

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Treatment of metal wastewater in pilot-scale packed bed systems:
2	Efficiency of single- vs. mixed-mushrooms
3	Yunchuan Long [†] , Qiao Li ^{†1} , Jiangxia Ni, Fei Xu, Heng Xu* ²
4	Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life
5	Science, Sichuan University, Chengdu, Sichuan 610064, China.
6	

 ¹ The first two authors contributed equally to this paper.
 ² *Corresponding author. Tel: +86 28 85414644; Fax: +86 28 85418262

E-mail address: xuheng64@sina.com(H. Xu).

7	Abstract: This study investigated the biosorption of heavy metals from industrial
8	wastewater using mushrooms at small-sized pilot-scale. Mushrooms (Agaricus
9	bisporus and Pleurotus cornucopiae) were modified with sodium hydroxide prior to
10	packed bed experiments. Packed bed experiments were carried out in a two-stage
11	continuous system to investigate the effects of different mushrooms, including A.
12	bisporus, P. cornucopiae, and mixed sorbents. A. bisporus and P. cornucopiae showed
13	each merits during each runs, and resulted in good-quality effluents. Nevertheless, the
14	system packed with the two mushrooms demonstrated the best performance with a
15	treated volume of 156L and a total metal uptake of 13.64 mg g^{-1} ; the removal
16	efficiencies were over 95.1% for all metals in the outlet effluent, and the treated
17	effluent met the regulatory discharge standards. Models were applied to fit with some
18	experimental data. Desorption studies were carried out for three cycles. The present
19	study showed that the two-stage continuous system packed with different biosorbents
20	could effectively remove various heavy metals from industrial wastewater.
21	Key words: Biosorption; Packed bed column; Pilot scale; Industrial wastewater;
22	Heavy metal.

23 **1. Introduction**

With the rapid development of industries, large quantities of wastewater containing heavy metals are discharged into the environment, which caused serious ecological, environmental and healthy problems.^{1, 2} Various methods, such as chemical precipitation, ion exchange, adsorption, membrane filtration, and electrochemical **RSC Advances Accepted Manuscript**

28	treatment, are adopted to deal with the heavy metal pollutions. ³ Compared with
29	conventional technology, biosorption using industrial and agricultural materials has
30	the advantages of low cost, high efficiency, minimization of secondary wastes, and
31	regeneration ability. ^{4, 5} Thus, biosorption has been proposed as an effective and
32	economic method for low concentration of heavy metal wastewater treatment. ³
33	Packed bed column is considered to be the most widely used adsorption process in
34	large-scale wastewater treatment due to its simple configurations, the relative ease of
35	scaling up the procedures, economic and convenient operations. ^{6, 7} These potential
36	industrial roles made the bed column process in biosorption receive increasing
37	attention from researchers during recent years; ⁴ however, most of these studies are
38	still restricted to the stage of laboratory. ^{8,9} Besides, most adsorption studies on a
39	continuous column process have focused mainly on the solution containing only
40	single metal. ^{8, 10-13} These studies have limited industrial application, as the industrial
41	effluents often contain several heavy metals, and other contaminants concomitantly. ¹³
42	Therefore, it is necessary to use actual industrial wastewater at the stage of pilot scale
43	for demonstrating the applicability of biosorbents. Considering industrial effluents
44	contain various pollutants (various metals, organics and other impurities), two-stage
45	bed system packed with more than one type of biomass might be a meaningful way.
46	Mushrooms have been proved to be an effective biosorbent for the removal of
47	heavy metals. ¹⁴⁻¹⁶ Compared with plants, mushrooms grow rapidly and have high
48	biosorption capacity; nevertheless, as in the case of microorganisms, mushrooms are
49	macro in size and tough in texture, which conduce to their development as biosorbents

RSC Advances Accepted Manuscript

50	without the need for immobilization or deployment of sophisticated reactor
51	configuration. ^{15, 17} Our previous work has exhibited the ability of <i>Agaricus bisporus</i> to
52	adsorb Pb(II) and other metals in a continuous column process; ¹⁸ Whereas, <i>Pleurotus</i>
53	cornucopiae showed a better ability of copper. ¹⁹ On the other hand, A. bisporus has
54	better mechanical property; where <i>P. cornucopiae</i> are cheaper and more easily
55	available, as Jintang County, known as "the hometown of Chinese P. cornucopiae", is
56	located in the suburbs of Chengdu, Sichuan Province. So the mixed mushrooms might
57	achieve a better overall performance during the treatment of multi-metal wastewater
58	in packed bed column.
59	To the best of our knowledge, no similar report about mushrooms applied to
60	pilot-scale wastewater treatment is available up to now. The present study examines
61	the biosorption capacities of A. bisporus and P. cornucopiae for heavy metal removal
62	from industrial effluent in a two-stage continuous system at small-sized pilot-scale,
63	respectively. Then, the application of the mixed biosorbents on metal removal in the
64	two-stage system was also tested. Prior to the packed bed experiments, the biomass
65	was pretreated with three modifiers. Bohart-Adams and Thomas models were utilized
66	to analyze the breakthrough curves obtained from column I. The reusability of the
67	system was performed by carrying out three cycles of biosorption and desorption. The
68	industrial application was also discussed.

