CeO₂ catalysts are 270 shown in Fig. 8A. After NH₃ adsorption and N₂ purge, both catalysts were covered by 271 different NH₃ species. The bands at 1423 and 1670 cm⁻¹ were assigned to asymmetric 272 and symmetric bending vibrations of ionic NH_4^+ on Brønsted acid sites and the bands 273 at 1596 (1604) and 1147 (1200) cm⁻¹ were attributed to asymmetric and symmetric 274 275 bending vibrations of the N-H bonds in NH₃ coordinately linked to the Lewis acid sites. ²⁵⁻²⁷ Nb-VO_x/CeO₂ catalyst provided more acid sites than VO_x/CeO₂ (1.71:1), 276 especially the Brønsted acid sites, than VO_x/CeO_2 , which was in well harmony with 277 the NH₃-TPD results. As shown in our previous paper (Chemical Engineering Journal 278 250 (2014) 390-398)¹⁵, the NbO_x itself did not show any NH₃-SCR activity in the 279 whole temperature range that we investigated. However, the addition of Nb to 280 $1VO_x/CeO_2$ increased the surface acidity. Nb mainly played as acid sites for the 281 promotion of NH₃ adsorption in NH₃-SCR reaction. 282

283 The *in situ* DRIFT spectra of NO + O₂ adsorption on $1VO_x/CeO_2$ and 284 30Nb- $1VO_x/CeO_2$ catalysts at 175 °C were also conducted, and the results are shown

in Fig. 8B. When VO_x/CeO_2 catalyst was exposed to NO + O₂, bands assigned to 285 nitrate species were observed including monodentate nitrate (1540 and 1270 cm⁻¹), 286 bridging nitrate (1215 and 1592 cm⁻¹) and bidentate nitrate (1570 and 1243 cm⁻¹).²⁸⁻³⁰ 287 On the Nb-VO_x/CeO₂ catalyst, the adsorption amount of NO_x was larger than that on 288 the VO_x/CeO_2 catalyst (1.67:1). The addition of Nb to the VO_x/CeO_2 catalyst 289 increased the acidity but did not inhibit the adsorption of NO_x on the catalyst surface 290 simultaneously. It could be due to its stronger oxidation at low temperature and its 291 larger specific surface area. Therefore, the Nb-VO_y/CeO₂ catalyst produced more 292 293 nitrate species than VO_x/CeO₂.

According to the Arrhenius equation, the activation energy over VO_x/CeO_2 and Nb- VO_x/CeO_2 catalysts was calculated as 47 and 38 kJ/mol (as shown in Fig. S5). The interaction of V, Ce and Nb of the Nb- VO_x/CeO_2 catalyst decreased the activation energy of NO reduction and promote the NH₃-SCR reaction.

To investigate the reactivity of adsorbed NH₃ species in the SCR reaction on 298 30Nb-1VO_x/CeO₂ catalysts, the *in situ* DRIFTS of reaction between pre-adsorbed 299 NH_3 and $NO + O_2$ at 175 °C were recorded as a function of time (Fig. 9A). After NH_3 300 pre-adsorption and N₂ purge, the catalyst surface was covered by the adsorbed NH₃ 301 species. When NO + O_2 was introduced, the intensity of the bands attributed to NH₃ 302 species decreased and disappeared after 10 min. At the same time, the bands assigned 303 to nitrate species (monodentate nitrate at 1540 cm⁻¹, bridging nitrate at 1215, 1592 304 cm⁻¹ and bidentate nitrate at 1570, 1243 cm⁻¹) appeared. This result suggested that 305 both ionic NH_4^+ and coordinated NH_3 could react with NO_x and participate in the 306

