This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Evidence for changes on the lithium conduction dimensionality of Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ (0 ≤ y ≤ 0.5) perovskites

Ricardo Jiméneza, Virginia Dieza and Jesús Sanza
Sofia D. Kobylianskab, Oleg I. V'yunovb and Anatolii G. Belousb

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract

Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ samples (y = 0-0.5) were synthesized by the solid-state reaction (SSR). Structural features of the a$_0$,a$_p$,2a$_p$ perovskite series were investigated by X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and density functional theory (DFT) simulation techniques. The location of La ions was assessed by Rietveld analysis of XRD patterns, and structural sites occupied by Li, Na and Nb ions investigated by MAS-NMR spectroscopy. In Li-rich samples, La and Li ions are preferentially located at z/c = 0 planes, but as Na content increases, La and Na occupy both z/c = 0 and 0.5 planes. To analyze La and Li possible arrangements, different structural models have been considered in DFT simulations, confirming the cation ordering deduced from XRD patterns and the impediment of Na ions to move through square windows of the perovskite. Structural information deduced has been used to discuss transport properties by Impedance Spectroscopy (IS). In Li rich samples, La arrangement in alternating planes favors a 2D-dimensional Li conductivity. The incorporation of Na in two crystallographic planes reduces La ordering and increases Li conductivity. La disorder favors the change from 2D to 3D Li conductivity, that could explain the broad maximum detected in Li conductivity as a function of the Na content.

Introduction

Lithium-conducting materials are of great interest due to their potential use as electrolytes or electrode materials in electrochemical devices such as sensors, rechargeable batteries, miniature supercapacitors and electrochromic displays. One of the most interesting reported lithium-conducting materials is based on Li$_3$La$_2$Ti$_5$O$_{12}$ (LLTO) that display high conductivity (10$^{-3}$ S cm$^{-1}$) and diffusion coefficients (≈10$^{-5}$ cm2/s) at room temperature. In literature, it is accepted that the increment of the number of nominal vacancies (n$_v$) favors ionic conductivity of perovskites. The replacement of Ti by Nb in B positions of perovskites should increase the conductivity in the analogue Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ series, however, a decrease was observed despite higher amount of vacancies.

In LLTO series, Li ions are located at unit cell faces of perovskites, making that the total amount of effective vacancy that participate in conduction, n$_v$ = [Li] + n$_v$, increases. In LLTO samples, the substitution of Li by Na decreased slightly conductivity for low Na contents, but drastically when the amount of Na approaches the 3D percolation threshold of conduction networks. Previous studies performed on Li conductivity of the Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ (LNLNO) series showed that the influence of Na was different, increasing Li conductivity for moderate Na substitutions before decreasing for larger ones. This anomalous behavior pointed to the possibility that the strong detrimental percolative effect, expected for Li substitution by Na, was not occurring in this series and cation vacancies played a different role.

Multinuclear 7Li and 23Na NMR spectroscopy is a useful technique to analyze mobility and structural sites occupied by atoms. In particular, the analysis of quadrupole interactions in MAS-NMR spectra of Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ allowed the identification of structural sites occupied by alkaline cations in LLTO perovskites. On the other hand, lithium exchange processes between structural sites afforded information about Li motion mechanisms in perovskites. In Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ (LLTO) series, 7Li MAS-NMR spectroscopy was finally used to determine the amount of Li that participate to long-range conductivity near the percolation threshold of vacancies.

In this work, the dependence of Li conductivity on structural features of Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ (y = 0-0.5) series has been investigated. Structural characteristics of perovskites will be first analyzed by X-ray and NMR; then Li mobility will be investigated by NMR and Impedance techniques. In these perovskites, niobium and lanthanum location was deduced by Rietveld analysis of XRD patterns. On the other hand, structural sites occupancy by alkaline and niobium atoms was investigated 7Li, 23Na and 93Nb MAS-NMR spectroscopy. DFT simulations were used to estimate possible cation ordering and octahedral tilting schemes, non accessible by XRD. Structural information deduced will be used to analyze the influence of vacancy/La ordering on Li conductivity of Li$_{0.5+y}$Na$_y$La$_{0.5}$Nb$_2$O$_6$ series. The conclusions deduced here will be compared with those reported in LLTO series, where a change from 2D to 3D conductivity was detected for increasing Li contents.

Experimental

High-purity La$_2$O$_3$, Nb$_2$O$_5$, Li$_2$CO$_3$, Na$_2$CO$_3$ were used as starting reagents. The synthesis procedure is described in detail elsewhere. Samples were first pressed and calcined at 970 K for 4 hours; after grinding, samples were calcined 2h at 1320 K. The samples sintering (2h) was carried out in the temperature range 1470 – 1550 K. The composition of analyzed samples is given in Table I. The density of final ceramics, deduced by the Archimedes method, was between 4.88–5.05 g/cm3 (relative densities above 95%).
After preparation, ceramics samples were dissolved to perform chemical analyses. Lithium content was deduced by absorption spectroscopy, lanthanum by complexometry, and niobium determined gravimetrically by precipitation with ammonia. According to these analyses some amount of lithium was always lost in preparation of samples.