69 **2. Methods**

70 2.1. Biosorbent materials and chemicals

71	A. bisporus and P. cornucopiae, collected from mushroom production bases in the
72	suburbs of Chengdu (Sichuan), were washed with ultrapure water, followed by being
73	dried at 50 $^\circ\!\mathrm{C}$ for two days. After being ground with a pulverizing mill (Xulang,
74	HK-230), A. bisporus was sieved to pass through 10/40 mesh screen to obtain
75	0.45-2.0 mm granules; while <i>P. cornucopiae</i> passed through 5/10/40 mesh screen to
76	obtain granules with particle sizes between 0.45 and 4.0 mm, among which around 70%
77	were in a particle size between 0.45 to 2.0 mm.
78	All chemicals and reagents (Kelong Chemical Reagent Factory, Sichuan) utilized
79	throughout this study were of analytical grade.
80	2.2 Industrial wastewater
81	The industrial wastewater was taken from a metal manufacturing factory located in
82	the suburbs of Chengdu, China. The concentration of heavy metals (copper, nickel,
83	zinc, lead, and cadmium) was analyzed using a flame Atomic Absorption
84	Spectrometer (AAS; VARIAN, SpectrAA-220Fs). The pH value was measured by a
85	pH meter (pHS-25), calibrated with buffers of pH 4.00, 6.86 and 9.18. The pH of
86	wastewater was adjusted around 6.0 before the experiments. The characteristics of
87	industrial wastewater and their discharge standard according to GB 21900-2008 are
88	given in Table 1.

89 2.3. Preparation of modified biosorbents

90 Three modifiers (sodium hydroxide (NaOH), acetic acid, ethylene diamine

RSC Advances Accepted Manuscript

91	tetraacetic acid (EDTA)) were applied to find out the optimal one. The modifications
92	were carried out following the method in our previous research, ¹⁸ and the resulting
93	biomass was filtered, washed, and dried. 0.1 g raw or modified biomass was put into
94	250 mL Erlenmeyer flasks with 100 mL industrial wastewater in a shaker incubator
95	(SUKUN, SKY211B) at 120 rpm for 5h. The biosorption capacity (mg g ⁻¹), was
96	calculated by the concentration before and after biosorption.
97	A Scanning Electron Microscopy (SEM) (JSM-5900LV, Japan) was introduced to
98	observe the surface morphology features of raw and modified biomass. A Fourier
99	Transform Infrared (FT-IR) spectrometer (NEXUS-650, America) was used to analyze
100	the main functional groups on the surface. The surface area of the biosorbent was
101	measured by Brunauer-Emmett-Teller (BET) method (Micromeritics ASAP-2020,
102	America) using nitrogen as the adsorbate.

103 2.4. Experimental setup

The small-sized pilot system was made up of two biosorbent columns, pump, 104

105 flowmeter and PVC pipes. The two PP plastic columns (8.0 cm diameter and 80 cm

106 length for each) packed with biosorbent giving a bed depth of 45 cm were employed

- 107 in series. Fig. 1 shows the schematic of the two-stage continuous system. Table 2 lists
- 108 the operational parameters of pilot plant. The bed system was packed with A. bisporus
- 109 (defined as Run 1); P. cornucopiae (defined as Run 2); A. bisporus and P. cornucopiae
- 110 (defined as Run 3), respectively. The column I, and column II were defined as the
- 111 column of the two-stage bed columns closing to the inlet and outlet, respectively.

112	Before being packed in bed column, the modified biomass should be soaked and
113	swelled. Considering the requirement of industrial production, the modification was
114	merged into the procedure of soak. The biomass was soaked in 0.5% optimal modifier
115	solution for 12 h in a basin, stirring several times during the period, followed by being
116	packed in the biosorbent columns between a lay of a sieve at the bottom, and a lay of
117	glass wool at the top. Besides, a layer of glass beads was placed at the top to provide a
118	uniform inlet flow. 2.4L ultrapure water was passed through the column system at the
119	flow rate of 40mL min ⁻¹ to remove modifier, color and trapped air from the beds.

120 2.5. Experimental procedure

121	At room temperature (298 K), continuous operations were conducted by pumping
122	the industrial wastewater in a down-flow mode using a peristaltic pump at a desired
123	flow rate of 40 mL min ⁻¹ . The flow rate was monitored regularly and adjusted when
124	required. The effluent samples were collected at definite time intervals for all the
125	experiments. The operation of the packed bed system was stopped when the
126	outflowing concentration in column II consecutively exceeded the maximum
127	permissible concentration according to the National Standards. The metal
128	concentrations were measured using AAS after biosorption. All experiments were
129	carried out in duplicate, and the results reported were the mean values.
130	After the biosorption stopped, the metal-loaded columns were regenerated with 3 L
131	of 0.1M HNO ₃ at a flow rate of 30 mL min ⁻¹ . Then the biosorbent-bed was washed
132	with ultrapure water, and the regenerated bed was reused in another cycle.

133 2.6 Calculations

- 134 The Removal efficiency(%) can be calculated based on the inlet and the outlet
- 135 effluent concentrations as follows:²⁰

$$\text{Removal}(\%) = \frac{(C_{in} - C_{out})}{C_{in}} \cdot 100 \tag{1}$$

136 where C_{in} (mg/L) and C_{out} (mg/L) are the influent and outlet effluent metal

- 137 concentrations, respectively.
- 138 The biosorption capacity of the target metal species was determined by the
- 139 concentration before and after absorption:

$$q = \frac{t \cdot Q \cdot (C_{in} - C_{out})}{m}$$
(2)

140 where t is the treatment time (h), Q is the flow rate $(L h^{-1})$, m is the total mass of the

141 biosorbent in the column (g).