RSC Advances Accepted Manuscript

NH₃-SCR reactions. Fig. S6 showed the band intensities of adsorbed NH₃ species over VO_x/CeO₂ and 30Nb-VO_x/CeO₂ pretreated by exposure to NH₃ followed by exposure to NO + O₂ at 175 °C. The reactive rate of adsorbed NH₃ species with gas NO and O₂ over Nb-VO_x/CeO₂ was much higher than that over VO_x/CeO₂. Therefore, more adsorbed NH₃ species on Nb-VO_x/CeO₂ contributed to its better SCR activity. The reaction between the pre-adsorbed NO_x and NH₃ on 30Nb-1VO_x/CeO₂

catalysts was also investigated by the *in situ* DRIFTS, and the results were shown in Fig. 9B. After NO + O₂ pre-adsorption and N₂ purge, Nb-VO_x/CeO₂ catalyst surface was covered by various nitrate species. When NH₃ was introduced, the intensity of bridging nitrate decreased, which indicated that adsorbed NO_x species could also react with NH₃. NH₃ adsorbed species were observed at the band of 1427 cm⁻¹.

318 The kinetic experiments were also carried out to investigate the reaction order and the tests met the condition of differential reactor model. The NO conversion data in 319 the kinetics test were in differential regime (conversion less than 20%) (as shown in 320 Fig. S7). A relative small particles size (40-60 mesh) and the volume hourly space 321 velocity (about 500 000 h⁻¹)³¹ ensured the elimination of internal and external 322 diffusion, respectively. The rates of NO conversion increased linearly with NO 323 concentration over 30Nb-1VO_x/CeO₂ catalyst (as shown in Fig. S8), and the reaction 324 order for NO was calculated as 0.555. The reaction order for NO was lower than 1, 325 indicating the presence of Langmuir-Hinshelwood mechanism, which was in 326 327 agreement with DRIFTS results. In Fig. 9B, the intensity of the bands attributed to nitrate species weakened after exposure to NH₃ indicating that adsorbed NO_x species 328

could react with adsorbed NH₃ to finally form N_2 and H_2O . In our previous study ¹⁰, 329 for the $3VO_x/CeO_2$ catalysts pre-adsorbed NO_x species, when NH₃ was introduced, 330 331 the intensity of the bands attributed to monodentate nitrate and bridging nitrate species decreased slightly. The amount of bidentate nitrate species increased markedly, 332 which may be due to the transformation of monodentate and bridging nitrate to 333 bidentate nitrate (Fig. 10¹⁰ and Fig. S5¹⁰). The adsorbed nitrate species were mostly 334 inactive in the NH₃-SCR reaction and therefore the 3VO_x/CeO₂ catalysts mainly 335 followed the Eley-Rideal mechanism. 336

337 4 Conclusions

A systematic study on the effect of Nb addition to the VO_x/CeO_2 catalyst for the 338 low-temperature NH₃-SCR reaction was carried out. VO_x/CeO₂ and Nb doped 339 340 VO_x/CeO_2 catalysts were prepared by homogeneous precipitation method and the SCR activity at low temperature was enhanced by the addition of Nb. The NH₃-SCR 341 activity over 1% VO_x/CeO₂ with 30 wt.% NbO_x catalyst were higher than that over the 342 3%V₂O₅-WO₃/CeO₂ catalyst. 30Nb-1VO_x/CeO₂ showed higher catalytic activity than 343 1VO_x/CeO₂ catalyst, due to the weaker crystallinity, the stronger redox capability and 344 the more Brønsted acid sites. The excellent SO_2/H_2O tolerance was also obtained over 345 30Nb-1VO_x/CeO₂ catalyst. The Langmuir-Hinshelwood mechanism existed for 346 selective catalytic reduction of NO Over $30Nb-1VO_x/CeO_2$, in which adsorbed NO_x 347 species reacted with adsorbed NH₃ to finally form N₂ and H₂O. 348