<table>
<thead>
<tr>
<th>Table I. Sample composition.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal composition</td>
<td>Experimental composition</td>
<td></td>
</tr>
<tr>
<td>Li₀.₅La₀.₅Nb₂O₆</td>
<td>Li₀.₄₀La₀.₅₀₄NbO₂₅.₉₅₆</td>
<td></td>
</tr>
<tr>
<td>Li₀.₄Na₀.₆La₀.₄Nb₂O₆</td>
<td>Li₀.₃₃Na₀.₆₆₇La₀.₅₆₆NbO₂₅.₉₈₂</td>
<td></td>
</tr>
<tr>
<td>Li₀.₃Na₀.₇La₀.₃Nb₂O₆</td>
<td>Li₀.₂₄Na₀.₁₈La₀.₅₀₅NbO₂₅.₉₅₆</td>
<td></td>
</tr>
<tr>
<td>Li₀.₂Na₀.₅La₀.₃Nb₂O₆</td>
<td>Li₀.₁₆Na₀.₂₄La₀.₅₀₄NbO₂₅.₉₇₆</td>
<td></td>
</tr>
<tr>
<td>Li₀.₁Na₀.₆La₀.₄Nb₂O₆</td>
<td>Li₀.₀₈Na₀.₃₇₅La₀.₅₀₅NbO₂₅.₉₈₂</td>
<td></td>
</tr>
<tr>
<td>Li₀.₇Na₀.₃La₀.₅Nb₂O₆</td>
<td>Li₀.₀₆Na₀.₄₁₄La₀.₅₀₃NbO₂₅.₉₉₃</td>
<td></td>
</tr>
<tr>
<td>Li₀.₄₄La₀.₅₄Nb₂O₆</td>
<td>Li₀.₀₈Na₀.₄₄₉La₀.₅₀₃NbO₂₅.₉₉₆</td>
<td></td>
</tr>
<tr>
<td>Li₀.₃₄La₀.₆₄Nb₂O₆</td>
<td>Li₀.₀₁₇Na₀.₄₆₅La₀.₅₀₃NbO₂₅.₉₉₃</td>
<td></td>
</tr>
</tbody>
</table>

The crystalline phases were identified by X-ray powder diffraction (XRD) technique. For that, XRD patterns were recorded at room temperature on a DRON-4-07 apparatus (Cu Kα radiation; 40 kV, 18 mA) in the 10-120° 2θ range with a ∆2θ = 0.02° step and an exposure time of 6 s per point. Unit cell parameters were determined by using the Le Bail technique and structural refinements performed with the Rietveld method (Fullprof program).

Taken into account small scattering factors of oxygen atoms, octahedral tilting schemes associated to different arrangements of La/Li cations were investigated with DFT techniques (CASTEP software). The use of Density Functional Theory (DFT) code, which employs the gauge including the projector augmented wave (GIPAW) algorithm, enabled the reconstruction of all-electron wave functions. The Generalized Gradient Approximation (GGA) functional was used and core-valence interactions were considered. The frequency range 20 Hz, 1 MHz, using an Agilent E4192A analyzer. For low frequency measurements (1 MHz–10 kHz) a Zhaner IM6ex apparatus was used. The pellets used in electric conductivity measurements were 0.9±0.1 cm in diameter and 0.3±0.02 cm in thickness. Electrical contacts (gold paste) were deposited on the larger surfaces of the pellets and heated at 1125 K. The electronic conductivity measured at 570 K and 0.5 V was 0.05% of the total conductivity. To get more accurate values of the conductivity dispersion, the samples were also measured at room temperature between 1 MHz and 3 GHz using an E4991A Impedance materials analyzer.
Table II Structure parameters as a function of sodium content (y) in Li$_{0.5}$,yNa$_y$La$_{0.5}$□Nb$_2$O$_6$.