The Bohart-Adams model was frequently applied for modeling the breakthrough curves for metal ions' sorption.^{21, 22} This model is used for the interpretation of the initial part of the breakthrough curve, and the mathematical expression of the model is as follows:

$$\ln\frac{C_t}{C_i} = K_{BA}C_i t - K_{BA}N_0\frac{Z}{v}$$
(3)

151 assumes that the adsorption process follows Langmuir kinetics of adsorption-

desorption, and obeys second-order reversible reaction kinetics.^{2, 24} The expression is

153 as follows:²⁵ $\ln\left(\frac{C_i}{C_t} - 1\right) = \frac{K_T \cdot q_0 \cdot m}{F} - \frac{K_T \cdot C_i \cdot V_{eff}}{F}$ (4)

154 where K_T , q_0 , F were rate constant (L mg⁻¹ h⁻¹), metal uptake capacity (mg g⁻¹), flow

155 rate (L h^{-1}), respectively.

156 **3. Results and discussion**

157 3.1 Effect of modification

Biosorption of heavy metals (copper, cadmium, lead, nickel and zinc) by raw and modified mushrooms (*A. bisporus* and *P. cornucopiae*) is presented in Table 3.

160 Modified A. bisporus enhanced 28.22% - 43.55% compared to raw biomass for total

161 metal uptake. NaOH-modified *A. bisporus* showed the best performance with a total

sorption capacity of 76.8 mg g⁻¹. NaOH increased swelling, simultaneously dissolved

some components and exposed active sites, to facilitate the sorption of metal.²

164 Modified *P. cornucopiae* obtained the same observations as above, which increased

165 41.44% - 68.17% for total metal uptake. *P. cornucopiae* modified with acetic acid, and

166 NaOH performed similarly with the capacity of around 56 mg g^{-1} . NaOH or acetic

acid modified *P. cornucopiae* showed the higher biosorption capacity on nickel and

- 168 zinc uptake than NaOH-modified *A. bisporus*, despite the lower total metal uptake.
- 169 These results suggested the preferences of the sorption on different metals among the
- 170 two biosorbents. Relative research manifested that treatment with acetic acid resulted

RSC Advances Accepted Manuscript

171	in the exposure of buried amino groups on the surface of biosorbent, forming ester
172	carbonyl and acylamino. ²⁶ Considering the operability, NaOH was chosen to be the
173	modifier for the two biomass in the later experiments.
174	Besides, the mass loss of biosorbents was also invested. The weight loss of A.
175	bisporus was 15.1% - 16.8% during NaOH modification; P. cornucopiae obtained the
176	same observations as above with the weight loss of 30.5% - 34.2%. Generally
177	speaking, the mass loss of <i>P. cornucopiae</i> was higher than that of <i>A. bisporus</i> during
178	modification. Taking into account of the weight loss of biomass, chemical
179	pretreatment could still improve the biosorption capacity. Furthermore, modifiers
180	were able to reduce the organic substances discharge. In consequence, the low-cost
181	chemical pretreatment on biomass had great significance to biosorbent.
182	Our previous study ¹⁸ has revealed the characterization information of raw and
183	NaOH modified A. bisporus (SEM, FT-IR, specific surface area). The surface
184	morphology of unmodified and NaOH modified P. cornucopiae revealed by SEM are
185	shown in Fig. 2. After modification, the biosorbent was characterized by irregular and
186	porous surface. The FT-IR spectra was depicted in Fig. 3. The peak at 3358 cm ⁻¹ ,
187	2929 cm ⁻¹ , 1653 cm ⁻¹ , 618 cm ⁻¹ represented -OH group, C-H stretching, -NH ₂ group,
188	C-N-C scissoring, respectively. ^{10,16} The changes of peaks suggested those functional
189	groups were involved throughout the process in modification. NaOH modified P.
190	<i>cornucopiae</i> had a specific surface area of $1.43 \text{ m}^2 \text{ g}^{-1}$, according to the BET analysis.

191 3.2 Metal removal in *A. bisporus* columns

192	In Run 1, after the operation of about 15h, the amount of nickel was detected firstly
193	in the effluent from column I, and then appeared a gradual increase. At about 45h of
194	systems running, a significant increase in the nickel concentration in the treated
195	effluent from column II was observed, and was 1.582 mg L ⁻¹ ; at the next effluent
196	sample, the concentration was up to 4.36 mg L^{-1} . Thus, the operation was stopped at
197	the operation time of 50h. The outlet heavy metal (copper, nickel, zinc) concentration
198	in the effluent from column I was plotted against the operation time, and the profile is
199	shown in Fig. 4. The amount of lead and cadmium in effluent were very low, the
200	concentration of lead in effluent from column I was around 0.1 mg L^{-1} at the operation
201	time of 50h, while the cadmium was around 0.06 mg L^{-1} . At previously operation time,
202	the concentration of lead and cadmium in effluent was much lower, thus, so the data
203	of lead and cadmium were not shown in the figure. Approximately 120L wastewater
204	was treated within the bed system packed with A. bisporus, after 50h of operation.
205	The average concentration of copper, nickel, zinc, lead, and cadmium in effluent for
206	this period from column II was 0.092, 0.48, 0.164, 0.06, and 0.031 mg L^{-1} respectively,
207	which were all under the maximum permissible concentration. The performance of
208	Run 1 listed in Table 4 showed that the removal efficiencies were over 92.4% for all
209	heavy metals, and the total uptake of all the metals was 11.6 mg g^{-1} . The trace heavy
210	metals remained in the resulting effluent indicated the superior performance of this
211	packed bed system.
212	To make sure the amount of all heavy metals remaining in the treated effluent were
213	limited in the maximum permissible concentration, the packed bed biosorption

