

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Highlights

CAA may be a better choice for the detection of the antioxidant activity of lactobacilli

1	Cellular model to assess the antioxidant activity of lactobacilli
2	Jiali Xing ¹ , Gang Wang ^{1*} , Zhennan Gu ¹ , Xiaoming Liu ¹ , Qiuxiang Zhang ¹ , Jianxin
3	Zhao ¹ , Hao Zhang ¹ , Yong Q. Chen ¹ , Wei Chen ^{1, 2*}
4	
5	1 State Key Laboratory of Food Science and Technology, School of Food Science and
6	Technology, Jiangnan University, Wuxi 214122, P.R. China
7	2 Synergistic Innovation Center for Food Safety and Nutrition, Wuxi 214122, P.R.
8	China
9	*Corresponding author: Wei Chen and Gang Wang
10	Phone: (86)510-85912155
11	Fax: (86)510-85912155
12	E-mail address: chenwei66@jiangnan.edu.cn and wanggang@jiangnan.edu.cn
12	

13

15	Lactobacilli are associated with multiple health-protective effects. One beneficial
16	effect is their antioxidant activity, which needs to be measured using efficient
17	biologically relevant assays. In this study, a cellular antioxidant assay (CAA) was
18	used to determine the cellular anti-oxidative properties of 10 Lactobacillus strains
19	from 5 species (L. rhamnosus, L. plantarum, L. acidophilus, L. casei, L. fermenti) in
20	hepatocellular carcinoma (HepG2) cells and the results were compared with those
21	obtained with the traditional 2, 2-diphenylpicrylhydrazyl (DPPH) radical scavenging
22	assay. The results from these two methods showed no obvious correlation at three
23	concentrations ($10^7 - 10^9$ colony-forming units/mL). A further study was performed to
24	evaluate the protective effects of the strains against H_2O_2 -induced oxidative stress in
25	HepG2 cells and the results showed greater consistency in the data obtained with
26	CAA assay than in those from the DPPH radical scavenging assay. The findings
27	indicate that CAA may be a better choice for the detection of the antioxidant activity
28	of Lactobacillus strains.

Key words: Lactobacilli; Oxidative stress; Antioxidant activity; Cellular antioxidant
assay; 2, 2-diphenylpicrylhydrazyl radical scavenging assay

RSC Advances Accepted Manuscript

32 Introduction

33 Oxidative stress, is an imbalance in the production of reactive oxygen (ROS) and 34 reactive nitrogen species (RNS) and antioxidant defense. Oxidative stress plays a pivotal role in various pathophysiological conditions¹, causing damage in proteins, 35 36 mutations in DNA, oxidation of membrane phospholipids and modification of 37 low-density lipoproteins. Excessive amounts of ROS can result in cellular damage, 38 which in turn, promotes chronic diseases such as atherosclerosis, arthritis, diabetes, neurodegenerative diseases, cardiovascular diseases, and cancer 2 . The body 39 40 synthesizes antioxidant molecules, which together with antioxidants found in food intake, set up a biological antioxidant barrier to counteract the oxidant molecules³. 41 42 However, this defense system still fails to protect the body against oxidative stress in 43 certain circumstances. Consequently, efforts should be focused on increasing 44 antioxidant defenses for the maintenance of human health and disease prevention⁴. 45 Probiotics have recently received significant attention because of their role in the

maintenance of human health ⁵. Many studies have demonstrated that *Lactobacillus* strains can decrease oxidative stress and accumulation of ROS, which help to prevent diseases ⁶⁻⁸. In addition, the concentrations of 10^7 colony forming units (cfu)/mL. – 10^9 cfu/mL were the common concentration used in different research for probiotics⁹⁻¹². This evidence led us to investigate the protective effects of *Lactobacillus* strains against oxidative stress at the concentration 10^7 cfu/mL – 10^9 cfu/mL in this study.

53	Several methods are available to assess the antioxidant activity (AA) of
54	Lactobacillus strains. Chemical antioxidant assays of Lactobacillus strains could be
55	assigned to ROS scavenging, as well as metal ion chelation and the inhibition of
56	ascorbate or linoleic acid peroxidation ^{13, 14} . The 2, 2-diphenylpicrylhydrazyl (DPPH)
57	radical scavenging activity assay is an important AA estimating method because it
58	reacts directly and rapidly with antioxidant compounds ¹⁵⁻¹⁷ . However, this assay is
59	not perfect as it is affected by light intensity, oxygen concentration, and solvent type
60	¹⁸ . Furthermore, it does not reflect of biological activity because it does not take into
61	account cell uptake, partitioning of antioxidants between aqueous and lipid phases,
62	or phases I and II metabolism ¹⁹ . Although the antioxidant molecular mechanisms of
63	probiotics have not yet been elucidated completely, probiotics are live organisms,
64	and as such, are more complicated and differ from pure antioxidant compounds.
65	Considering the complexity involved in their action mechanisms, the obtained
66	antioxidant capacity indices by chemical assays thus reflect their antioxidant effects
67	in vivo insufficiently.

