

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Synthesis of g-C₃N₄/Bi₂O₃/TiO₂ composite nanotubes: Enhanced activity under visible light irradiation and improved photoelectrochemical activity

Yi Zhang^{a,b*}, Jiani Lu^a, Michael R. Hoffmann^b, Qiang Wang^a, Yanqing Cong^a, Qi Wang^a, Huan Jin^a

^a School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

^b Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, USA

ABSTRACT: g- C_3N_4 and Bi₂O₃ were successfully incorporated into TiO₂ nanotubes (TiO_2-NT) to produce a composite nanotube material designated as $g-C_3N_4/Bi_2O_3/TiO_2$. The photoelectrochemical (PEC) activity under visible light irradiation with respect to bleach of methylene blue (MB) and degradation of phenol were determined. The UV-vis absorption spectrum of composite material, $g-C_3N_4/Bi_2O_3/TiO_2-NT$, was red-shifted toward a narrower band gap energy (E_g). The valence band (VB) of g-C₃N₄/Bi₂O₃/TiO₂-NT was shifted to a more positive potential resulting in an increased driving force for water oxidation. The photocurrent generated by g-C₃N₄/Bi₂O₃/TiO₂-NTs was approximately 15 times higher and the incident photon-to-current efficiency (IPCE at $\lambda = 400$ nm) was higher than that of the naked TiO₂-NTs. This response is attributed to increasing the lifetimes of photo-generated electron-hole pairs. Significantly higher PEC response in terms of the bleaching of MB was observed on g-C₃N₄/Bi₂O₃/TiO₂-NT. The roles of improved

^{*} To whom correspondence should be addressed. E-mail: zhangyi@zjgsu.edu.cn. Tel.: +86-571-28878218, Fax: +86-571-28008215

charge separation and subsequent higher electron-transfer efficiencies for in $g-C_3N_4/Bi_2O_3/TiO_2-NT$ electrodes were examined.

Keywords: Photoelectrochemistry; $g-C_3N_4/Bi_2O_3/TiO_2$ nanotubes; co-doping; visible light irradiation; organic pollutants degradation

1. Introduction

Semiconductor photocatalysis has been extensively explored for a variety of environmental control applications ¹⁻³ and for solar energy conversion in terms of photocatalytic water-splitting ⁴⁻⁵ and artificial photosynthesis including CO₂ reduction to hydrocarbon fuels ⁶. Photoelectrochemical (PEC) activity under an applied potential bias was applied for splitting water or degradation of environmental pollutants. Since 43% of incoming solar radiation is with the visible region, improving solar conversion efficiency over this region is important⁷. For large-scale applications, sustained and in-depth attention has been paid to TiO₂ because the cost is low, stability is excellent and band edge potential is suitable ⁸⁻⁹. However, since UV light (4% of the solar spectrum) at $\lambda \leq 385$ nm is required to activate anatase TiO₂, the potential practical applications are limited 10 . The modified TiO₂ has been investigated to improve the photocatalytic activity induced by visible light. For instance, doping TiO₂ with metal ions ¹¹⁻¹² or nonmetal ions ¹³⁻¹⁴ have been employed. Moreover, some non-oxide photocatalysts (e.g., metal sulfides, (oxy) nitrides and oxysulfides) ¹⁵⁻¹⁶ and various metal complexes (e.g., Pt, Au or Ag)¹⁷ are quite active under visible light irradiation. However, rapid electron-hole recombination, reduced stability, and high costs of production of the doped metal oxides prevent their larger-scale practical applications.

Recently, compositing with two or more different substances together on TiO₂ has drawn increasing attention to researchers and been confirmed to be an effective approach. Polypyrrole-decorated Ag-TiO₂ nanofibers ¹⁸, Bi₂O₃/Bi₄Ti₃O₁₂/TiO₂ nanobelts ¹⁹, Bi₂O₃/TiO₂/graphene composite systems ²⁰ have shown promise for achieving higher visible light photocatalytic activity. In addition, electrochemistry improving the photocatalysis system also has been developed. N and S co-doped into TiO₂ nanotube array films ²¹ and B and P co-doped TiO₂ nanotube arrays ²² exhibited excellent PEC properties and photocatalytic activities than undoped TiO₂.

Recently, graphitic carbon nitride (g-C₃N₄) was studied having capable of oxidation of pollutants under visible light irradiation ²³⁻²⁴. Moreover, g-C₃N₄ has high chemical and thermal stability with narrower band gap energy (E_g) of 2.7 eV ²³ than TiO₂. Other researchers have synthetized TiO₂ modified with g-C₃N₄ by chemical vapor deposition ²⁵ or electrodeposition methods ²⁶ to obtain materials that were photoelectrocatalytically active under visible light illumination. Bi₂O₃ is also being explored as a potentially useful photocatalyst due to its lower bandgap energy (2.8 eV) and beneficial electrical properties ²⁷. Bi₂O₃ has also been combined with TiO₂ for improved visible light activity ²⁸⁻²⁹. A multi-material composite incorporating g-C₃N₄ and Bi₂O₃ into titanium dioxide nanotubes was prepared and tested in our paper attempting to improve both the photocatalytic and photoelectrochemical activities under visible light irradiation.