214	experiments were carried out until any metal reached a breakthrough concentration. ²⁰ ,
215	^{27, 28} However, considering the potential problem or error, for example, caused by
216	operation, in this study, the operation time was determined when this metal was
217	detected exceeding the emission limit values succession twice.
218	In this study, the traces of heavy metal in the effluent from column I was always
219	detected, especially nickel, zinc, and copper, although the concentrations were very
220	low. The difficulty in the sorption of metals of combined state from industrial
221	wastewater might lead to incomplete removal of metals. ²⁹ The competition of various
222	metals between themselves and with organics and other impurities existed in
223	industrial effluent might also be expected to result in the inadequacy of heavy metal
224	removal by the packed bed system. ^{30, 31} Similar observation was also reported by Cyr
225	et al. ²⁷ It seemed that biosorption in packed bed column could not remove all metals
226	absolutely. However, compared with other methods in treating metal wastewater,
227	biosorption is one of the most effective and economic one. ³
228	3.3 Metal removal in <i>P. cornucopiae</i> columns

The effluent concentration profiles from column I in the two-stage system packed with *P. cornucopiae* are given in Fig. 5. The performances of this run are summarized at Table 4. At the operation of 45h and 50h, it was detected that the amount of cadmium remaining in the outlet effluent was 0.113, and 0.264 mg L⁻¹, respectively, which continuously exceeded the emission limit values. Meanwhile, the concentrations of other heavy metals in the effluent from column II were all below

235	their discharge standard. So the operation was stopped at the time of 50h. In this run,
236	approximately 120L industrial wastewater was treated, and the treated effluent
237	reached the discharge standard (the average concentration of copper, nickel, zinc, lead,
238	and cadmium was 0.035, 0.134, 0.112, 0.03, and 0.047 mg L^{-1} , respectively). At the
239	50th hour, i.e., the time the systems stopped running, the copper concentration in
240	effluent from column I was barely detectable, and the amount of lead in the effluent
241	from column I was roughly 0.01 mg L ⁻¹ . Considering the sensitivity and accuracy of
242	the AAS, the data of copper and lead in effluent from column I was not presented in
243	Fig. 5. The performance of Run 2 listed in Table 4 showed that the total metal uptake
244	(9.60 mg g^{-1}) was lower than that from Run 1; nevertheless, the removal efficiencies
245	from Run 2 were over 97.2% for all heavy metals, which was superior to Run 1.
246	Besides, P. cornucopiae had another advantage of lower cost than A. bisporus. In total,
247	these two biosorbents showed each merits during each runs.
248	In general, the uptake of metals by biosorbent (A. bisporus and P. cornucopiae)
249	from industrial effluents seemed much lower than in batch experiment or that from
250	synthetic water. ^{15, 18} Particle size played a crucial role, since when the particle size
251	increased, the vacant sites and the surface area available decreased, resulting in the
252	decrease in the time for saturation. ³¹ However, in large-scale wastewater treatment,
253	the larger particle size of biosorbent at packed bed column was inevitable to guarantee
254	the maneuverability of biosorbent. The complicated composition of industrial
255	wastewater might be another important factor. Organics and other impurities existed
256	in industrial effluent competed with metals on the adsorption site, leading to the lower

uptake by biosorbent.¹³ The limitation in adsorption selectivity of biomass might be

257

RSC Advances Accepted Manuscript

258	the third cause. ³ Some hard metals, such as K ⁺ , Na ⁺ , are usually nontoxic, and could
259	compete for sites with metals. ¹
260	3.4 Packed bed column modelling
261	In this study, Bohart-Adams and Thomas models were applied to test the accuracy
262	and reliability of experimental data, as well as to calculate kinetic constants of the
263	adsorption process. The values of characteristic parameters are summarized in Table 5.
264	Generally speaking, Thomas model could provide better fits for the experimental data
265	obtained from column I, compared with Bohart-Adams model. Nevertheless, two
266	correlation coeffcients (R^2) of Bohart-Adams and Thomas models (copper in Run 1
267	and Cadmium in Run 2) were all a bit low. Relatively coarse operational procedure at
268	the stage of pilot-scale and the complexity of the component in the industrial effluent
269	might be the principal cause of the relatively low R^2 .
270	Despite some researchers have developed mathematical models to study
271	competitive adsorption of multi-component mixtures in packed bed. ³² Most studies
272	modeling of the breakthrough curve mainly focused on the experimental data obtained
273	from single metal solution. ^{10, 22, 24} The traditional models seemed unfit for
274	multi-component competition adsorption for the reason of the low correlation
275	coefficients; these new models were complex, and the application scope might be
276	narrow. Thus, little study reported on the modeling of the breakthrough curve of
277	multi-metal system or pilot-scale system. Based on current data, a negative correlation

- between the Thomas rate constant (K_T) and uptake capacity (q_0) was observed.
- 279 Similar observation was reported by Bulgariu and Bulgariu.²¹
- 280 3.5 Metal removal in *A. bisporus* and *P. cornucopiae* columns