Animal models and human studies are more appropriate but are also more expensive and time-consuming. These aspects render the cellular antioxidant assays (CAA) extremely attractive intermediate testing method ²⁰. The CAA assay, which quantifies AA in cell cultures, was developed to meet the need for a more biologically representative method than the popular chemistry antioxidant capacity measures ²¹, and has been applied to evaluate the AA of several natural products

including foods, and dietary supplements. It could also be engaged to evaluate

whether *Lactobacillus*, as a live organism, can change the redox cellular state 20 . 75 76 In this study, the CAA assay were applied to evaluate the AAs of Lactobacillus 77 strains in human hepatocellular carcinoma (HepG 2) cells in order to enhance our 78 knowledge and understanding of their biological activity. The CAA values of 10 79 Lactobacillus strains from 5 species (L. rhamnosus, L. plantarum, L. acidophilus, L. 80 *casei*, L. *fermenti*) were compared with those obtained by DPPH radical scavenging 81 assay. In particular, the strains with high AA appraised by CAA assay and DPPH 82 radical scavenging assay respectively were further examined to evaluate their 83 protective effects against hydrogen peroxide (H₂O₂)-induced oxidative stress in 84 HepG2 cells so as to determine which method was more suitable for the assessment 85 AA of Lactobacillus strains.

86 Materials and methods

87 Chemicals

74

88 Methylene blue, 2', 7'-dichlorofluorescin diacetate (DCFH-DA), 2, 2-azobis 89 (2-amidinopropane) dihydrochloride solution (ABAP), 2, 2-90 diphenyl-1--picrylhydrazyl (DPPH), and quercetin dihydrate were purchased from 91 Sigma-Aldrich Chemical Co. (St. Louis, MO). Dimethyl sulfoxide (DMSO) and 92 Hanks' Balanced Salt Solution (HBSS) were purchased from Gibco Life Technologies 93 (Grand Island, NY). Dulbecco's minimum essential medium-high glucose (DMEM),

94	fetal bovine serum (FBS), penicillin, and streptomycin were obtained from HyClone
95	(Logan, UT, USA). DeMan, Rogosa, and Sharpe (MRS) broth were purchased from
96	Qingdao Hopebio Company (China). Ethanol, acetic acid, glycerol, glutaraldehyde
97	and other chemicals were purchased from Shanghai Chemical Reagent Company
98	(China). All chemicals used in this study were of analytical grade.
99	Cell culture
100	Human hepatocellular carcinoma HepG2 cells (from the cell bank of the type culture
101	collection of the Chinese Academy of Sciences, Shanghai, China) were grown in
102	DMEM supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (100
103	$\mu g/mL)$ and maintained at 37 °C in an incubator with 5% carbon dioxide. The cells
104	used in this study were at passage 10 to 20.
105	Bacterial culture
106	All of the Lactobacillus strains used in this study are listed in Table 1. These strains
107	were maintained as frozen stocks (–80 °C) in MRS broth supplemented with 30% (v/v)
108	glycerol. These strains were consecutively reactivated at least three times using 1%
109	(v/v) inoculum in MRS broth at 37 °C for 20 h prior to use.
110	Preparation of bacterial suspensions
111	The biomass from the 20 h cultures was harvested by centrifugation (3,000 \times g for 10
112	min at 4 °C), washed three times, and suspended in a phosphate-buffer saline (PBS),
113	as appropriate for the specific assay. Bacterial suspensions used for cell cytotoxicity,

114 the CAA assay, and the DPPH radical scavenging assay were obtained from cell

suspensions containing approximately 1×10^9 , 1×10^8 , and 1×10^7 cfu/mL.

116 Free radical-scavenging assay

The DPPH radical scavenging method is commonly used to evaluate the AAs of 117 lactobacilli ²². The scavenging effects of 10 Lactobacillus strains on the DPPH free 118 119 radical were measured in accordance with the slightly modified method of Lin and Chang²³. Bacterial suspensions (10⁷, 10⁸, and 10⁹ cfu/mL, 1 mL) and freshly prepared 120 121 DPPH solutions (0.2 mM, 1 mL) were briefly mixed. The mixture was shaken 122 vigorously and allowed to react for 30 min in the dark at room temperature. The 123 control sample contained deionized water instead of the sample solution. The 124 scavenged DPPH was then monitored by measuring the absorbance at 517 nm using a 125 SpectraMax M5 microplate reader (Molecular Devices, Sunnyvale CA, USA). The 126 scavenging activity was defined as follows:

127 DPPH activity $(\%) = (A_c - A_s) \times 100$

128 where A_C and A_S are the absorbance of the control and test samples at 517 nm,

129 respectively.

130 CAA assay

131 Cell cytotoxicity assay

The HepG2 cell cytotoxicity induced by the 10 *Lactobacillus* strains was measured using the modified methylene blue $assay^{24}$. HepG2 cells were seeded at a density of 4 $\times 10^4$ cells/well on a 96-well microplate in 100 µL of DMEM-10% FBS for 24 h at 37 °C. After rinsing with PBS, the HepG2 cells were treated with 100 µL different

136	concentrations of quercetin or <i>Lactobacillus</i> strains (10', 10°, and 10' cfu/mL) and
137	then incubated again for 6 h at 37 °C. Untreated cells were used as a control. Washed
138	cells were mixed with 50 $\mu L/well$ methylene blue (98% HBSS, 0.67% glutaraldehyde,
139	and 0.6% methylene blue) for 1 h at 37°C to assess cell viability. After incubation, the
140	cells were washed with deionized water until the water was clear and 100 $\mu L/\text{well}$
141	elution solution (49% PBS, 50% ethanol, and 1% acetic acid) were added on a table
142	oscillator (Thermomixer Comfort, Eppendorf, Hamburg, Germany) for 20 min. The
143	absorbance was measured at 570 nm using a SpectraMax M5 microplate reader
144	(Molecular Devices). Different samples were compared with the control. A sample
145	that resulted in more than 10% less absorbance than the control, was considered to be
146	cytotoxic ²⁵ .