Modification of TiO₂ nanotubes (TiO₂-NT) via incorporation of g-C₃N₄ and Bi₂O₃ is

expected to improve the overall visible light activity when compared to naked TiO₂. Compared to the VB edge of TiO₂ (2.7 V vs NHE (pH=7)) ³⁰, the band edge of g-C₃N₄ is more negative (1.4 V vs NHE (pH=7)) ³⁰, while the band edge of Bi₂O₃ is more positive (3.13 V vs NHE (pH=7)) ³¹. This combination should improve overall electron-hole separation and improve electron transfer characteristics.

In order to prepare the composite catalyst, we employed a thermal poly-condensation and dip-coating method to modify TiO_2 -NTs with g-C₃N₄ and Bi_2O_3 . The degradation of methylene blue (MB) and phenol by PEC performance was investigated using a composite catalyst as anode. The PEC performances of the composite electrodes were examined and the photocatalytic (PC) and electrocatalytic (EC) activities under identical reaction conditions were also compared. A mechanism to account for enhanced PEC activity was finally proposed.

2. Experimental methods

2.1. Chemical Reagents

Oxalic acid dehydrate (COOH)₂·2H₂O) (\geq 99.5% purity), ammonium fluoride (NH₄F) (\geq 96.0% purity), melamine (C₃H₆N₆) (\geq 98.5% purity), bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) (\geq 99.0% purity), methyl alcohol (CH₃OH) (\geq 99.9% purity, HPLC, TEDIA company), ethylene glycol (C₂H₆O₂) (\geq 99.5% purity), sodium sulfate (Na₂SO₄) (\geq 99.0% purity), sodium sulfite (Na₂SO₃) (\geq 97.0% purity) were all purchased from Hangzhou Huipu Chemical Reagent Co., Ltd..

2.2. Synthesis of g-C₃N₄/Bi₂O₃/TiO₂ Nanotubes

Electrochemical anodization method was used to prepare TiO2-NTs electrodes. The

4

Ti sheet (0.5 mm thick, 99.5% purity) was washed by ultrasonic irradiation for 15 min. The electrochemical reaction was operated using Ti sheet as anode and Ni sheet as cathode with the voltage of 20 V for 120 min. The electrolyte was a mixed solution of 1/12 M (COOH)₂·2H₂O and 0.5 wt% NH₄F ³²⁻³³. Metal-free g-C₃N₄ powders were prepared by calcination of melamine to 520 °C for 4 h ³⁴.

The g-C₃N₄/Bi₂O₃/TiO₂-NTs composites were prepared by a dip-coating method in which 0.2 g g-C₃N₄ and 0.243 g Bi(NO₃)₃·5H₂O were dispersed in 20 mL of ethylene glycol solution; the TiO₂-NTs that were still attached to the Ti sheet were slowly dipped up and down from the above solution for 30 min. The dipped coated sheets were then annealed at 400 °C for 2 h ³³. When g-C₃N₄/TiO₂-NTs or Bi₂O₃/TiO₂-NTs were prepared, the precursor solution was changed to 0.2 g g-C₃N₄ or 0.243 g Bi(NO₃)₃·5H₂O in 20 mL of ethylene glycol solution.

2.3. Characterization of the Synthesized g-C₃N₄/Bi₂O₃/TiO₂ Nanotubes

The synthesized materials (TiO₂-NTs, $g-C_3N_4/TiO_2-NTs$, Bi_2O_3/TiO_2-NTs and $g-C_3N_4/Bi_2O_3/TiO_2-NTs$) were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscope (XPS), emission scanning electron microscope (FE-SEM, Hitachi S-4700 II) with an energy-dispersive X-ray spectrometer (EDX), transmission electron microscope (TEM) and UV-Vis diffuse reflectance spectra (DRS).

2.4. PEC Experimental Techniques

The PEC properties of each sample were determined using an electrochemical workstation (CHI 660D). Modified TiO₂-NTs electrodes were used as working electrodes with saturated Ag/AgCl electrode as a reference electrode and Pt sheet as a

counter electrode, respectively. Visible light at an intensity of 100 mW/cm² was obtained by using a Xe-lamp light source with UV filter ($\lambda > 420$ nm). Photocurrents and incident-photon-to-current efficiencies (IPCE) were tested in mixed 0.1 M Na₂SO₄ and Na₂SO₃ solutions at pH of 10.5. IPCE measurements were taken at the visible wavelengths of 400, 430, 450, 475, 500, 550, 600 and 633 nm with a light intensity meter (model FZ-A). Mott-Schottky (M-S) plots and Nyquist plots were taken in 0.1 M Na₂SO₄ solutions at pH = 7.6. M-S plots were obtained at frequencies of 500, 1000 and 3000 Hz at an AC amplitude of 5 mV. Nyquist plots were obtained both under dark and visible light conditions. The experiments including Nyquist plots, LSVs and IPCE plots were repeated for 3 times.