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.43</th>
<th>0.46</th>
<th>0.48</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, Å</td>
<td>3.9002(1)</td>
<td>3.903(8)</td>
<td>3.906(8)</td>
<td>3.915(1)</td>
<td>3.915(9)</td>
<td>3.923(1)</td>
<td>3.918(1)</td>
<td>3.9167(8)</td>
<td>3.925(1)</td>
</tr>
<tr>
<td>b, Å</td>
<td>3.9005(2)</td>
<td>3.904(7)</td>
<td>3.907(8)</td>
<td>3.912(1)</td>
<td>3.915(9)</td>
<td>3.9311(6)</td>
<td>3.923(1)</td>
<td>3.9304(7)</td>
<td>3.9278(6)</td>
</tr>
<tr>
<td>c, Å</td>
<td>7.8521(2)</td>
<td>7.854(2)</td>
<td>7.852(1)</td>
<td>7.861(1)</td>
<td>7.861(1)</td>
<td>7.850(2)</td>
<td>7.860(2)</td>
<td>7.846(2)</td>
<td>7.848(3)</td>
</tr>
<tr>
<td>V, Å3</td>
<td>119.452(6)</td>
<td>119.7(3)</td>
<td>119.8(4)</td>
<td>120.40(5)</td>
<td>120.5(2)</td>
<td>120.78(4)</td>
<td>120.79(6)</td>
<td>120.78(4)</td>
<td>120.98(6)</td>
</tr>
</tbody>
</table>

Coordinates of ions

Nb, z/c	0.2580(2)	0.254(2)	0.256(1)	0.256(1)	0.259(1)	0.2527(8)	0.2551(9)	0.2582(9)	0.251(1)
O3, z/c	0.232(1)	0.24(2)	0.30(4)	0.26(2)	0.3(3)	0.28(1)	0.26(4)	0.260(6)	0.29(4)
O4, z/c	0.232(1)	0.21(2)	0.28(4)	0.29(2)	0.3(3)	0.29(1)	0.26(4)	0.272(7)	0.28(4)

Site occupancies (La)

| z = 0 | 0.487(2) | 0.450(9) | 0.424(8) | 0.362(9) | 0.360(9) | 0.349(8) | 0.349(9) | 0.345(7) | 0.260(9) |
| z = 1/2 | 0.017(2) | 0.056(9) | 0.081(8) | 0.142(9) | 0.143(9) | 0.154(8) | 0.154(9) | 0.158(7) | 0.243(9) |

Agreement factors

| Rf, % | 9.14 | 6.42 | 6.98 | 5.92 | 5.36 | 7.36 | 6.30 | 5.94 | 6.40 |
| Rexp, % | 6.98 | 8.62 | 9.15 | 9.78 | 8.36 | 5.01 | 4.84 | 4.18 | 8.96 |

Results

Crystalline structure

XRD patterns of defective Li$_{0.5}$,yNa$_y$La$_{0.5}$□Nb$_2$O$_6$ (0 ≤ y ≤ 0.5) perovskites correspond to those of single-phase patterns. For higher Li contents, however, XRD patterns display a small impurity of a Li rich secondary phase (ilmenite). The Fullprof software was used to refine unit cell parameters (Le Bail technique) in orthorhombic (S.G. Pmmm) symmetry. In general unit cell volume increases with increasing y values (Vegard’s law), displaying some departure for y values larger than 0.4 (see table II). The structural refinement of Li$_{0.5}$,yNa$_y$La$_{0.5}$□Nb$_2$O$_6$ perovskites was performed with the Rietveld technique. A doubled $a_p \approx a_p \times 2a_p$ unit-cell (S.G. Pmmm) was chosen to describe La and vacancies.
ordering along the c axis, previously proposed by Tori et al. for La$_{0.33}$NbO$_3$ crystals23. In this model, a preferential location of vacancies in z/c = 1/2 and La/Li in z/c = 0 planes was proposed. Besides reflections of the doubled unit-cell, some tiny reflections detected in 35,45 $^\circ$ 2θ region, supports the existence of larger superlattices deduced by TEM24. In this study, octahedral tilting and La/vacancy ordering were invoked to explain the 3.5$\sqrt{2}$a$_p$ \times 2a$_p$ \times 4a$_p$ unit-cell deduced. The intensity of the small reflections (denoted with (o) in Figure 1a) decreased with the Na content, suggesting the progressive La disordering along the series.

Taken into account small intensity of super-lattice reflections, the orthorhombic $a_p \approx a_p \times 2a_p$ unit cell (Pmmm S.G.) was retained to analyze XRD patterns. Atomic coordinates of Li$_{0.5}$Na$_{0.5}$Nb$_2$O$_6$ perovskite25 were used as starting model in Rietveld refinements. In this model, La occupy 1a (000), Nb 2t (1/2 1/2 z), O(1) 1f (1/2 1/2 0), O(2) 1h (1/2 1/2 1/2), O(3) 2s (1/2 0 z), O(4) 2r (0 1/2 z) and vacancies 1c (0 0 1/2) sites. In Figure 1b, different occupancy of z=0 and z/c = 1/2 planes is illustrated.

Figure 2: 93Nb MAS-NMR spectra of Li$_{0.5-y}$Na$_y$La$_{0.5}$□Nb$_2$O$_6$ perovskites, y= 0.2, y 0.5, where spinning sidebands of two detected components are indicated.