147 CAA assay of lactobacilli

148 The CAA assay used for evaluating the AAs of the 10 Lactobacillus strains was that described previously ²⁶ with a minor modification. The HepG2 cells were seeded at a 149 density of 6×10^4 cells/well on black 96-well microplates (with transparent bottoms) 150 151 in 100 µL of DMEM for 24 h at 37 °C to reach 80% confluence and were then treated with *Lactobacillus* strains at final concentrations of 10^7 , 10^8 , and 10^9 cfu/mL after 152 153 rinsing with PBS, including 25 µM of DCFH-DA (dissolved in DMSO) for up to 1 h 154 at 37°C. Quercetin (final concentrations of 2, 4, 8, 16, 32 and 64 µM) was used as 155 antioxidant control. Subsequently, the cells were washed with PBS and treated with 100 µL of 600 mM ABAP (dissolved in HBSS). Fluorescence was measured using a 156

RSC Advances Accepted Manuscript

157 SpectraMax M5 microplate reader (Molecular Devices) for 13 cycles at 5 min 158 intervals ($\lambda ex = 485$ and $\lambda em = 538$). The area under the curve of fluorescence versus 159 time was integrated to calculate the CAA value of each sample after a blank 160 subtraction from the fluorescent readings.

161
$$CAA(unit) = \left\{1 - \left(\int S_A / \int C_A\right)\right\} \times 100$$

162 where SA is the area of the sample and CA is the integrated area in the control curve.

163 Cells treated with DCFH-DA were used as blank, whereas cells treated with 164 DCFH-DA and ABAP were used as controls. Quercetin was used in each experiment 165 as a standard, and the CAA values (units) for *Lactobacillus* strains were expressed as 166 the equivalent amount of quercetin with the same AA (μ M).

167 Protective effect of Lactobacillus strains against H₂O₂ induced oxidative stress in

169 The antioxidant indicators were measured according to a method reported previously ²⁷ with some modifications. HepG2 cells that received different treatments were 170 171 designated as groups G 1, G 2, G 3, G 4, and G 5, respectively. G 1, with no H₂O₂ 172 treatment, served as the control group. Oxidation was induced by exposing HepG2 173 cells to 500 μ M H₂O₂ in DMEM for 6 h in G 2. In G 3 (quercetin + H₂O₂) and G 4, G 174 5, (Lactobacillus strains + H_2O_2), HepG2 cells were pretreated for 12 h with 100 μ M 175 quercetin or different Lactobacillus strains, respectively, and subsequently incubated with 500 µM H₂O₂ for an additional 6 h. Quercetin was dissolved in absolute ethanol 176 177 and then diluted in DMEM to achieve the final concentration (100 μ M). Each 178

RSC Advances

treatment was carried out in triplicate wells. After the 18 h incubation, cells were

179	washed and collected separately for the measurement of antioxidative indicators. The
180	activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD),
181	glutathione peroxidase (GSH-PX), catalase (CAT), and peroxidase (POD) were
182	determined using the detection kit provided by Nanjing Jiancheng Bioengineering
183	Institute (Nanjing, China).
184	Statistical analysis
185	All of the tests were performed in triplicate. All of the data are presented as mean \pm
186	standard deviations (SD). One-way analysis of variance was performed using SPSS
187	(Version 13.0, SPSS Inc., Chicago, IL, USA), followed by Fisher's least significant
188	difference test to verify significant differences between the samples. The results were
189	considered to be significant only when $p < 0.05$. The Pearson correlation test was
190	conducted to determine the correlations between the variables.

191 **Results**

192 Cell cytotoxicity assay of quercetin and lactobacilli

193 The cell toxicity of quercetin and the *Lactobacillus* strains was performed on 194 HepG2 cells using a modified methylene blue assay. The cytotoxic effect of quercetin 195 from concentrations of 2 μ M to 64 μ M caused 7.04 ± 0.09% to 8.50 ± 0.3% cell death, 196 which was lower than 10% cell death, as depicted in the inset graph of Figure 1. The 197 results were consist with previous study^{24, 28, 29}, which have demonstrated that

198 quercetin has no cytotoxicity to cells, and have protective effect on cells. The cytotoxic effect of *Lactobacillus* strains ranged from 0.65 ± 0.002 % (CCFM237, 10^7) 199 cfu/mL) to $7.05 \pm 0.41\%$ (CCFM6, 10^9 cfu/mL). All of the 10 Lactobacillus strains at 200 three concentrations $(10^7 - 10^9 \text{ cfu/mL})$ and the different concentrations of quercetin 201 202 caused less than 10% HepG2 cell death (Figure 1). No significant decrease in cell 203 viability was observed after 24 h of incubation with quercetin or Lactobacillus strains 204 (p > 0.05), which indicated that neither *Lactobacillus* strains nor quercetin displayed 205 toxicity at the concentrations used in these experiments.