281	Based on the two-stage continuous system study of packing the same biosorbent,
282	the column I of the small-sized pilot plant was packed with A. bisporus, while column
283	II was packed with <i>P. cornucopiae</i> (Run 3). The performances of Run 3 are presented
284	in Table 6. At about 60-65h of operation, nickel existing in the effluent from column
285	II was found upto breakthrough concentration of 0.5 mg L ⁻¹ , approximately 156L of
286	water was treated by this mixed-biosorbent packed bed system. The heavy metals in
287	the treated effluents were all in the emission standard (the outlet effluent
288	concentration of copper, nickel, zinc, lead, and cadmium were 0.062, 0.308, 0.186,
289	0.05, and 0.039 mg L^{-1} respectively), and the removal efficiencies were above 95.1%
290	for all metals. Much more wastewater was treated by this system, compared with Run
291	1 (120L) and Run 2 (120L). The total metal uptake was 13.64 mg g^{-1} , which was taller
292	than Run 1 (11.62 mg g^{-1}) and Run 2 (9.60 mg g^{-1}).
293	It was a novel finding that the total metal uptake increased when the mixture of
294	biosorbents was applied to the treatment of multi-metal effluent. The criteria selected
295	for stopping the experiments might be the main incentive. The Preferences of the

- sorption on various metals among different sorbents might be the major reason. Our
- 297 previous study and many other reports also mentioned the preference of mushroom
- 298 for metals.^{14, 17} The profile of breakthrough curves obtained from packed bed column

RSC Advances Accepted Manuscript

299	studies was the shape of an "S". ^{5, 12, 21, 31} The low concentration of metals in the outlet
300	effluent when the operation stopped indicated the vacant of some adsorption sites.
301	Once the mixed biosorbents were applied, the metals could make full use of those
302	adsorption sites, thus the total metal uptake of biosorbents increased.
303	3.6 Desorption and regeneration
304	The usefulness of a biosorbent depends not only on its biosorption capacity, but
305	also on the efficient regeneration and reuse. ⁴ The Sorption – Desorption parameters
306	listed in Table 7 showed that the desorption of A. bisporus was 85.29% after three

304	The usefulness of a biosorbent depends not only on its biosorption capacity, but
305	also on the efficient regeneration and reuse. ⁴ The Sorption – Desorption parameters
306	listed in Table 7 showed that the desorption of A. bisporus was 85.29% after three
307	cycles, while <i>P. cornucopiae</i> was approximately 80%. The biomass in the packed bed
308	system can undergo cyclic biosorption-desorption cycles without additional
309	operations, such as, centrifugation, filtration, and packing. In addition, the biomass
310	utilized in this study has been proved to have high efficiencies of desorption. ^{18, 33}
311	Therefore, the requirement of fresh biosorbent is reduced, making the biosorption
312	process more sustainable and cost effective. The exhausted biosorbents for the present
313	system were put into a biogas digester for fermentation after being exhausted, and
314	then the biogas residues were disposed of via landfill, while the biogas slurry was
315	disposed of precipitation and flocculation for metal's extraction.

316 3.7 Implication for industrial application

The present study showed a good biosorption performance in a packed bed system containing multiple biosorbents. Thus, for making the utmost use of biosorbents and

319	removing metals more effectively; it is vital to use multiple columns consisting more
320	than one type of biomass to treat industrial wastewater containing various pollutants. ⁴ ,
321	³⁴ Numerous studies indicate that a longer bed height may lead to a better
322	performance and larger treated volume. ^{35, 36} Therefore, batteries of multiple columns
323	can be introduced to optimize the performance during the process. Scale-up of the
324	biosorption process can be also accomplished by using larger diameter columns or
325	using multiple columns that work in parallel.

326 **4. Conclusions**

327	NaOH was introduced to modify A. bisporus and P. cornucopiae, and SEM and
328	FT-IR have been used to analyze the surface characterization of the biosorbents. A.
329	bisporus and P. cornucopiae showed each merits during each runs, and resulted in
330	good quality effluents. Run 1 showed higher metal uptake (11.6 mg g ⁻¹), whereas, Run
331	2 showed superior removal efficiency (over 97.2% for all metals). Run 3 which
332	packed different biosorbent demonstrated best performance with a treated volume of
333	156 L. More than 95.1% heavy metals were removed, and the treated effluent met the
334	regulatory discharge standards. The present study indicated that the two-stage
335	continuous system packed with different biosorbents could effectively remove various
336	metals from industrial wastewater.

337 Acknowledgements

- 338 This study was financially supported by the Science and Technology Supportive Project of
- 339 Sichuan Province, China (NO.2013SZ0062), Science and Technology Supportive Project of
- 340 Chengdu (No.12DXYB087JH-005) and NSFC (NO.J1103518). The authors wish to thank
- 341 Professor Guanglei Cheng and Dong Yu from Sichuan University for their technical assistance.