349 Acknowledgements

This work was financially supported by the National Natural Science Foundation of 350 China (51108446, 51221892) and the Ministry of Science and Technology, China 351 352 (2013AA065301, 2012AA062506). Reference 353 354 1. G. S. Qi, R. T. Yang and R. Chang, Appl. Catal. B-environ., 2004, 51, 93. 355 2. H. Bosch, and Janssen, F., Catal. Today, 1988, 2, 369. 356 3. Z. G. Huang, Z. P. Zhu, Z. Y. Liu and Q. Y. Liu, J. Catal., 2003, 214, 213. 4. 357 G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal. B-environ., 1998, 18, 1. G. Busca, M. A. Larrubia, L. Arrighi and G. Ramis, Catal. Today., 2005, 107-108, 139. 358 5. 359 J. P.Dunn, P. R.Koppula, H. G.Stenger and I. E.Wachs, Appl. Catal. B-environ., 1998, 19, 103. 6. 360 7. P. Balle, B. Geiger and S. Kureti, Appl. Catal. B-environ., 2009, 85, 109. I. E. Wachs and B. M. Weckhuysen, Appl. Catal. A-gen., 1997, 157, 67. 361 8. 362 9. D. A. Bulushev, F. Rainone, L. Kiwi-Minsker and A. Renken, Langmuir, 2001, 17, 5276. 363 10. Z. Lian, F. Liu and H. He, Catal. Sci. Technol., 2015, 5, 389. 364 K. Tanabe, Catal. Today., 2003, 78, 65. 11. 365 K.A.Vikulov, A.Andreini, E.K.Poels and A.Bliek, Catal. Lett., 1994, 25, 49. 12. M. Casapu, O. Krocher, M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche and D. Grolimund, 366 13. 367 J. Phys. Chem. C., 2010, 114, 9791. 368 14. M. Casapu, O. Kröcher and M. Elsener, Appl. Catal. B-environ., 2009, 88, 413. 369 Z. Lian, F. Liu, H. He, X. Shi, J. Mo and Z. Wu, Chem. Eng. J., 2014, 250, 390. 15. 370 16. F. Liu, H. He, Y. Ding and C. Zhang, Appl. Catal. B-environ., 2009, 93, 194. 371 17. X. Li and Y. Li, J. Mol. Catal. A-chem., 2014, 386, 69. 372 18. Sounak Roy, B.Viswanath, M.S.Hedge and G. Madras, J. Phys. Chem. C, 2008, 112, 6002. 373 19. Z. Liu, S. Zhang, J. Li and L. Ma, Appl. Catal. B-environ., 2014, 144, 90. 374 20. Y. Peng, J. H. Li, L. Chen, J. H. Chen, J. Han, H. Zhang and W. Han, Environ. Sci. Technol., 2012, 375 **46**, 2864. 376 21. S. J. Yang, Y. F. Guo, H. Z. Chang, L. Ma, Y. Peng, Z. Qu, N. Q. Yan, C. Z. Wang and J. H. Li, Appl. 377 Catal. B-environ., 2013, 136, 19. 378 22. S. Youn, S. Jeong and D. H. Kim, Catal. Today., 2014, 232, 185. 379 23. R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang and T. T. Gu, Chemosphere, 2010, 78, 1160. 380 24. K. J. Lee, M. S. Maqbool, P. A. Kumar, K. H. Song and H. P. Ha, Catal. Lett., 2013, DOI: 381 10.1007/s10562-013-1035-1. 382 25. R. Gao, D. Zhang, X. Liu, L. Shi, P. Maitarad, H. Li, J. Zhang and W. Cao, Catal. Sci. Technol., 383 2013, 3, 191. 384 L. Zhang, J. Pierce, V. L. Leung, D. Wang and W. S. Epling, J. Phys. Chem. C., 2013, 117, 8282. 26. 385 27. K. J. Lee, P. A. Kumar, M. S. Maqbool, K. N. Rao, K. H. Song and H. P. Ha, Appl. Catal. B-environ., 386 2013, **142**, 705. 387 28. K. I. Hadjiivanov, Catal. Rev. -Sci. Eng., 2000, 42, 71. 388 29. C. Liu, L. Chen, J. Li, L. Ma, H. Arandiyan, Y. Du, J. Xu and J. Hao, Environ. Sci. Technol., 2012, 389 **46**, 6182.