206 CAA assay

207 The CAA of quercetin at concentrations of 2-64 µM was determined by 208 monitoring its ability to prevent ABAP induced oxidation of non-fluorescent 209 DCFH-DA to fluorescent 2'-7'-dichlorofluorescin (DCF) in HepG2 cells. A notable 210 dose-dependent inhibition of the ABAP-induced increase in fluorescence was 211 observed following treatment with quercetin (Figure 2A). A decrease in fluorescence 212 intensities (p < 0.05) indicated an increase in the CAA value (p < 0.05), which 213 corresponded to the increase in quercetin concentration. The fluorescence intensities 214 increased with the extension of incubation time with every test concentration of 215 quercetin. The dose-response curve generated by the CAA values from the data 216 presented from quercetin-fluorescence intensities in Figure 2A are shown in Figure 217 2B. The CAA value increased quickly from 2 μ M to 8 μ M of quercetin, and the 218 increase trend got slowly from $32\mu M$ to $64 \mu M$. DCF formation was inhibited by

219	approximately 90% with 64 μ M of quercetin compared with the control based on the
220	fluorescence intensity, which can satisfy the determining of lactobacilli AA. So the
221	concentration range from 2 μM to 64 μM of quercetin was chosen in this study. A
222	standard curve was also generated by the regression equation: $y = 24.53 \ln(x) - 7.047$.
223	This equation had a statistically significant correlation coefficient of 0.9774 , where y
224	(unit) is the CAA and x is the concentration of quercetin in units of μ M. The good
225	non-linear relationships between the quercetin standard and the CAA value were used
226	to measure the AAs of the Lactobacillus strains, i.e., the CAA values for
227	Lactobacillus strains were expressed as the equivalent amount of quercetin with the
228	same CAA value.
229	The CAA assay was used to quantitatively evaluate the AAs of the Lactobacillus

230 strains in HepG2 cells. The typical time kinetics for the inhibition of peroxyl 231 radical-induced DCFH oxidation in the CAA assay of 10 Lactobacillus strains from 5 232 species was tested. The Lactobacillus strains reduced the DCF fluorescence in a 233 time-dependent manner (Figure 3). All of the strains inhibited the oxidation, with 234 lower fluorescence intensities (p < 0.05) than those of controls over time (Figure 3). Significant differences (p < 0.05) in CAA values were found between 10⁹ cfu/mL and 235 the two other concentrations $(10^7 \text{ and } 10^8 \text{ cfu/mL})$ for all the strains (Figure 4). The 236 237 concentration that resulted in the greatest cellular antioxidant activity was 10⁹ cfu/mL for the 10 Lactobacillus strains, with lower (10⁷ cfu/mL and 10⁸ cfu/mL) 238 239 concentrations producing smaller increases in activity (Figure 4).

RSC Advances Accepted Manuscript

240 Evaluation of the AA of lactobacilli using the DPPH radical-scavenging assay

241	The range of the DPPH radical scavenging activity of 10 Lactobacillus at three
242	different concentrations ranged between 14.93 \pm 0.85% DPPH scavenged and 41.28 \pm
243	1.28% DPPH scavenged (Figure 5). CCFM239, CCFM238, CCFM6 and CCFM381
244	showed a slight increase from 10^7cfu/mL to 10^9cfu/mL , but this was not statistically
245	significant. The effects were dose-dependent from 10^7 cfu/mL to 10^9 cfu/mL ($p < 0.05$)
246	for the other strains.

247 Comparison of the AAs of the 10 Lactobacillus strains

The AAs of the 10 *Lactobacillus* strains were compared using the DPPH radical scavenging assay and the CAA assay. The DPPH radical scavenging activities differed significantly from those of CAA assay from 10^7 cfu/mL to 10^9 cfu/mL for the 10 *Lactobacillus* strains (p < 0.05) (Table 2).

The AAs of the 10 Lactobacillus strains at a concentration of 10⁹ cfu/mL were 252 253 compared using the CAA assay and the DPPH radical scavenging assay. The 10 Lactobacillus strains exhibited different AAs at 10⁹ cfu/mL in the two assays (Figure 254 255 6). The activity of CCFM9 (13.85 \pm 0.81µM) was remarkably higher (p < 0.05) than 256 that of other strains in the CAA assay (Figure 6A). However, CCFM237 had a 257 significantly higher AA (41.28 \pm 1.28%) than the other strains (p < 0.05) in the DPPH 258 radical scavenging assay (Figure 6B). In particular, two strains in each species had 259 significantly different AAs (p < 0.05) in the DPPH scavenging assay. The CAA values 260 of the Lactobacillus strains (Figure 6A) also established the intra- strain difference 261 between two strains in each species (p < 0.05).

Protective effect of *Lactobacillus* strains against H₂O₂ Induced oxidative stress in HepG2 Cells

264	The protective effect of <i>Lactobacillus</i> strains against oxidative stress in HepG2
265	cells was also studied. Two strains with high AAs identified by the two different
266	methods (CCFM9 and CCFM237) were used to pretreat the cells. The results showed
267	that the addition of H_2O_2 reduced the activity of SOD, POD, CAT, and T-AOC while
268	the activity of GSH-PX was non-significantly lower than that of the control (Table 3).
269	Analysis of the results revealed that quercetin group (G 3, quercetin + H_2O_2) had high
270	levels of T-AOC, SOD, GSH-PX, CAT, and POD activity ($p < 0.05$) compared with
271	the H_2O_2 group (G 2). Moreover, the activities of GSH-PX and POD were remarkably
272	lower whereas those of T-AOC, CAT and SOD were markedly higher in the quercetin
273	group (G 3, quercetin + H_2O_2) compared with the <i>Lactobacillus</i> groups (G 4, CCFM9
274	+ H_2O_2 ; G 5, CCFM237 + H_2O_2). In addition, the CCFM9 group (G 4, CCFM9 +
275	$\mathrm{H}_{2}\mathrm{O}_{2}$) had a significantly greater effect on the antioxidant indexes of T-AOC, SOD,
276	GSH-PX, and CAT than did the CCFM237 group (G 5, CCFM237 + H_2O_2). POD
277	concentrations were slightly decreased in G 5 compared with G 4, but this was not
278	statistically significant.