Figure 3: a) 23Na MAS-NMR spectra of Li$_{0.5-y}$Na$_y$La$_{0.5}$□Nb$_2$O$_6$ (y = 0.2, 0.46, 0.5) perovskites. b) central transition of analyzed samples.

Figure 4: a) 3Li MAS-NMR spectra of Li$_{0.5-y}$Na$_y$La$_{0.5}$□Nb$_2$O$_6$ perovskites, y = 0, 0.2 y 0.46. b) The presence of two components in spectra with and without sample spinning is illustrated, in the inset the deconvolution of two 3Li NMR components is included. c) Relative intensities of Li MAS-NMR narrow (I) and broad (I2) components as a function of temperature (see text).
function of temperature. The progressive decrease of line-width observed in 23Na MAS-NMR spectra of Na-doped samples must be related to the increment of Li mobility. On the contrary, the 23Na line-width of the central transition of Li$_{1-y}$Na$_y$Lao.5(Nb$_6$O$_{23}$)$_{0.5}$ does not change appreciably with temperature, indicating that Na display a lower mobility than Li cations (Figure 5). This difference must be related to Na' radius that impedes diffusion of Na ions to pass through square windows that relate contiguous A-sites of the perovskite.

DFT simulations

In this work, we have first analyzed La ordering deduced by XRD in end-members of the series Li$_{0.5}$Na$_{0.5}$Lao.5(Nb$_6$O$_{23}$)$_{0.5}$. In Li-rich samples, alternating vacant and fully occupied planes favors the Nb shift along c-axis. To take into account ordered models proposed in ab planes, 2a_p,2a_p,2a_p and 2a_p,2a_p,2a_p super-lattices with Pnmm symmetry were considered. In the first case, linear arrangements of La and Li produce the octahedral tilting of +/-10º around b-axis, in the second case, the chessboard arrangement of La and Li does not produce a significant tilting. In both cases, two apical Nb-O distances are near 1.91 and 2.05 Å and equatorial ones near 1.97 Å. The analysis of oxygen charges indicates that electron density is redistributed in different oxygens as a consequence of the Nb shift. In both analyzed models, apical oxygens have -0.67 and -0.74 charges and equatorial ones are near -0.72.

In the Na-rich member Na$_{0.5}$Lao.5(Nb$_6$O$_{23}$)$_{0.5}$, ordered lines or chessboard arrangements were again considered. In the case of linear arrangement of La and Na, the tilting was +/- 4º around b-axis; but in the chessboard arrangement no appreciable tilting was detected. In Na phases, octahedra are much less distorted than in Li ones. In both cases, apical Nb-O distances are 1.94 and 2.01 Å while equatorial distances near 1.98 Å. In both models, apical oxygens have -0.67 and -0.71 and equatorial ones near 0.70 charges.

To simulate La/Na disordering, a bigger 2a_p,2a_p,4a_p super-cell (P4/mmm S.G.) was considered. The optimized structure showed similar Na coordinations in z/c= 0 and ½ planes and negligible octahedral tiltings. In this model, all Nb-O distances were between 1.97 Å and 2.02 Å. The charge of oxygen atoms were near -0.71 charges. Compared with XRD results the gradual disappearance of the super-cell reflections on increasing the Na substitution is in agreement with the strong La/Na disordering deduced by DFT simulations in the pure Na perovskite. From these simulations, it must be concluded that all ordered models display similar energy values. In order to get more conclusive results on cation / vacancy ordering, structural techniques more sensitive to light atoms should be used.

Ionic conductivity

Ionic conductivity of Li$_{0.5}$Na$_{0.5}$Lao.5(Nb$_6$O$_{23}$)$_{0.5}$ samples has been investigated as a function of the Na fraction, $f = [\text{Na}]/[\text{Li}]+[\text{Na}]$. The detection of blocking effects at gold-electrodes in all samples, is characteristic of ionic mobile species. In analyzed samples, dc-conductivity presents a larger grain-boundary contribution than the bulk one. The bulk conductivity was extracted from impedance data, by using the "derivative criterion". In Figure 6a, “bulk” conductivity of different perovskites is plotted as a function of the inverse of the temperature (Arrhenius plots). In general, Li conductivity increases when activation energy (Ea) decreases; however these predictions are not respected in analyzed perovskites, Figure 6b and 6c. When lithium is substituted by sodium in Li$_{0.5}$Na$_{0.5}$Lao.5(Nb$_6$O$_{23}$)$_{0.5}$ series, ion conductivity measured at 290K increased from $\sigma = 6.85 \times 10^{-6}$ S cm$^{-1}$ (F=0) to $\sigma = 1.28 \times 10^{-5}$ S cm$^{-1}$ (F=0.4), decreasing in a non-linear way to 4.10$^{-7}$ S cm$^{-1}$ when the
Na content increases. In Li-rich samples, activation energy increased from 0.39 to 0.41 eV with the Na fraction \(0 < f < 0.4\), decreasing to 0.37 eV for Na fractions comprised between 0.6 and 0.9, see Figure 6c. In Na-richest samples, activation energy increased again to 0.39 eV. It is interesting to note small variations of conductivity produced in the fraction range 0.2 \(\leq f[Na] \leq 0.98\), Figure 6b. This is an unexpected result that indicates that the Li conductivity along the series differs from that found in \(Li_{0.5-x}La_{0.5}TiO_3\) series.\(^{14,15}\)