The activity of the prepared catalyst was assessed in three different modes of operation that include 1) photocatalytic (PC), 2) electrocatalytic (EC) and photoelectrocatalytic (PEC). The applied potential in EC and PEC process was 3.0 V. In each case, an electrolyte solution consisting of 0.1 M Na₂SO₄ was irradiated with visible light that had an average light intensity of 200 mW/cm². MB (100 mL, 1×10^{-5} M, without regulating pH) and phenol (100 mL, 10 mg/L, pH=3) fitted with an active electrode with a 4.5 cm² effective surface area of g-C₃N₄/Bi₂O₃/TiO₂-NTs. Before initiating the reactions under illumination, the solution reacted with catalyst electrode for 30 min without light. At given time intervals, 3 mL MB and 1 mL phenol aliquot samples were collected. The variation in the MB concentrations was recorded using an UV-Vis spectrophotometer. The concentrations of phenol were analyzed by HPLC with a Diamonsil C18 column and ultraviolet detection at 278 nm with ratio of the

deionized water and methanol of 6:4 (V/V) and a flow rate of 1.0 mL/min. The overall MB bleaching process and phenol degradation was fitted to pseudo first-order kinetics.

3. Results and discussion

3.1. SEM and TEM Analyses

Fig. 1 shows the morphologies of TiO_2 -NTs, g-C₃N₄/TiO₂-NTs, Bi₂O₃/TiO₂-NTs, g-C₃N₄/Bi₂O₃/TiO₂-NTs, and pure g-C₃N₄. The TiO₂-NTs electrode has almost uniform holes and a highly ordered tubular structure. The average of the inner diameter of TiO_2 -NTs is close to 80 nm, and their average of outer diameter is near 110 After nm. modification, $g-C_3N_4/TiO_2-NTs$, Bi₂O₃/TiO₂-NTs, $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ have very similar tubular structures. The $g-C_3N_4$ powders are likely sheet structures, as shown in Fig. 1(e), accumulating on the surface of $g-C_3N_4/TiO_2-NTs$. The cross section of the TiO₂ nanotubes was depicted in Fig.1(f) showing that the mean length of the TiO_2 nanotubes was about 850 nm. Moreover, the EDX analysis (Fig. S1 in supporting information) confirms that Ti, O, C, N, Bi exist in composite material and shows that g-C₃N₄ and Bi₂O₃ are deposited on TiO₂ tubular substrates.

Fig. 2 shows the TEM analysis for $g-C_3N_4/Bi_2O_3/TiO_2$ composite. The particles also detected in $g-C_3N_4/TiO_2$ and Bi_2O_3/TiO_2 composites, so $g-C_3N_4$ and Bi_2O_3 could be found in the nanotubes. And Combined with SEM in Fig.1, the $g-C_3N_4$ powders also accumulate on the surface of $g-C_3N_4/TiO_2$ -NTs and $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs composites, but little Bi_2O_3 was accumulated on the surface of Bi_2O_3/TiO_2 -NTs. It was probably due to that Bi_2O_3 was prepared by anneal of $Bi(NO_3)_3 \cdot 5H_2O$, which may permeate into the tube of TiO_2 and Bi_2O_3 was formed. But g-C₃N₄ was prepared at first and was like the sheet structures, so some small sheets were deposited into the tubes of TiO_2 and some were accumulated on the surfaces of the tubes.

3.2. XRD and XPS Analyses

The XRD analysis was applied to detect the formation of TiO₂, g-C₃N₄ and Bi₂O₃ in the composite electrode. However, due to the very low level of incorporated Bi₂O₃, the characteristic peak of Bi₂O₃ in g-C₃N₄/Bi₂O₃/TiO₂-NTs was not seen. In another synthesis the amount of Bi(NO₃)₃·5H₂O was increased to 2.910 g in 20 mL of ethylene glycol, which was then dipped coated and annealed to get the fully loaded g-C₃N₄/Bi₂O₃/TiO₂-NTs. Fig. 3 shows the XRD patterns for the TiO₂-NTs and g-C₃N₄/Bi₂O₃/TiO₂-NTs electrodes that were annealed at 400 °C. The peak of 2θ = 25.2° for anatase TiO₂ can be seen in both of the XRD patterns. The characteristic peaks corresponding to g-C₃N₄, Bi₂O₃ are also evident in Fig. 3, which confirms that g-C₃N₄, Bi₂O₃ had been successfully synthesized.

In addition, the XPS analysis of $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode is also depicted in Fig. 4, which showed the existence of Ti 2*p*, O 1*s*, C 1*s*, N 1*s* and Bi 4*f* elements. In the inset figure of Fig. 3, two peaks centered at 164.3 and 158.9 eV belong to Bi 4*f* 5/2 and Bi 4*f* 7/2 region, which should be determined as Bi_2O_3 species ³⁵. While, near the main peaks due to Bi^{3+} , there are other two small peaks centered at 157.2 eV and 162.6 eV, which probably belong to reduced Bi oxidation phase or $Bi^{0.36-37}$. Based on several studies about the reduced Bi phase, it could interact with the structure of Bi

oxidation and Titania to form the electronic effect between these two oxides ^{36, 38}.

3.3. UV-Vis DRS Analyses

UV-Vis DRS of the composite TiO₂-NTs electrodes modified by g-C₃N₄ and Bi₂O₃ are shown in Fig. 5. The spectrum of g-C₃N₄/TiO₂-NTs is similar to that of unmodified TiO₂-NTs from 220 to 600 nm. While from 220 to 370 nm, the spectrum shows Bi₂O₃/TiO₂-NTs has a lower absorbance when compared to the unmodified TiO₂-NTs, while g-C₃N₄/Bi₂O₃/TiO₂-NTs showed an increase in absorbance compared to naked TiO₂. When wavelength is larger than 370 nm, however, the absorbance of Bi₂O₃/TiO₂-NTs, g-C₃N₄/Bi₂O₃/TiO₂-NTs are higher than that of the naked TiO₂-NTs. In the case of g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode, the absorbance is significantly higher than for the other electrodes in UV-visible region. All of the samples have some degree of visible light absorbance ($\lambda > 400$ nm), however this may be due, in part, to the roughness of the electrode surfaces with pores ³⁹⁻⁴¹.