279 **Discussion**

280 Accumulated evidence suggests that lactobacilli provide different health benefits

through several mechanisms. Among their different physiological features, the

281

282	anti-oxidative properties appear to be the most important ^{30, 31} . The high AAs of
283	lactobacilli improves their growth and survival, and protects the human body from
284	aging, inflammation, and even from developing cancer ^{3, 32-35} . Thus, the development
285	of effective methods that could be helpful in assessing potential AA, which results in
286	the scavenging of reactive radicals, should be exploited to formulate novel probiotic
287	foods or supplements that can prevent oxidative stress and related diseases.
288	Given the potential of antioxidants to decrease the risk of chronic diseases,
289	measurement of AAs using biologically relevant assays is important ³⁶ . In this study,
290	the CAA assay was first developed to demonstrate cellular anti-oxidative properties of
291	10 Lactobacillus strains from 5 species in the HepG2 cells (Figure 4). In this assay,
292	DCFH-DA is taken up by cells and deacetylated to DCFH. Peroxyl radicals generated
293	from ABAP lead to the oxidation of DCFH to fluorescent DCF. The decrease in
294	fluorescence measured after excitation in the presence of Lactobacillus strains is
295	proportional to the level of their oxidation-inhibiting activity. It was reported that
296	quercetin quenched peroxyl radicals and inhibits the generation of DCF in a dose and
297	time-dependent manner ^{29, 37} , and showed a high AA in the CAA assay ³⁸ . Thus,
298	quercetin was used as a standard to quantify the CAA value of different samples in
299	this study, and the result is consistent with the previous study ³⁹ . Similar to the
300	anti-oxidative behavior of quercetin, 10 Lactobacillus strains at three different
301	concentrations ($10^7 - 10^9$ cfu/mL) also prevented the ABAP-induced oxidation of

RSC Advances Accepted Manuscript

322

RSC Advances

302	DCFH in the HepG2 cells in a time and dose – dependent manner (Figures 3 and 4).
303	These three different concentrations $(10^7, 10^8, 10^9 \text{ cfu/mL})$ of bacteria were also
304	commonly used in previous research for probiotics ⁹⁻¹² . Both the CAA assay and the
305	DPPH radical scavenging assay in our study showed that 10 ⁹ cfu/mL was a better
306	concentration of <i>Lactobacillus</i> strains for scavenging hydroxyl radicals than 10^7
307	cfu/mL or 10^8 cfu/mL. This result agreed with a previous report that L. acidophilus
308	874 had a more significant effect at 10^9 cfu/mL than at other concentrations on H_2O_2 -
309	induced CT-26 cell oxidative damage 40 . We believe that the CAA assay can be used
310	to reflect the AAs of Lactobacillus, and all of the 10 Lactobacillus strains tested had
311	higher AAs in the DPPH and CAA assays at 10^9 cfu/mL than at 10^7 or 10^8 cfu/mL.
312	The promising results of our study supported those of previous reports, in which the
313	concentration of 10 ⁹ cfu/mL was selected to assay the AAs of different <i>Lactobacillus</i>
314	strains ^{22, 30, 41} .

315 The cytotoxicity assay was performed in this study to confirm that Lactobacillus 316 strains had a minimal negative effect on the viability of HepG2 cells using the 317 modified methylene blue assay. Our results agreed well with the findings of Liu and Pan⁴², in which no negative effects on cell viability were seen after Intestine 407 cells 318 319 were incubated with 12 different Lactobacillus strains for 48 h. It was also found in 320 another study that the Lactobacillus strains tested did not produce toxic effects in IPEC-J2 cells ⁴³. 321

Chemical assays of the anti-oxidative potential of Lactobacillus strains have

RSC Advances Accepted Manuscript

323	mainly involved DPPH - free radical scavenging ^{41, 42} . The DPPH assay measures the
324	ability of antioxidants to scavenge peroxyl radicals. The CAA assay is an important
325	tool for screening AAs in natural products by evaluating their potential to exert an
326	antioxidant response at the cellular level, and not just their capacity as reducing agents
327	20 . In this study, we compared the correlation between these two assays and a poor
328	correlation was observed (R ² = 0.594, $p > 0.05$), (R ² = 0.627, $p > 0.05$), (R ² = 0.478, $p > 0.05$), (R ² = 0.05)), (R ² = 0.478,
329	0.05) at the concentrations tested $(10^7 - 10^9 \text{ cfu/mL})$. The poor correlation between the
330	DPPH assay and the cellular assay was probably due to the biological mechanisms of
331	the CAA assay ¹⁹ . The CAA index reflects the capacity of antioxidants to decrease
332	intracellular oxidative stress and evaluates the reduction potential, free radical
333	scavenging-like membrane activity, permeability, cell uptake (taking other
334	distributions into account), and metabolism of an antioxidant compound ²⁰ . Huang et
335	al. ⁴⁴ compared the AAs of Chinese bayberry in assays for 2, 2'-azino-bis
336	(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), the ferric reducing ability of plasma
337	(FRAP), DPPH, oxygen radical absorbance capacity (ORAC), and CAA. The authors
338	found that the antioxidant values obtained from chemical assays (i.e., for ABTS,
339	FRAP, and DPPH) were not significantly correlated with those from the ORAC and
340	CAA assays. This lack of correlation may be because antioxidant action is not limited
341	to ROS/RNS scavenging but also includes the upregulation of antioxidant and
342	detoxifying enzymes, the modulation of cell signaling, and gene expression ²⁰ .