Discussion

Structural features

XRD patterns of \(Li_{0.5-x}Na_xLa_{0.5}Nb_2O_6\) perovskites showed the progressive increment of unit cell parameters with the sodium content. The linear variation of unit-cell parameters is usually ascribed to the random distribution of cations in solid solutions (Vegard’s law); in our case, however, the variation of the cell volume only follows a linear trend until \(y=0.4\), then the cell volumes depart from expected values. Structural XRD refinements performed here showed that La ions occupy preferentially \(z/c=0\) planes in Li-rich samples, and randomly distributed in \(z/c = 0\) and \(1/2\) planes of Na-rich samples. The changes observed on the La distribution should be related to changes from 2D to 3D Li conductivity and could explain the departure from the Vegard’s law.

In \(^{93}\)Nb MAS-NMR spectra, nine quadrupolar transitions should be observed; however, only the central \(1/2-1/2\) transition was detected. This effect must be ascribed to cation disorder produced around Nb cations, Figure 2. The analysis of \(^{93}\)Nb NMR spectra suggests the existence of one component in Na rich members, but several ones (at least two) in Li rich samples. This information agrees with that deduced from DFT calculations that showed that Nb-O distances differ more in Li- than in Na-rich phases. In Li-rich samples, the location of La in alternate planes produces the shift of Nb ions towards vacant-rich planes; however, in Na-rich samples the simultaneous occupation of \(z/c=0\) and \(1/2\) planes by La and Na cations reduces octahedral distortions and only one \(^{93}\)Nb component was detected. From this fact, differences on the Nb shift along the c-axis (structural disorder) seems to be the reason for additional Nb components.

DFT simulations were oriented to investigate different \(La/(Li,Na)\) arrangements in perovskites. In the Li-rich member \(Li_{0.5}La_{0.5}Nb_2O_6\), the alternation of La and Li arrows in \(z/c=0\) planes \((2a_p \times a_p \times 2a_p)\), produces octahedral tilting in near \(+/-10^0\) and rhombic distortion of square windows. In chessboard La, Li configurations \((2a_p \times 2a_p \times 2a_p)\), octahedral tilting should be considerably reduced. Despite DFT results are not conclusive, the existence of La ordering in alternate planes \((c=2a_p)\) always produces the shift of Nb atoms, favoring a 2D conductivity. Taken into account the square window size, Li motion is favored with respect to that of Na ions, making that only Li ions must be considered to explain transport properties.

In Na-rich \(Li_{0.5}La_{0.5}Nb_2O_6\) sample, \(^{20}\)Na MAS-NMR spectra showed the presence of quadrupole transitions, characteristic of well defined interactions of Na ions with the perovskite network oxygens. The detection of a single component indicates that two structural sites occupied by Na ions display similar characteristics. When Na content decreases, quadrupole interactions decrease because Li mobility averages electrical field anisotropies detected by Na ions. The decrease on the residence time on Li sites is responsible for cancellation of quadrupolar Li interactions. For intermediate compositions, the spectral broadening detected suggest the partial occupation of \(z/c=0\) and \(1/2\) by Na cations. In Li-rich samples, the narrowing of the shifted Na component suggests that Na ions preferentially occupy the vacancy-rich plane.
Li mobility

When lithium is substituted by sodium in Li$_{0.5-x}$Na$_x$La$_{0.2}$Nb$_2$O$_6$ series, ion conductivity increases passing through a broad maximum at ($f = 0.4$). Besides, activation energy increased from 0.39 to 0.41 eV with the Na fractions ($0 < f < 0.4$), decreasing to 0.37 eV for Na fractions comprised between 0.6 and 0.9, see Figure 6c.