390	30.	Z. Si, D. Weng, X. Wu, Z. Ma, J. Ma and R. Ran, <i>Catal. Today.</i> , 2013, 201 , 122.
391	31.	R. Raj, M. P. Harold and V. Balakotaiah, Ind. Eng. Chem. Res., 2013, 52, 15455.
392		
393		

Catalysts	Specific surface	Pore diameter	Pore volume			
	area (m ² /g)	(nm)	(cc/g)			
1VO _x /CeO ₂	131.3	3.50	0.11			
30Nb-1VO _x /CeO ₂	168.2	3.48	0.15			

Table 1 N₂ physisorption of VO_x/CeO₂ and Nb-VO_x/CeO₂ catalysts

395

	5		
			\mathbf{D}
2			
	Ì		
		Ċ	5
	Ì		
		l	D
			É
			_
		9	2
			5
	Ì		
			\mathcal{D}
		1	
		Y	
	Ì	2	
			D
	Ĩ		
	2		
			5
	L		
	í		

396

Figure Captions

Fig. 1 The NO_x conversion (A) and N₂ selectivity (B) over $M-VO_x/CeO_2$ catalysts. 397 Reaction conditions: $[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%, N_2 \text{ balance, total flow}$ 398 rate 500 ml/min and GHSV = 50 000 h^{-1} . 399 Fig. 2 NH₃-SCR activity over Nb-VO_x/CeO₂ catalysts. Reaction conditions: [NO] =400 $[NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%, N_2 \text{ balance, total flow rate 500 ml/min and GHSV}$ 401 $= 50\ 000\ h^{-1}$. 402 Fig. 3 NH₃-SCR activity over VO_x/CeO₂ and V₂O₅-WO₃/TiO₂ catalysts. Reaction 403 conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol. %, N₂ balance, total flow rate 500 404 ml/min and GHSV = $50\ 000\ h^{-1}$. 405 406 Fig. 4 Effect of SO₂ and H₂O on NH₃-SCR activity over VO_x/CeO₂ and Nb-VO_x/CeO₂

- 407 catalysts at 250 °C. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[SO_2] = 100$ ppm
- 408 (when used), $[H_2O] = 5\%$ (when used), $[O_2] = 5$ vol. %, N₂ balance, total flow rate
- 409 500 ml/min and GHSV = 50 000 h^{-1} .
- 410 Fig. 5 XRD patterns of VO_x/CeO_2 and $Nb-VO_x/CeO_2$ catalysts.
- 411 Fig. 6 H₂-TPR results over VO_x/CeO_2 and Nb- VO_x/CeO_2 catalysts.
- 412 Fig. 7 NH₃-TPD results over VO_x/CeO_2 and Nb-VO_x/CeO₂ catalysts.
- 413 Fig. 8 DRIFT spectra of 500 ppm NH_3 adsorption (A) and 500 ppm NO + 5 vol.% O_2
- 414 adsorption (B) on VO_x/CeO_2 and $Nb-VO_x/CeO_2$ catalysts.

- 415 Fig. 9 In situ DRIFT spectra over Nb-VO_x/CeO₂ pretreated by exposure to NO + O₂
- followed by exposure to NH_3 at 175 °C (A), and by exposure to NH_3 followed by
- 417 exposure to NO + O_2 at 175 °C (B).
- 418

421 Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol. %, N₂ balance, total flow

422

rate 500 ml/min and GHSV = 50 000 h^{-1} .

432 Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol. %, N₂ balance, total flow

433 rate 500 ml/min and GHSV = 50 000 h^{-1} .

Fig. 4 Effect of SO₂ and H₂O on NH₃-SCR activity over VO_x/CeO₂ and Nb-VO_x/CeO₂ catalysts at 250 °C. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[SO_2] = 100$ ppm (when used), $[H_2O] = 5\%$ (when used), $[O_2] = 5$ vol. %, N₂ balance, total flow rate 500 ml/min and GHSV = 50 000 h⁻¹.

Fig. 5 XRD patterns of VO_x/CeO₂ and Nb-VO_x/CeO₂ catalysts.

445 Fig. 6 H₂-TPR results over VO_x/CeO_2 and Nb-VO_x/CeO₂ catalysts.

448 Fig. 7 NH₃-TPD results over VO_x/CeO₂ and Nb-VO_x/CeO₂ catalysts.

451 Fig. 8 DRIFT spectra of 500 ppm NH₃ adsorption (A) and 500 ppm NO + 5 vol.% O_2

452 adsorption (B) on VO_x/CeO_2 and $Nb-VO_x/CeO_2$ catalysts.