343 There is evidence that the antioxidant triad comprising SOD, CAT, and GSH-PX

344	constitutes the first line of defense against the adverse effects of ROS ⁴⁵ . In this study,
345	two Lactobacillus strains that were identified as having a high AA in the CAA assay
346	and DPPH radical scavenging assay, acted differently to counteract the oxidative
347	stress in HepG2 cells induced by H_2O_2 . The reduction in SOD, CAT, and POD
348	activities in cells exposed to H ₂ O ₂ indicated that oxidative stress might have occurred.
349	Corresponding to the results above, Lactobacillus strains showed a potent protective
350	effect against the damage caused by oxidants in HepG2 cells. Our results showed that
351	both quercetin and Lactobacillus strains recovered their levels of T-AOC, GSH-PX,
352	SOD, CAT and POD. It should be noted that cells pre-incubated with CCFM 9
353	exhibited higher levels of these five indices except for POD, than those observed in
354	cells pretreated with CCFM 237, indicating that CCFM 9 was more effective in
355	protecting against H_2O_2 induced oxidative stress in HepG2 cells than of CCFM 237.
356	This result exhibited a better consistency with the data obtained by CAA assay than
357	that by DPPH scavenging assay, indicating that CAA assay may be a better choice for
358	the detection of AAs of Lactobacillus strains. Because mammalian cells were used in
359	the CAA assay, the AAs observed in this assay may be more highly correlated with
360	the actual situation in the organisms than those obtained from chemical assays.
361	Meanwhile, the CAA assay avoided the disadvantage of animal models and human
362	studies which being expensive and time-consuming. Therefore, the CAA assay used
363	for detecting the AA of lactobacilli could be an attractive intermediate method
364	between chemical assay and animal model.

365 Conclusion

366	Recently, lactic acid bacteria have received much attention from scientists due to their
367	potential for the treatment of many diseases because of their AA. In this study,
368	Lactobacillus strains were assessed for their protective effects against radical-induced
369	oxidative damage in chemical assay and in HepG2 cells. The screening resulted in no
370	correlation between the AA of 10 Lactobacillus strains detected in the CAA assay and
371	the DPPH radical scavenging assay. CCFM 9 had highest AA (13.85 \pm 0.81 μ M) in the
372	CAA assay, while CCFM237 had the highest AA ($41.28 \pm 1.28\%$ DPPH scavenged) in
373	the DPPH scavenging assay. Due to the biological relevance of the CAA assay,
374	CCFM 9 showed a greater protective effect, as seen in the expression of cellular
375	antioxidant enzymes. In addition, the AA of Lactobacillus strains could be affected by
376	their concentration according to our results. A concentration of 10^9 cfu/mL of the 10
377	Lactobacillus strains was more effective than 10^8 cfu/mL or 10^7 cfu/mL based on the
378	DPPH radical scavenging assay and CAA assay. Thus, this study proposed a method
379	of screening Lactobacillus strains in cultured cells, which is as an extremely attractive
380	intermediate method between chemical assays and animal models. Although the
381	biological mechanism of the AA of Lactobacillus strains on cells should still be
382	explored, the development of CAA assays to screen highly antioxidant Lactobacillus
383	strains could provide a new class of potent methods that are potentially devoid of the
384	side effects of chemical assays and animal models.

U	
U	
0	
U	
63	
\mathbf{O}	

385 Acknowledgements

386	This work was supported by the National High Technology Research and
387	Development Program of China (863 Program Nos. 2013BAD18B01,
388	2013BAD18B02, 2012BAD28B07, 2012BAD12B08), the National Natural Science
389	Foundation of China (Nos. 31301407, 31200691), the National Basic Research
390	Program of China (973 Program No. 2012CB720802), key projects in the National
391	Science and Technology Pillar Program during the 12th Five- Year Plan (Nos.
392	2012BAD12B08, 2012BAD28B07), the 111 project B07029, and a project funded by
393	the Priority Academic Program Development of Jiangsu Higher Education
394	Institutions.