Li conductivity and activation energy deduced for Li$_{0.5}$(La$_0.8$Nb$_{1.2}$)O$_6$ are similar to those reported previously for the same composition (1.10$^{-3}$ S cm$^{-1}$ and 0.37 eV)27). The study of the temperature dependence of NMR relaxation T_1 and T_2 times showed the presence of two Li motions that were assigned to fast motions inside A-cavities and slow motions between contiguous A-cavities28. In our work, 7Li NMR spectra show the presence of two types of lithium that display different mobility (Figure 4b). Taken into account structural features of analyzed compounds, the existence of two components could be tentatively assigned to Li motions in vacancy-rich ($z/c=1/2$) and La-rich ($z/c=0$) planes. A 2D-mobility was also invoked by Latie and col. to explain NMR relaxation in Li$_2$Li$_{1/3}$Nb$_{2/3}$O$_6$ series29.

In Li-rich Li$_{0.5}$La$_{0.2}$Nb$_2$O$_6$ sample, the line-width of two 7Li MAS-NMR components is different indicating that Li ions display lower mobility in $z/c=0$ (La-rich) planes than in $z/c=0.5$ (vacancy rich) planes. The fraction of mobile Li is about 30% of the total one, see Figure 4c. If it is supposed that mobile Li is located at the vacancy rich plane ($z/c= 0$), the measured Li conductivity should be close to that of La$_{0.8}$Li$_{0.2}$TiO$_3$.18 The low Li conductivity measured in Li$_{0.5}$La$_{0.2}$Nb$_2$O$_6$ (6.85 10^{-6} S cm$^{-1}$) discards this possibility. From this fact, a restricted Li conductivity in La rich planes ($z/c = 0$ planes) can be assumed.

In the $z/c = 0$ plane, the calculated amount of effective vacancies n_v= Li-vacancy remains below the 2D percolation n_p threshold ($0.5 \leq n_v \leq 0.59$), what should decrease Li conductivity below values detected experimentally. However, measured conductivity values are significant, indicating that the amount of vacancies that participate in Li conduction is higher than considered. Additional vacancies can be produced by La disordering in $z/c = 0$ and $z/c = 1/2$ planes. The partial occupation of $z/c = 1/2$ planes was deduced by Rietveld analysis of Li-rich samples, making to increase n_v values above 0.5 in $z/c = 0$ planes (Table II).

The existence of the two 7Li MAS-MNR components, one mobile and one less mobile has been previously related to Li atoms in $z/c = 0$ and $1/2$ planes. The partial occupation of $z/c = 1/2$ planes was shown the presence of two Li motions that were assigned to fast motions inside A-cavities and slow motions between contiguous A-cavities28. This scenario is supported by the increment of the relative amount of the La fraction in the $z/c = 1/2$ plane and vacancy in $z/c = 0$ planes, conferring a more isotropic character to Li conductivity on increasing the Na fraction.

Structural information deduced in Li$_{0.5}$La$_{0.2}$Nb$_{2}$O$_6$ series suggests that Li conductivity changes from 2D ($z/c = 1/2$) to 3D ($z/c = 0$ and $1/2$) planes when the Na content increases. However, this change does not affect much “bulk” dc-conductivity that always remains near 10^{-5} S cm$^{-1}$, Figure 6b. This behavior differs considerably from that reported in Na-Li-LTO perovskites, where incorporation of Na decrease drastically Li conductivity near the percolation threshold $^{[14,15]}$. In the series analyzed here, no percolation-controlled phenomena were detected because the important amount of vacant A-sites.

![Figure 7: Calculations of pre-exponential values for 2D and 3D regimes. Red lines and symbols stand for 3D and black lines and symbols stand for 2D regimes. Dependencies of: a) the N.c.(1-c) factor. b) the percolation efficiency $\{n/(n_0-n_f)\}$. c) the normalized conductivity values deduced from expression (1).d) normalized pre-exponential factors. Hollow symbols stand for experimental data, and black circles for values calculated with equation (1) and normalized factors. Upper continuous line stands for calculated values including the corresponding increment in migration entropy produced along the 2D to 3D regime change.](image-url)
the “bulk” dc-conductivity, the analysis of pre-exponential factors has been performed.

In general, pre-exponential σ_0 factors are proportional to \(^{30}\):

$$\sigma_0 \propto N. c(1-c),[(n_1-n_p)(n_1-n_p)]^{\frac{1}{2}}$$ (1)

where N stands for equivalent Li sites, and c and $(1-c)$ are relative concentrations of Li and vacant sites in structural sites. In this expression, n_1 is the effective vacancy concentration, n_p the percolation threshold, n_{th} the maximum possible number of available sites for the ion movement and t the critical exponent.

In Figure 7a, as Na fraction increases, $N_{c(1-c)}$ values provide information about the probability of the lithium hopping between neighboring sites, and $P_{eff} = [n_1-n_p]/[(n_1-n_p)^t]$ takes into account the percolation efficiency in diffusion paths ($0 \leq P_{eff} \leq 1$). The exponent, t, and the percolation threshold, n_{th}, changes with conduction dimensionality, going from $n_{th} = 0.50$ and $t = 1.33$ (two-dimensional) to $n_{th} \geq 0.31$ and $t \approx 2$ for three-dimensional networks \(^{10}\). For Li mobility restricted to $z=0$ planes the maximum number of sites is 1 but when mobility is extended to both planes, n_{th} increases to 2.