From Fig. 5, the absorption edges of TiO_2 -NTs, $g-C_3N_4/TiO_2$ -NTs, Bi_2O_3/TiO_2 -NTs and $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs are located approximately at 382 nm, 388 nm, 400 nm, and 410 nm, indicating that addition of $g-C_3N_4$ and Bi_2O_3 to the nanotube array extends the absorption to visible range. The corresponding band gap energies were determined using the standard equation as shown belong in Eq. 1⁴²:

$$\alpha h v = A \left(h v - E_g \right)^{n/2} \tag{1}$$

where α , h, v, E_g and A are the absorption coefficient, Planck's constant, light frequency, band gap energy, and a constant, respectively. For TiO₂, n is 4 for the indirect transition ²⁴. Thus, plots of $(\alpha hv)^{1/2}$ versus photon energy (hv) are obtained.

i age i 0 0

As shown in Fig. S2, the E_g of TiO₂-NTs is 3.25 eV, which is similar to anatase TiO₂ ⁴³, while the E_g values for g-C₃N₄/TiO₂-NTs, Bi₂O₃/TiO₂-NTs and g-C₃N₄/Bi₂O₃/TiO₂-NTs are 3.20 eV, 3.10 eV and 3.02 eV, respectively. The UV-vis DRS analysis was detected three times and the Eg was changed a little. It was probably that there was a small amount of Bi₂O₃ and C₃N₄ were incorporated with TiO₂ using a dip-coating method, which leads the red shift not significant ⁴⁴⁻⁴⁵.

3.4. Nyquist and M-S Plots

In order to investigate the capacitance and resistance of the electrodes, Nynquist plots of the TiO_2 -NTs electrodes as modified by g-C₃N₄ and Bi₂O₃ are shown in Fig. 6. Only one arc was observed for each electrode while the arc radius of g-C₃N₄/Bi₂O₃/TiO₂-NTs was the smallest in dark and visible light irradiation. It implies that interfacial charge transfer is enhanced by a higher efficiency of charge separation.

The M-S plots, as shown in Fig. 7, reveal the flat band potential (E_{fb}) and interfacial charge transfer of the electrode, in which C_{sc}^2 means the space charge capacitance of the electrode ⁴⁶⁻⁴⁷. The E_{fb} shifts positively from ca. -0.75 V for TiO₂-NTs to -0.40 V for g-C₃N₄/Bi₂O₃/TiO₂-NTs. Similarly, the onset potential of anodic photocurrent shifts positively from ca. -0.54 V for TiO₂-NTs to -0.35 V for g-C₃N₄/Bi₂O₃/TiO₂-NTs as shown in Fig. S3. In both of samples, photocurrent onset potentials are more positive than the E_{fb} . It is probably due to the recombination of electron-hole more quickly for water oxidation, so more positive potentials are achieved for transmission of charge ⁴⁸.

The g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode has the highest absorbance and narrowest E_g , as shown in Fig. 5. Combined with E_{fb} and E_g^{32} , the VB edge of TiO₂-NTs and g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode is calculated at 2.50 V and 2.62 V, respectively. As a result, the improvement of water oxidation ability of g-C₃N₄/Bi₂O₃/TiO₂-NTs was achieved for the enhancing of PEC properties ⁴⁹.

3.5. PEC Properties

Linear sweep voltammetry (LSV) method was used to analyze the PEC activities of the composite TiO₂-NTs electrodes. In comparison, LSVs without irradiation were also tested, which shows the surface catalytic property of electrodes for O₂ evolution ⁵⁰. From Fig. 8, most of the composite TiO₂-NTs electrodes show a current response until the bias potential is at least 1.0 V without irradiation. The g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode shows a positive shift of the onset potential (Fig. S3) implying that the surface became easier for O₂ evolution than the un-modified TiO₂-NTs electrodes surface. Moreover, it indicates that the composite electrodes reduced the charge transfer resistance ⁵⁰, which is consistent with result of EIS Nyquist analysis in Fig. 6.

Fig. 9 shows LSVs of the composite TiO_2 -NTs electrodes under visible light irradiation in 0.1 M Na₂SO₄ and Na₂SO₃ mixture solution. The photocurrent of $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs electrode is ca. 15 times larger than that of TiO_2 -NTs. Bi_2O_3/TiO_2 -NTs electrode has a lightly lower photocurrent compared to $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs, but its photocurrent is still over 8 times larger than that of TiO_2 -NTs. The recombination of photogenerated electron-hole decrease with the bias

RSC Advances Accepted Manuscript

potential increase, and the driving force for photo-generated electrons transferring to the external circuit enhanced. The enhancement of photo-response of $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs electrode under visible light irradiation is probably due to: (1) the higher absorbance and the wider absorption edge; (2) the improved driving force for O₂ production; (3) the improved separation of photo-generated electron-hole pairs. 3.6. IPCE

Fig. 10 shows the IPCE plots as function of wavelength for the composite TiO_2 -NTs electrodes calculated by Eq. (2) ⁵¹⁻⁵²:

IPCE (%) =
$$1240 \times (i_{ph} / \lambda P_{in}) \times 100$$
 (2)

where i_{ph} is the photocurrent at 0.40 V (mA), λ is the wavelength (nm) of light, and P_{in} is the light power intensity at λ (mW). The IPCE values decreased with increasing wavelength from 400 to 633 nm. The g-C₃N₄/Bi₂O₃/TiO₂-NTs electrodes show the highest IPCE at 7.59% at 400 nm, which amounts to an enhancement of ca. 55% when compared to the unmodified TiO₂-NTs (4.9%).