343	References
344	1. J. Wang and C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: A review,
345	Biotechnol. Adv., 2006, 24(5), 427-451.
346	2. G. S. C. Raulino, C. B. Vidal, A. C. A. Lima, D. Q. Melo, J. T. Oliveira and R. F. Nascimento,
347	Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column,
348	Environ. Technol., 2014, 35 (14), 1711-1720.
349	3. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage.,
350	2011, 92 (3), 407-418.
351	4. D. Park, Y. S. Yun and J. M. Park, The past, present, and future trends of biosorption, Biotechnol.
352	<i>Bioproc. E.</i> , 2010, 15 (1), 86-102.
353	5. M. Rajeswari, P. Agrawal, S. Pavithra, Priya, G. R. Sandhya and G. M. Pavithra, Continuous
354	biosorption of cadmium by Moringa olefera in a packed column, Biotechnol. Bioproc. E., 2013,
355	18 (2), 321-325.
356	6. B. Volesky, J. Weber and J. Park, Continuous-flow metal biosorption in a regenerable Sargassum
357	column, Water Res., 2003, 37(2), 297-306.
358	7. R. Dhankhar and A. Hooda, Fungal biosorption - an alternative to meet the challenges of heavy
359	metal pollution in aqueous solutions, Environ. Technol., 2011, 32(5), 467-491.
360	8. V. Mishra, C. Balomajumder and V. K. Agarwal, Adsorption of Cu(II) on the surface of
361	nonconventional biomass: a study on forced convective mass transfer in packed bed column, J.
362	Waste Manage., 2013, 2013, 1-8.
363	9. A. Ronda, M. A. Martin-Lara, G. Blazquez, N. M. Bachs and M.Calero, Copper biosorption in the
364	presence of lead onto olive stone and pine bark in batch and continuous systems, Environ. Prog.
365	Sustain., 2014, 33(1), 192-204.
366	10. C. Quintelas, R. Pereira, E. Kaplan and T. Tavares, Removal of Ni(II) from aqueous solutions by an
367	Arthrobacter viscosus biofilm supported on zeolite: From laboratory to pilot scale, Bioresour.
368	Technol., 2013, 142, 368-374.
369	11. M. Calero de Hoces, G. Blázquez García, A. Ronda Gálvez, A. E. Álvarez and M. Á. Martín-Lara,
370	Biosorption of Cu ²⁺ in a packed bed column by almond shell: optimization of process variables,
371	Desalin. Water Treat., 2013, 51(7-9), 1954-1965.
372	12. J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M. Chaparro-Mercado and B.
373	Bilyeu, Modeling of lead(II) biosorption by residue of allspice in a fixed-bed column, Chem. Eng. J.,
374	2013, 228 , 21-27.
375	13. A. Singh, D. Kumar and J. P. Gaur, Continuous metal removal from solution and industrial effluents
376	using Spirogyra biomass-packed column reactor, Water Res., 2012, 46(3), 779-788.
377	14. Y. Cao, Z. Liu, G. Cheng, X. Jing and H. Xu. Exploring single and multi-metal biosorption by
378	immobilized spent Tricholoma lobayense using multi-step response surface methodology, Chem.
379	<i>Eng. J.</i> , 2010, 164 (1), 183-195.
380	15. R. Vimala, D. Charumathi and N. Das, Packed bed column studies on Cd(II) removal from
381	industrial wastewater by macrofungus Pleurotus platypus, Desalination, 2011, 275(1-3), 291-296.
382	16. X. Jing, Y. Cao, X. Zhang, D. Wang, X. Wu and H.Xu, Biosorption of Cr(VI) from simulated
383	wastewater using a cationic surfactant modified spent mushroom, Desalination, 2011, 269(1),
384	120-127.
385	17. R. Vimala and N. Das, Biosorption of cadmium(II) and lead(II) from aqueous solutions using
386	mushrooms: A comparative study, J. Hazard. Mater., 2009, 168(1), 376-382.