From Rietveld analysis, different structural parameters can be estimated as a function of the Na fraction. In Figure 7a the evolution of $N_{c(1-c)}$ vs. Na fraction is considered in 2D ($z/c = 0$ planes) and 3D ($z/c = 0$ and $z/c = \frac{1}{2}$ planes involved) regimes. The main difference was detected for low f[Na] values: in 2D regime, P_{eff} increases up to $f = 0.6$, (Na ion incorporated at the $z=\frac{1}{2}$ plane) decreasing considerably above this value. For $f=0.8$, the system becomes sub-percolated ($n_i < n_p$), and 2D conductivity is not possible, ($P_{eff} = 0$). In 3D regime, the percolation efficiency is about two orders of magnitude larger than in 2D regime, because the amount of vacancy always remain well above the percolation threshold, making that Na content not to affect strongly conductivity values.

Results deduced from the equation (1), once normalized to maximum 2D and 3D values, are plotted in Figure 7b. In this plot, the evolution of the percolation efficiency P_{eff} with Na fraction values is analyzed in Figure 7b. In 2D regime, P_{eff} increases up to $f = 0.6$, (Na ion incorporated at the $z=\frac{1}{2}$ plane) decreasing considerably above this value. For $f=0.8$, the system becomes sub-percolated ($n_i < n_p$), and 2D conductivity is not possible, ($P_{eff} = 0$). In 3D regime, the percolation efficiency is about two orders of magnitude larger than in 2D regime, because the amount of vacancy always remains well above the percolation threshold, making that Na content not to affect strongly conductivity values.

Additional evidences for the suggested change in dimensionality can be found in analysis of the frequency dispersion of the conductivity. It has been proposed that a dimensionality change affects dispersion exponent n values of the “bulk” a.c. conductivity (σ_{ac}):

$$\sigma_{ac} = \sigma_0\left[1+\left(\alpha_{ac}\omega_f\right)^2\right]$$ (4)

where α_{ac} stands for the crossover frequency between dc (σ_{dc}) and dispersive regimes. As demonstrated by Sidebottom \(^{32}\), 2D displays lower n values than 3D regimes. An accurate determination of n is however, a difficult task that requires high frequency IS measurements (1MHz-3GHz). The results deduced from the fitting of experimental values to equivalent circuit reported in reference \(^{13}\) are included in Figure 8b. Dashed α_{ac} values decreased from 0.44 to 0.41 when passing from $f=0.4$ to 0.6. The increment of n to 0.48 in $f=0.8$ samples, cannot be related to Li correlation effects in $z/c=0$ planes. Then, a
dimensionality change must be invoked to explain observed values. For Na-rich samples, n values are higher than those corresponding to 2D regimes, despite of low lithium contents.

The analysis of conductivity allows us to suggest that Li conductivity in Li$_{0.5}$,Na$_{y}$La$_{0.5}$Nb$_{2}$O$_{6}$ is affected by two competing factors. For Li-rich samples, incorporation of sodium increases cation disorder and favors the simultaneous Li and La occupation of z/c = 0 and $\frac{1}{2}$ planes, with the resulting 2D to 3D regime change. This change makes the activation energy to decrease and pre-exponential factor to increase, not affecting considerably Li conductivity. In Na-rich samples with f values higher than 0.9, activation energy increase and conductivity decrease as a consequence of low Li contents. Finally, $f=1$ sample showed ionic conductivity that should be related to the presence of a small amount of mobile Na ions.

Conclusions

Li$_{0.5-y}$,Na$_{y}$La$_{0.5}$Nb$_{2}$O$_{6}$ samples ($y = 0$-0.5) were synthesized by solid-state reaction (SSR) and transport properties deduced by impedance spectroscopy. Structural features of samples were deduced by x-ray diffraction (XRD), nuclear magnetic resonance (NMR) techniques and DFT simulations. La occupation of z/c = 0 and $\frac{1}{2}$ planes was deduced from XRD Rietveld refinements, and distribution of Li, Na and Nb ions assessed by MAS-NMR spectroscopy. In Li-rich samples, La and Li ions, are preferentially disposed in alternate planes along the c-axis (2D conductivity). As the Na content increases, La and Na cations occupy z/c = 0 and 1/2 planes and vacancies becomes disordered that can increase the conductivity dimensionality (3D conductivity).