Zhou's and co-workers ²² have developed boron and phosphor co-doped TiO₂ nanotube arrays (BP-TNTs) by an anodization process on a Ti sheet, achieving the highest IPCE value 3.8% at 400 nm. The same team also prepared a CN/TNT composite heterojunction photocatalyst, which had a maximum IPCE of 7.3% at 400 nm ²⁶. Jia et al. ⁵³ have synthesized polypyrrole (PPy) onto self-organized TiO₂ nanotube arrays (TiO₂-NTs), and the PPy/TiO₂-NTs electrode showed the maximum IPCE of 5% at 410 nm. In contrast, the g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode has higher IPCE in the visible.

3.7. Pollutants Degradation

MB and phenol are degraded on the $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode in photolysis, EC, PC and PEC processes, respectively. Fig. 11 shows the removal efficiency of MB at 6.4%, 8.8%, 50.2% and 77.9% after 3 h of reaction in photolysis, EC, PC and PEC process. The corresponding apparent rate constants k = 0.029, 0.24 and 0.50 h⁻¹ in EC, PC and PEC processes, respectively. The value of k for MB degradation in PEC process is roughly 1.9 times as high as that in (EC + PC) process, indicating that synergistic effect occurred during PEC process. Fig. S4 shows the absorbance spectra of MB degradation at g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode in PEC process. There are three absorption peaks at 292, 246 and 665 nm, in which peak at 665 nm belongs to the auxochrome group of MB and the peaks at 292 nm and 246 nm belong to the substituted benzenes ring structures ⁵⁴⁻⁵⁵. It can be see that all of the peaks decreased during the reaction, which implied that the MB was bleached and the benzenes ring structures were also decomposed. In addition, before 235 nm, the absorbance spectra of MB increased with time increasing, which possibly shows that some substituted benzene derivatives or other intermediate products may be formed. The analysis of the intermediates needs further investigation.

In addition, the colorless organic phenol also was degraded efficiently in PEC process by using $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs electrode as shown in Fig. S5. Fig. S6 shows HPLC of phenol degradation at the $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs electrode in PEC process. Compared with the standard compounds, hydroquinone and benzoquinone were produced after degradation as depicted in Fig. S6. It probably indicated that

0-----

phenol was degraded to form hydroquinone and then transformed to benzoquinone, and then the benzene rings were opened to form small molecular acids and finally could be mineralized.

Fig. 12 shows the concentration change of MB with different modified TiO₂-NTs electrodes in PEC process. Correspondingly, the removal efficiency of MB is 37.3%, 41.1%, 55.3% and 77.5% for TiO₂-NTs, $g-C_3N_4/TiO_2-NTs$, Bi_2O_3/TiO_2-NTs , and $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ after 3 h of reaction. Hence, the $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode could contribute to the promotion of the PEC performance compared with TiO₂-NTs electrode.

To check the stability of $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode, MB degradation using the PEC process was repeated for four times. As shown in Fig. 13, the degradation reaction is repeatable through four PEC reaction cycles. This indicates that $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode is reasonably stable during PEC processing.

3.8. Possible Considerations

Based on the above results, suggested mechanism for charge separation and electron transfer in g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode is depicted schematically in Fig. 14. The bottoms of the conduction band (CB) of TiO₂, Bi₂O₃ and g-C₃N₄ are located at about -0.5 V, +0.33 V, -1.3 V vs NHE (pH=7), respectively ³⁰⁻³¹. The Eg of Bi₂O₃ (2.8 eV) and g-C₃N₄ (2.7 eV) are smaller than that for TiO₂ (3.2 eV). Thus, only Bi₂O₃ and g-C₃N₄ can absorb photons and excite photoelectrons under visible light irradiation. One of possible mechanisms is that TiO₂ is placed between Bi₂O₃ and C₃N₄, which has advantage to electron-holes transfer. As shown in Fig. 14 (a), with

the accumulation of valence holes of Bi_2O_3 , the photo-induced holes of Bi_2O_3 flow into the VB of the TiO₂ layer and then into the VB of the g-C₃N₄. Holes on the g-C₃N₄ surface can also degrade MB, giving rise to enhance photocatalytic activity ⁵⁶⁻⁵⁷. Meanwhile, the electron injection is transferred from the CB of g-C₃N₄ into that of TiO₂ and subsequently could be shuttled freely along g-C₃N₄/Bi₂O₃/TiO₂-NTs matrix of the electrodes to the external circuit, enhancing the separation of electron-hole pairs. Moreover, photo-generated electrons of Bi₂O₃ can react with oxygen molecules to generate superoxide O₂⁻⁻, which leads to H₂O₂ production and eventual bleaching of MB. Even though the TiO₂ interlayer isn't induced by visible light, it is used as a support and connector between Bi₂O₃ layers and g-C₃N₄ particles to improve the separation of electron-hole pairs. Key steps of the sequence of PEC reactions can be summarized as follows:

$$\operatorname{Bi}_{2}\operatorname{O}_{3} + \operatorname{hv} \to \operatorname{Bi}_{2}\operatorname{O}_{3}(\operatorname{h}^{+} + \operatorname{e}^{-})$$
(3)

$$g-C_3N_4 + hv \to g-C_3N_4 (h^+ + e^-)$$
 (4)

$$\operatorname{Bi}_{2}\operatorname{O}_{3}(\operatorname{h}^{+}) + \operatorname{Ti}\operatorname{O}_{2} \to \operatorname{Ti}\operatorname{O}_{2}(\operatorname{h}^{+}) + \operatorname{Bi}_{2}\operatorname{O}_{3}$$
(5)

$$TiO_2 (h^+) + g-C_3N_4 \rightarrow g-C_3N_4 (h^+) + TiO_2$$
 (6)

$$g-C_3N_4(e) + TiO_2 \rightarrow TiO_2(e) + g-C_3N_4$$
 (7)

$$TiO_2$$
 (e⁻) + bias voltage $\rightarrow TiO_2$ + external circuit (8)

$$\operatorname{Bi}_{2}\operatorname{O}_{3}\left(\operatorname{e}^{-}\right) + \operatorname{O}_{2} \to \operatorname{Bi}_{2}\operatorname{O}_{3} + \operatorname{O}_{2}^{--} \tag{9}$$

Of course, two of these three substances (TiO₂, Bi_2O_3 and C_3N_4) composited together, the electron-holes also could be transferred from high energy band to low energy band. So some other phenomenon, such as electrons transferred from C_3N_4 to

 TiO_2 or from TiO_2 to C_3N_4 , was described in Fig. 14(b).

4. Conclusion

g-C₃N₄ and Bi₂O₃ with TiO₂-NTs have been coupled into a composite photocatalytic and electrocatalytic material through a sequential dip-coating procedure followed by high-temperature annealing. After adding g-C₃N₄ and Bi₂O₃, in to the host matrix, the absorption spectrum of g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode red-shifted in to visible region of electromagnetic spectrum, resulting in an increase in light absorbance. Compared to naked TiO₂-NTs, photocurrent response of g-C₃N₄/Bi₂O₃/TiO₂-NTs was enhanced by 15 times and PEC activity for pollutants degradation was also improved. The enhancement in the PEC and IPCE activities was most likely due to the narrowing of the effective E_g coupled with a positive shift of E_{fb} (ca. 0.35 V). These results indicated that the g-C₃N₄/Bi₂O₃/TiO₂-NTs composite electrodes have the potential for wastewater treatment during PEC process under visible light irradiation.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21276235, 21477114). In addition support was provided by the Educational Commission of Zhejiang Province (Y201432049).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version.

References

1. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev.,

1995, **95**, 69-96.

2. X. B. Chen, S. H. Shen, L.J. Guo and S. S. Mao, *Chem. Rev.*, 2010, **110**, 6503-6570.

3. H. Bao, F. F. Li, L. C. Lei, B. Yang and Z. J. Li, RSC Adv., 2014, 4, 27277-27280.

4. A. J. Bard and M. A. Fox, Chem. Res., 1995, 28, 141-145.

5. B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B.

D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller and T. F. Jaramillo, *Energy Environ. Sci.*, 2013, **6**, 1983-2002.

Q. Liu, D. Wu, Y. Zhou, H. B. Su, R. Wang, C. F. Zhang, S. C. Yan, M. Xiao and
 Z. G. Zou, ACS Appl. Mater. Inter., 2014, 6, 2356-2361.

Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan and J. R. Gong, J.
 Am. Chem. Soc., 2011, 133, 10878-10884.

8. G. Liu, L. Z. Wang, H. G. Yang, H. M. Cheng and G. Q. Lu, *J. Mater. Chem.*, 2010,
 20, 831-843.

9. F. E. Osterloh, Chem. Mater., 2008, 20, 35-54.

10. X. B. Chen, L. Liu, P. Y. Yu and S. S. Mao, Science, 2011, 331, 746-750.

11. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, J. *Photochem. Photobiol. A: Chem.*, 2002, **148**, 257-261.

12. J. C. Yu, G. S. Li, X. C. Wang, X. L. Hu, C. W. Leung and Z. D. Zhang, *Chem. Commun.*, 2006, **25**, 2717-2719.

13. C. W. H. Dunnill, Z. A. Aiken, J. Pratten, M. Wilson, D. J. Morgan and I. P. Parkin, J. Photochem. Photobiol. A: Chem., 2009, 207, 244-253.

RSC Advances Accepted Manuscript

14. Y. X. Zhao, X. F. Qiu and C. Burda, Chem. Mater., 2008, 20, 2629-2636.

15. Q. Kang, S. H. Liu, L. X. Yang, Q. Y. Cai and C. A. Grimes, ACS Appl. Mater. Inter., 2001, **3**, 746-749.

16. K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851-7861.

17. K. Mogyorósi, Á. Kmetykó, N. Czirbus, G. Veréb, P. Sipos and A. Dombi, *React. Kinet. Catal. Lett.*, 2009, **98**, 215-225.