 18. Y. Long, D. Lei, J. Ni, Z. Ren, C. Chen and H. Xu, Packed bed column studies on lead(II) ren from industrial wastewater by modified <i>Agaricus bisporus</i>, <i>Bioresour. Technol.</i>, 2014, 152, 457- 19. Ü. Daniş, Biosorption of copper(II) from aqueous solutions by <i>Pleurotus cornucopiae</i>, <i>De</i> <i>Water Treat.</i>, 2010, 22(1-3), 117-126. 20. M. A. Acheampong and P. N. L. Lens, Treatment of gold mining effluent in pilot fixed bed son system, <i>Hydrometallurgy</i>, 2014, 141, 1-7. 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and 	noval -463 salin. ption anion G. K. eated 182.
 from industrial wastewater by modified <i>Agaricus bisporus</i>, <i>Bioresour. Technol.</i>, 2014, 152, 457- 19. Ü. Daniş, Biosorption of copper(II) from aqueous solutions by <i>Pleurotus cornucopiae</i>, <i>De</i> <i>Water Treat.</i>, 2010, 22(1-3), 117-126. 20. M. A. Acheampong and P. N. L. Lens, Treatment of gold mining effluent in pilot fixed bed son system, <i>Hydrometallurgy</i>, 2014, 141, 1-7. 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and 	463 salin. ption anion G. K. eated 182.
 389 19. Ü. Daniş, Biosorption of copper(II) from aqueous solutions by <i>Pleurotus cornucopiae, De Water Treat.</i>, 2010, 22(1-3), 117-126. 391 20. M. A. Acheampong and P. N. L. Lens, Treatment of gold mining effluent in pilot fixed bed sor system, <i>Hydrometallurgy</i>, 2014, 141, 1-7. 393 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and 	salin. ption anion G. K. eated 182.
 Water Treat., 2010, 22(1-3), 117-126. 20. M. A. Acheampong and P. N. L. Lens, Treatment of gold mining effluent in pilot fixed bed sor system, <i>Hydrometallurgy</i>, 2014, 141, 1-7. 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and 	ption anion G. K. eated 182.
 20. M. A. Acheampong and P. N. L. Lens, Treatment of gold mining effluent in pilot fixed bed sor system, <i>Hydrometallurgy</i>, 2014, 141, 1-7. 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and 	ption anion G. K. eated 182.
 392 system, <i>Hydrometallurgy</i>, 2014, 141, 1-7. 393 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and 	anion G. K. eated 182.
393 21. D. Bulgariu and L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and	anion G. K. eated 182.
	G. K. eated 182.
exchanger resin in a packed-bed column, <i>Bioresour. Technol.</i> , 2013, 129 , 374-380.	G. K. eated 182.
395 22. J. Goel, K. Kadirvelu, V. K. Garg, A. Meena, R. Chopra, D. Chauhan, A. Rawat, S. Kumar,	eated 182.
396 Mishra and C.Rajagopal, A pilot scale evaluation for adsorptive removal of lead(II) using tr	182.
397 granular activated carbon, <i>Environ. Technol.</i> , 2005, 26 (5), 489-499.	182.
398 23. H. C. Thomas, Chromatography: a problem in kinetics, Ann. NY. Acad. Sci., 1948, 49(2), 161-	
399 24. X. Xu, B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang and Q. Li, Nitrate adsorption by stratified	vheat
400 straw resin in lab-scale columns, <i>Chem. Eng. J.</i> , 2013, 226 , 1-6.	
401 25. D. Chauhan and N. Sankararamakrishnan, Modeling and evaluation on removal of hexav	alent
402 chromium from aqueous systems using fixed bed column, J. Hazard. Mater., 2011, 185(1), 55-6	2.
403 26. F. Chen, N. Tan, W. Long, S. K. Yang, Z. G. She and Y. C. Lin, Enhancement of uraniur	n(VI)
404 biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium	n sp.
405 #ZZF51, J. Radioanal. Nucl. Ch., 2013, 299 (1), 193-201.	
406 27. P. J. Cyr, R. P. S. Suri and E. D. Helmig, A pilot scale evaluation of removal of mercury	from
407 pharmaceutical wastewater using granular activated carbon, <i>Water Res.</i> , 2002, 36 (19), 4725-473	4.
408 28. M. B. Baskan and A. Pala, Batch and fixed-bed column studies of arsenic adsorption on the n	itural
409 and modified clinoptilolite, <i>Water Air Soil Poll.</i> , 2014, 225 (1), 1-10.	
410 29. A. G. Sanchez, E. A. Ayuso and O. J. De Blas, Sorption of heavy metals from industrial waste	water
411 by low-cost mineral silicates, <i>Clay Miner.</i> , 1999, 34 (3), 469-477.	
412 30. A. Chatterjee and S. Schiewer, Effect of competing cations (Pb, Cd, Zn, and Ca) in fixed	i-bed
column biosorption and desorption from citrus peels, <i>Water Air Soil Poll.</i> , 2014, 225 (2), 1-13.	
414 31. A. H. Sulaymon, S. A. Yousif and M. M. Al-Faize, Competitive biosorption of lead me	rcury
415 chromium and arsenic ions onto activated sludge in fixed bed adsorber, J. Taiwan Inst. Cher	1. E.,
416 2014, 45 (2), 325-337.	
417 32. D. T. Tefera, Z. Hashisho, J. H. Philips, J. E. Anderson and M. Nichols, Modeling compe	titive
418 adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated ca	rbon,
419 Environ. Sci. Technol., 2014, 48 (9), 5108-5117.	
420 33. D. Das, R. Vimala and N.Das, Biosorption of Zn(II) onto <i>Pleurotus platypus</i> : 5-Level Box-Bel	nken
421 design, equilibrium, kinetic and regeneration studies, <i>Ecol. Eng.</i> , 2014, 64 , 136-141.	
422 34. J. M. Modak and K. A. Natarajan, Biosorption of metals using nonliving biomass - A review, <i>N</i>	liner.
423 <i>Metall. Proc.</i> , 1995, 12 (4), 189-196.	
424 35. I. Ali, Water treatment by adsorption columns: evaluation at ground level, <i>Sep. Purif. Rev.</i> ,	2014,
425 43 (3), 175-205.	
426 36. R. Kumar, D. Bhatia, R. Singh, S. Rani and N. R. Bishnoi, Sorption of heavy metals	from
427 electroplating effluent using immobilized biomass <i>Trichoderma viride</i> in a continuous packe	1-bed
428 column, <i>Int. Biodeter. Biodege.</i> , 2011, 65 (8), 1133-1139.	
429	

430	Figure Captions
431	Fig. 1 Schematic of the two-stage continuous system.
432	Fig. 2 SEM of <i>P. cornucopiae</i> (A) and modified <i>P. cornucopiae</i> (B)
433	Fig. 3 FTIR spectrums of <i>P. cornucopiae</i> (A) and modified <i>P. cornucopiae</i> (B)
434	Fig. 4 Breakthrough profile of nickel, zinc and copper in the effluent from column I
435	in the system packing with A. bisporus.
436	Fig. 5 Breakthrough profile of cadmium, nickel, zinc in the effluent from column I in
437	the system packing with <i>P. cornucopiae</i> .
438	
439	