397 S. J. S. Flora, Cellular and Molecular Biology, 2007, 53, 1-2. 1. 398 2. O. Firuzi, R. Miri, M. Tavakkoli and L. Saso, Current Medicinal Chemistry, 399 2011, 18, 3871-3888. 400 E. Songisepp, J. Kals, T. Kullisaar, R. Maendar, P. Huett, M. Zilmer and M. 3. 401 Mikelsaar, Nutrition Journal, 2005, 4, 1-10. 402 M. Serafini and D. Del Rio, Redox report 2004, 9, 145-152. 4. 403 5. , !!! INVALID CITATION !!! 404 6. C. B. Forsyth, A. Farhadia, S. M. Jakate, Y. M. Tang, M. Shaikh and A. 405 Keshavarzian, Alcohol, 2009, 43, 163-172. J. Lee, K. T. Hwang, M. S. Heo, J. H. Lee and K. Y. Park, Journal of 406 7. 407 Medicinal Food, 2005, 8, 299-304. 408 A. S. Hathout, S. R. Mohamed, A. A. El-Nekeety, N. S. Hassan, S. E. Aly and 8. 409 M. A. Abdel-Wahhab, Toxicon, 2011, 58, 179-186. 410 9. Y. H. Wang, Y. L. Liu, A. Sidhu, Z. H. Ma, C. McClain and W. K. Feng, 411 American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012, 412 303, G32-G41. 413 10. P. Chen, Q. Zhang, H. Dang, X. Liu, F. Tian, J. Zhao, Y. Chen, H. Zhang and 414 W. Chen, Food Control, 2014, 35, 65-72. 415 11. H. M. Joo, Y. J. Hyun, K. S. Myoung, Y. T. Ahn, J. H. Lee, C. S. Huh, M. J. 416 Han and D. H. Kim, International Immunopharmacology, 2011, 11, 417 1758-1765. 418 12. T. Arora, J. Anastasovska, G. Gibson, K. Tuohy, R. K. Sharma, J. Bell and G. 419 Frost, British Journal of Nutrition, 2012, 108, 1382-1389. 420 13. M.-Y. Lin and C.-L. Yen, Journal of Agricultural and Food Chemistry, 1999, 421 47, 1460-1466. 422 14. T. Kanno, T. Kuda, C. An, H. Takahashi and B. Kimura, LWT-Food Science 423 and Technology, 2012, 47, 25-30. 424

396

References

- 424 15. M. R. Gazi, M. Yokota, Y. Tanaka, S. Kanda and H. Itabashi, *Animal Science Journal*, 2007, **78**, 34-40.
- 426 16. K. A. Kang, K. H. Lee, R. Zhang, M. J. Piao, S. Chae, K. N. Kim, Y. J. Jeon,
 427 D. B. Park, H. J. You, J. S. Kim and J. W. Hyun, *Biological & Pharmaceutical*428 *Bulletin*, 2006, **29**, 1820-1824.
- 429 17. S. Milardović, D. Iveković and B. S. Grabarić, *Bioelectrochemistry*, 2006, 68, 175-180.
- 431 18. R. Apak, K. Gueclue, B. Demirata, M. Oezyuerek, S. E. Celik, B. Bektasoglu,
 432 K. I. Berker and D. Oezyurt, *Molecules*, 2007, 12, 1496-1547.
- 433 19. K. L. Wolfe and R. H. Liu, *Journal of Agricultural and Food Chemistry*, 2008,
 434 56, 8404-8411.
- 435 20. C. López-Alarcón and A. Denicola, Analytica Chimica Acta, 2013, 763, 1-10.
- 436 21. W. Song, C. M. Derito, M. K. Liu, X. J. He, M. Dong and R. H. Liu, Journal

437		of Agricultural and Food Chemistry, 2010, 58, 6621-6629.
438	22.	S. Zhang, L. Liu, Y. Su, H. Li, Q. Sun, X. Liang and J. Lv, African Journal of
439		Microbiology Research, 2011, 5, 5194-5201.
440	23.	M. Lin and F. Chang, Digestive diseases and sciences, 2000, 45, 1617-1622.
441	24.	L. Wang, J. Chen, H. Xie, X. Ju and R. H. Liu, Journal of Agricultural and
442		Food chemistry, 2013, 61, 5103-5113.
443	25.	D. L. Felice, J. Sun and R. H. Liu, Journal of Functional Foods, 2009, 1,
444		109-118.
445	26.	L. G. Malta, E. P. Tessaro, M. Eberlin, G. M. Pastore and R. H. Liu, Food
446		Research International, 2013, 53, 417-425.
447	27.	YL. Li, K. Lei, X. Xu, I. R. Rajput, DY. Yu and WF. Li, International
448		journal of agriculture & biology, 2013, 15, 927-932.
449	28.	F. Kabir, W. W. Tow, Y. Hamauzu, S. Katayama, S. Tanaka and S. Nakamura,
450		Food Chem, 2015, 167 , 358-362.
451	29.	K. L. Wolfe and R. H. Liu, Journal of Agricultural and Food Chemistry, 2007,
452		55 , 8896-8907.
453	30.	A. Amaretti, M. di Nunzio, A. Pompei, S. Raimondi, M. Rossi and A. Bordoni,
454		Applied microbiology and biotechnology, 2013, 97, 809-817.
455	31.	Y. Zhang and Y. Li, Curr Opin Biotechnol, 2013, 24, 142-147.
456	32.	H. Zhang, J. Sun, X. Liu, C. Hong, Y. Zhu, A. Liu, S. Li, H. Guo and F. Ren,
457		Journal of Microbiology, 2013, 51 , 777-782.
458	33.	H. An, Z. Zhai, S. Yin, Y. Luo, B. Han and Y. Hao, Journal of agricultural and
459		food chemistry, 2011, 59 , 3851-3856.
460	34.	M. Naruszewicz, ML. Johansson, D. Zapolska-Downar and H. Bukowska,
461		The American Journal of Clinical Nutrition, 2002, 76, 1249-1255.
462	35.	E. Fabian and I. Elmadfa, International Journal for Vitamin and Nutrition
463		Research, 2007, 77, 79-88.
464	36.	K. L. Wolfe, X. M. Kang, X. J. He, M. Dong, Q. Y. Zhang and R. H. Liu,
465		Journal of Agricultural and Food Chemistry, 2008, 56, 8418-8426.
466	37.	N. Mustapha, I. Bouhlel, F. Chaabane, I. M. Bzeouich, K. Ghedira, T.
467		Hennebelle and L. Chekir-Ghedira, Applied biochemistry and biotechnology,
468		2014, 172 , 2266-2275.
469	38.	E. K. Olsen, E. Hansen, J. Isaksson and J. H. Andersen, Marine Drugs, 2013,
470		11, 2769-2784.
471	39.	J. Xing, G. Wang, Q. Zhang, X. Liu, Z. Gu, H. Zhang, Y. Q. Chen and W.
472		Chen, <i>Plos One</i> , 2015, 10 .
473	40.	J. Yang, Q, Master thesis, Jiangnan University, 2009.
474	41.	Q. Shen, N. Shang and P. Li, Current Microbiology, 2011, 62, 1097-1103.
475	42.	C. Liu and T. Pan, Journal of Food and Drug Analysis, 2010, 18, 77-86.
476	43.	J. Zhu, Doctor thesis, Shanghai Jiao Tong University, 2011.
477	44.	H. Huang, Y. Sun, S. Lou, H. Li and X. Ye, Food Chemistry, 2014, 146,
478		363-370.