In Li rich samples, the vacancy disorder increases, increasing activation energy and Li conductivity (2D regime) when Na content increases. In Na-rich samples the increased disorder can lead to a 3D regime, activation energy increasing and total conductivity decreasing. The cation disorder produced along the proposed 2D to 3D transformation would explain the broad conductivity maximum detected at intermediate compositions. To explain observed results, large changes in the migration entropy must be produced along the transformation, that should be related to the change from and ordered to a disordered cation distribution.

Acknowledgements

This work has been funded by the Spanish projects MINECO MAT2013-46452-C4-2R and MATERYENER3-CM (S2013/MIT-2753) and the European project NANOLICOM (FP7-PEOPLE-2009-IRSES).

Adresses

[a] Instituto de Ciencia de Materiales, ICMM-CSIC, C / Sor Juana Inés de la Cruz 3, 28049, cantoblanco 3 Madrid; E-mail: rigim@icmm.csic.es

[b] Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Palladine Ave32-34, 03680Kyiv 142, Ukraine

References

2. Belous, A.G.; Butko, V.I.; Novitskaya, G.N.; et al “Conductivity of La$_{2-x}$M$_{x}$TiO$_{3}$ perovskites”. Ukrainskii Fizicheskii Zhurnal. 31 (1986) 576-580.

7. Sanjuan, M.L.; Laguna, M.A.; Belous, A.G.; et al. “On the local structure and lithium dynamics of La$_{2-x}$Li$_{x}$Na$_{0.5}$TiO$_{3}$ ionic conductors. A Raman study”. Chemistry of Materials. 17 (2005) 5862-5866.

8. Ibarra, J; Varez, A; Leon, C; et al. “Influence of composition on the structure and conductivity of the fast ionic conductors La$_{2/3}$Li$_{1/3}$TiO$_{3}$ (0.03 $\leq x \leq 0.167$)”. Solid State Ionics 134 (2000) 219-228.

11. Rivera, A; Leon, C; Santamaria, J; et al. “Percolation-limited ionic diffusion in Li$_{1-y}$,Na$_{y}$La$_{0.5}$TiO$_{3}$ perovskites (0 $\leq x \leq 0.5$)”. Chemistry of Materials 14 (2002) 5148-5152.

12. Gavrilenko, O. N.; Belous, A. G.; Kovalenko, L. L.; et al. “Effect of the a-site substitution on the structure peculiarities and ionic conductivity of solid electrolytes Li$_{2/3}$Li$_{1/3}$,$\sqrt[3]{2}$Ti$_{2}$O$_{6}$, $\sqrt[3]{3}$Sr$_{3}$Co$_{4}$O$_{12}$, Nb$_{O_x}$” Materials and Manufacturing Processes 23 (2008) 607-610.

13. Paris, MA; Sanz, J; Leon, C; et al. “Li mobility in the orthorhombic Li$_{2-x}$La$_{x}$TiO$_{3}$ perovskite studied by NMR and impedance spectroscopies”. Chemistry of Materials. 12 (2000) 1694-1701.

14. Jimenez, R.; Rivera, A; Varez, A; et al. “Li mobility in Li$_{2-x}$,$\sqrt[3]{3}$Na$_{y}$La$_{0.5}$TiO$_{3}$ perovskites (0 $\leq x \leq 0.5$). Influence of structural and compositional parameters”. Solid State Ionics, 180 (2009)1362-1371.

15. Jimenez, R.; Varez, A; Sanz, J. “Influence of octahedral tilting and composition on electrical properties of the Li$_{2-x}$,$\sqrt[3]{3}$Na$_{y}$La$_{0.5}$TiO$_{3}$ (0 $\leq x \leq 0.2$) series”. Solid State Ionics. 179 (2008) 495-502.

Belous, A.G.; Gavrilenko, O.N.; Pashkova, E.V. “Effect of synthesis conditions on the lithium nonstoichiometry and properties of La\(_{2/3}\)Li\(_{3x}\)\((\text{M} = \text{Nb}, \text{Ta})\) perovskite-like solids”. Inorganic Materials. 40 (2004) 867-873.

Rodríguez-Carvajal, J.; Roisnel, T. (1999); FullProf, WinPLOTR and accompanying programs at http://www-llb.cea.fr/fullweb/powder.htm

S. Garcia-Martin, M.A. Alario-Franco. “Modulated Structure of \(\text{La}_2/3\text{Li}_{3x}\text{NbO}_3\), \(0 \leq x \leq 0.06\) perovskite – Related Materials” J. Solid State Chem. 148, 93-99 (1999).

Bucheli, W.; Jimenez, R.; Sanz, J.; et al. “The log(sigma) vs. log(omega) derivative plot used to analyze the ac conductivity. Application to fast Li\(^+\) ion conductors with perovskite structure”, Solid State Ionics. 227 (2012) 113-118.