440 Table 1	
-------------	--

441 Characteristics of industrial wastewater.

Parameters	Values	Standard
Lead (mg L^{-1})	27.75	0.2
Cadmium (mg L^{-1})	21.125	0.05
Nickel (mg L^{-1})	6.300	0.5
Copper (mg L^{-1})	2.800	0.5
Zinc (mg L ⁻¹)	3.933	1.5
pН	4.9	6.0-9.0
Conductivity (μ S cm ⁻¹)	727	-
COD	682	500
BOD	538	300

443	Table	2
443	Table	2

444 Small-sized pilot plant operational parameters.

•	sinun bizea prior prant operational param	01015.	
	Parameter	Column-A	Column-P
	Column diameter (cm)	8.0	8.0
	Bed height (cm)	45	45
	Biosorbent particle size(mm)	0.45-2.0	0.45-4.0
	Biosorbent mass(g)	316	385
	Flow rate (mL min ⁻¹)	40	40
	Column Volume(cm ³)	2262	2262

445 Notations: Column-A: the bed column packed with A. bisporus; Column-P: the bed

446 column packed with *P. cornucopiae*.

448 Table 3

449 Effect of different modifiers on heavy metals biosorption capacity (mg g⁻¹) by

450 mushrooms.

		Copper	Cadmium	Lead	Nickel	Zinc	Total
	Native	6.0	18.8	26.1	1.5	1.1	53.5
1 hignory	Acetic acid	7.9	24.6	33.2	1.7	1.2	68.6
A. <i>bisporus</i>	NaOH	9.2	26.3	37.7	2.1	1.5	76.8
	EDTA	8.5	24.3	33.7	1.8	1.6	69.9
	Native	3.9	7.6	18.6	1.9	1.3	33.3
Decomuconiae	Acetic acid	6.4	13.2	30.5	3.0	2.7	55.8
P. cornucopiae	NaOH	6.9	11.4	32.0	3.4	2.3	56
	EDTA	5.0	10.3	27.2	2.7	1.9	47.1

452	Table	4

453 The performance of different runs.

	Run 1					Run2				
	Time	Volume	Uptake	Removal	Time	Volume	Uptake	Removal		
	(h)	(L)	$(mg g^{-1})$	(%)	(h)	(L)	$(mg g^{-1})$	(%)		
Copper	50	120	0.51	96.7	50	120	0.43	98.8		
Nickel	50	120	1.11	92.4	50	120	0.96	97.9		
Zinc	50	120	0.728	95.9	50	120	0.61	97.2		
Lead	50	120	5.26	99.8	50	120	4.32	99.9		
Cadmium	50	120	4.01	99.9	50	120	3.28	99.8		

Table 5 455

Parameters of Bohart-Adams and Thomas models for the sorption of metal ions by 456

457	pilot-scale	system.
	1	2

	Matal	E	Bohart-Adams			Thomas		
	Metal	K _{BA}	N ₀	R^2	K _T	\mathbf{q}_0	R^2	
Run1	Ni	0.0753	159.69	0.993	0.0764	1.13	0.990	
	Zn	0.0984	141.44	0.988	0.1002	1.00	0.992	
	Cu	0.0039	762.67	0.788	0.0042	4.9	0.818	
Run2	Cd	0.0075	899.77	0.735	0.008	6.09	0.754	
	Ni	0.0694	257.07	0.966	0.070	1.83	0.998	
	Zn	0.0974	173.46	0.976	0.101	1.22	0.982	

Notations: K_{BA}, Bohart-Adams rate constant (L mg⁻¹ h⁻¹); N₀, saturation concentration (mg l⁻¹); K_T, Thomas rate constant (L mg⁻¹ h⁻¹); q₀, equilibrium metal sorption (mg g⁻¹); R², correlation coefficient. 458

459

460

462	Table	6
TU2	1 4010	υ

463 The performance of the bed column system packed with *A. bisporus* and *P.*

464 cornucopiae.

Matal	Outlet effluent concentration	Uptake	Removal
Wietai	$(mg L^{-1})$	$(mg g^{-1})$	(%)
Copper	0.062	0.61	97.8
Nickel	0.308	1.33	95.1
Zinc	0.186	0.85	95.4
Lead	0.05	6.16	99.8
Cadmium	0.039	4.69	99.8

465

467 Table /	ble 7
-------------	-------

468	Sorption –	Desorption	parameters.
-----	------------	------------	-------------

Cycle		A. bisport	$us (mg g^{-1})$			P. cornuco	$piae (mg g^{-1})$	
No.	Cd		Pb		Cd		Pb	
	Sorption	Desorption	Sorption	Desorption	Sorption	Desorption	Sorption	Desorption
1	4.01	3.89	5.26	5.04	3.28	3.07	4.32	4.05
2	3.75	3.59	4.99	4.61	3.03	2.79	3.97	3.53
3	3.42	3.33	4.58	4.36	2.61	2.45	3.44	3.28

482 Fig. 3 FTIR spectrums of *P. cornucopiae* (A) and modified *P. cornucopiae* (B)

Fig. 4 Breakthrough profile of nickel, zinc and copper in the effluent from column I 485 486

in the system packing with A. bisporus.

Fig. 5 Breakthrough profile of cadmium, nickel, zinc in the effluent from column I
in the system packing with *P. cornucopiae*.