18. Y. C. Yang, J. W. Wen, J. H. Wei, R. Xiong, J. Shi and C. X. Pan, ACS Appl. Mater. Inter., 2013, **5**, 6201-6207.

19. Z. H. Zhao, J. Tian, D. Z. Wang, X. L. Kang, Y. H. Sang, H. Liu, J. Y. Wang, S.

W. Chen, R. I. Boughton and H. D. Jiang, J. Mater. Chem., 2012, 22, 23395-23403.

20. J. G. Hou, C. Yang, Z. Wang, S. Q. Jiao and H. M. Zhu, *Appl. Catal. B: Environ.*, 2013, **129**, 333-341.

21. G. T. Yan, M. Zhang, J. Hou and J. J. Yang, *Mater. Chem. Phys.*, 2011, **129**, 553-557.

22. X. S. Zhou, B. Jin, S. S. Zhang, H. J. Wang, H. Yu and F. Peng, *Commun.*, 2012, **19**, 127-130.

23. X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, **8**, 76-82.

24. J. Y. Zhang, Y. H. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang and J. G. Yu, ACS Appl. Mater. Inter., 2013, **5**, 10317-10324.

25. J. Wang and W. D. Zhang, *Electrochim. Acta*, 2012, 71, 10-16.

26. X. S. Zhou, B. Jin, L. D. Li, F. Peng, H. J. Wang, H. Yu and Y. P. Fang, J. Mater.

Chem., 2012, 22, 17900-17905.

27. S. Shamaila, A. K. L. Sajjad, F. Chen and J. L. Zhang, *Appl. Catal. B: Environ.*,
2010, **94**, 272-280.

28. Y. Bessekhouad, D. Robert and J.-V. Weber, Catal. Today, 2005, 101, 315-321.

29. Z. F. Bian, J. Zhu, S. H. Wang, Y. Cao, X. F. Qian and H. X. Li, *J. Phys. Chem. C*, 2008, **112**, 6258-6262.

30. Y. J. Cui, Z. X. Ding, P. Liu, M. Antonietti, X. Z. Fu and X. C. Wang, *Phys. Chem. Chem. Phys.*, 2012, **14**, 1455-1462.

 J. L. Hu, H. M. Li, C. J. Huang, M. Liu and X. Q. Qiu, *Appl. Catal. B: Environ.*, 2013, **142-143**, 598-603.

32. A. Ghicov, H. Tsuchiya, J. M. Macak and P. Schmuki, *Electrochem. Commun.*, 2005, **7**, 505-509.

33. Y. L. Su, S. Han, X.W. Zhang, X.Q. Chen and L.C. Lei, *Mater. Chem. Phys.*, 2008, **110**, 239-246.

34. S. S. Zhao, S. Chen, H. T. Yu and X. Quan, Sep. Purif. Technol., 2012, 99, 50-54.

35. K. H. Reddy, S. Martha and K. M. Parida, RSC Adv., 2012, 2, 9423-9436.

36. M. N. Gómez-Cerezo, M. J. Mu[~]noz-Batista, D. Tudelab, M. Fernández-García.,

A. Kubacka, Appl. Catal. B: Environ., 2014, **156–157**, 307–313.

37. K. Uchida, A. Ayame, Surf. Sci. 1996, 357, 170-178.

38.A. Hameed, T. Montini, V. Gombac, P. Fornasiero, *J. Am. Chem. Soc.* 2008 ,**130** ,9658–9659.

39. H. M. Zhu, B. F. Yang, J. Xu, Z. P. Fu, M. W. Wen, T. Guo, S. Q. Fu, J. Zuo and

- S. Y. Zhang, Appl. Catal. B: Environ., 2009, 90, 463-469.
 - 40. Y. Zhang, J. N. Lu, X. P. Wang, Q. Xin, Y. Q. Cong, Q. Wang and C. J. Li, J.

Colloid Interface Sci., 2013, **409**, 104-111.

41. G. P. Dai, J. G. Yu and G. Liu, J. Phys. Chem. C, 2011, 115, 7339-7346.

42. M.A. Butler, J. Appl. Phys., 1977, 48, 1914-1920.

43. S. Kumar, A. G. Fedorov and J. L. Gole, *Appl. Catal. B: Environ.*, 2005, **57**, 93-107.

44. Z. W. Tong, D. Yang, T. X. Xiao, Y. Tian, Z. Y Jiang, *Chem. Eng. J.*, 2015, **260**, 117–125.

45. M. N. Gómez-Cerezoa, M. J. Mu[~]noz-Batista, D. Tudela, M. Fernández-García,

A. Kubacka, Appl. Catal. B: Environ., 2014,156–157, 307–313

46. W.D. Zhang, L.C. Jiang and J.S. Ye, J. Phys. Chem. C 2009, 113, 16247-16253.

47. Y. Liu, Y. X. Yu and W. D. Zhang, Electrochim. Acta, 2012, 59, 121-127.

48. S. D. Tilley, M. Cornuz, K. Sivula and M. Gratzel, *Angew. Chem. Int. Ed.*, 2010,49, 6405-6408.

49. Y. Q. Cong, M. M. Chen, T. Xu, Y. Zhang and Q. Wang, Appl. Catal. B: Environ., 2014, 147, 733-740.

50. R. L. Spray, K. J. McDonald and K.-S. Choi, *J. Phys. Chem. C*, 2011, **115**, 3497-3506.

51. Y. Q. Cong, H. S. Park, H. X. Dang, F.-R. F. Fan, A. J. Bard and C. B. Mullins, *Chem. Mater.*, 2012, **24**, 579-586.

52. H. Ye, J. Lee, J. S. Jang and A. J. Bard, *J. Phys. Chem. C*, 2010, **114**, 13322-13328.

53. Y. C. Jia, P. Xiao, H. C. He, J. Y. Yao, F. L. Liu, Z. F. Wang and Y. H. Li, *Appl. Surf. Sci.*, 2012, **258**, 6627-6631.

54. X. J. Yu , L. Z. Huang , Y. C. Wei , J. Zhang , Z. Z. Zhao , W. Q. Dai , B. H. Yao, *Mater. Res .Bull.* ,2015 ,**64** ,410–417.

55. M. A. Rauf, M. A. Meetani, A. Khaleel, A. Ahmed, *Chem. Eng. J.*, 2010, **157**, 373–378.

56. Z. W. Tong, D. Yang, T. X. Xiao, Y. Tian, Z. Y. Jiang, Chem. Eng. J. ,2015,

260,117–125.

57. Y. F. Chen, W. X. Huang, D. L. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces, 2014, 6, 14405–14414. Figure Captions:

Fig. 1. SEM images of TiO₂-NTs (a), $g-C_3N_4/TiO_2-NTs$ (b), Bi_2O_3/TiO_2-NTs (c), $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ (d), $g-C_3N_4$ powders (e) and cross section of the TiO₂ nanotubes (f).

Fig. 2. TEM analysis for $g-C_3N_4/TiO_2$ (a), Bi_2O_3/TiO_2 (b) and different magnifications of $g-C_3N_4/Bi_2O_3/TiO_2$ (c, d) composites.

Fig. 3. XRD patterns of TiO_2 -NTs (a) and g-C₃N₄/Bi₂O₃/TiO₂-NTs (b).

Fig. 4. XPS spectra of $g-C_3N_4/Bi_2O_3/TiO_2-NTs$.

Fig.5. UV-Vis DRS of TiO₂-NTs, $g-C_3N_4/TiO_2-NTs$, Bi_2O_3/TiO_2-NTs and $g-C_3N_4/Bi_2O_3/TiO_2-NTs$.

Fig.6. Nyquist plots of TiO₂-NTs, $g-C_3N_4/TiO_2-NTs$, Bi_2O_3/TiO_2-NTs and $g-C_3N_4/Bi_2O_3/TiO_2-NTsin 0.1$ M Na₂SO₄ aqueous solution (pH 7.6) in dark (a) and visible light (b) conditions with a frequency range of $10^{-2} \sim 10^5$ Hz and a scan rate of 5 mV/s. Light intensity: 100 mW/cm².

Fig.7. M-S plots of the TiO₂-NTs (a) and $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs (b) electrodes in 0.1 M Na₂SO₄ aqueous solution (pH 7.6) under dark condition with an AC amplitude of 5 mV at each potential.

Fig.8. LSVs of TiO₂-NTs, $g-C_3N_4/TiO_2-NTs$, Bi_2O_3/TiO_2-NTs and $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ in 0.1 M Na₂SO₄ and Na₂SO₃ mixed aqueous solution (pH 10.5) under dark condition. Scan rate: 10 mV/s.

Fig.9. LSVs of TiO₂-NTs, g-C₃N₄/TiO₂-NTs, Bi₂O₃/TiO₂-NTs and g-C₃N₄/Bi₂O₃/TiO₂-NTs in 0.1 M Na₂SO₄ and Na₂SO₃ mixed aqueous solution (pH 10.5) under chopped visible light (λ >420 nm) irradiation. Scan rate: 10 mV/s. Light

intensity: 100 mW/cm².

Fig.10. IPCE plots of TiO₂-NTs, g-C₃N₄/TiO₂-NTs, Bi₂O₃/TiO₂-NTs and g-C₃N₄/Bi₂O₃/TiO₂-NTs calculated from the photocurrent in 0.1 M Na₂SO₄ and Na₂SO₃ mixed aqueous solution (pH 10.5) at an applied potential of 0.40 V vs. Ag/AgCl. Light intensity: 100 mW/cm².

Fig.11. Variation of [MB] concentration vs. time at the $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode in EC, PC and PEC processes. Applied potential: 3.0 V. Electrolyte: 0.1 M Na₂SO₄, pH = 7.6.

Fig. 12. The variation of [MB] vs. time at the TiO_2 -NTs, $g-C_3N_4/TiO_2$ -NTs, Bi_2O_3/TiO_2 -NTs, $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs electrodes in PEC process with visible light irradiation. Applied potential: 3.0 V. Electrolyte: 0.1 M Na₂SO₄, pH = 7.6.

Fig. 13. Stability of the g-C₃N₄/Bi₂O₃/TiO₂-NTs electrode for PEC degradation of MB experiments with visible light irradiationat an applied potential of 3.0 V. Electrolyte: 0.1 M Na₂SO₄, pH = 7.6.

Fig. 14. One of suggested mechanism of charge separation and electron transfer in $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrodes under visible light irradiation.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Fig.11.

Fig. 12.

Fig. 13.

Fig. 14.