- 479 45. M. Koziorowska-Gilun, M. Koziorowski, J. Strzeżek and L. Fraser,
- 480 *Reproductive Biology*, 2011, **11**, 37-47.

÷			ł
	2		
	i		
		L	
	į	4	1
	1	1	ĥ
	ļ	y	1
	1		
	1		1
	(F	
	Ì		
	(
			9
	2	2	
			į
	ļ		1
	(
÷			
	ī	P	
	1	A	4
		Ч	1
	(ł.	1
	Ì		2
		Ċ	5
		2	
			_
	j	2	ĥ
	i	Ē	-
	1	5	
	(F	
	i		
	1	0	
	ļ		1
	Ĵ		
	l		
	p.		
1	1		

482	FIGURE CAPTIONS
482	FIGURE CAPTIONS

Figure 1. Cytotoxicity of quercetin (inset) and 10 *Lactobacillus* strains on human hepatocellular carcinoma HepG2 cells. Bars indicate means \pm SD of different concentrations of *Lactobacillus* strains: 10⁷ cfu/mL (black), 10⁸ cfu/mL (dark gray), and 10⁹ cfu/mL (dashed).

487 Figure 2. AAs of quercetin evaluated by the CAA method. (A) Inhibition of peroxyl

488 radical-induced oxidation of DCFH to DCF in HepG2 cells by quercetin (mean \pm SD,

- 489 n = 3; (B) CAA values of quercetin. The CAA value was calculated as the difference
- 490 in the area under the curve between the tested samples and the control wells;491 calibration curves with non-linear fitting.
- 492 **Figure 3.** Peroxyl radical-induced oxidation of DCFH to DCF in HepG2 cells and the
- 493 inhibition of oxidation by the 10 *Lactobacillus* strains over time.
- 494 Figure 4. CAA values of the 10 Lactobacillus strains. The CAA value was expressed
- 495 as an equivalent amount of quercetin (μ M). Data represent the mean \pm SD values that
- 496 were obtained from six wells in each group. Different letters mean statistically
- 497 significant differences at p < 0.05.
- 498 Figure 5. DPPH radical scavenging activity of 10 *Lactobacillus* strains. Bars indicate
- 499 means \pm SD of different concentrations of *Lactobacillus* strains: 10⁷ cfu/mL (black),
- 500 10^8 cfu/mL (dark gray), and 10^9 cfu/mL (dashed). Means with a common letter are not
- significantly different within each bacterial group (p > 0.05).
- 502 Figure 6. DPPH radical scavenging activity (A) and CAA values (B) of the 10

- 503 Lactobacillus strains at 10⁹ cfu/mL. Different letters mean statistically significant
- 504 differences at p < 0.05. Bars with no letters in common are significantly different (p < 0.05)
- 505 0.05).
- 506

507 Table 1. Lactic acid bacteria from the Culture Collection of Food Microorganisms of

Lactobacillus Strain	Origins	509
L. rhamnosus CCFM-JU 237	Pickles	
L. rhamnosus CCFM-JU 469	Pickles	510
L. plantarum CCFM-JU 239	Pickles	711
L. plantarum CCFM-JU 238	Pickles	511
L. acidophilus CCFM-JU 6	Pickles	512
L. acidophilus CCFM-JU 137	Pickles	513
<i>L. casei</i> CCFM -JU 9	Pickles	514
L. casei CCFM -JU 5	Pickles	515
L. fermenti CCFM-JU 381	Old leaven d	lough
L. fermenti CCFM-JU 424	Acid kidney	bean 517

508 Jiangnan University (Wuxi, China) used in this study

320	Table 2. Correlations between the two assays for antioxidant activity				
	Correlation coefficient	CAA assay at	CAA assay at	CAA assay at	
		10^7cfu/mL	10^8 cfu/mL	10 ⁹ cfu/mL	
	DPPH at 10 ⁷ cfu/mL	0.594			
	DPPH at 10 ⁸ cfu/mL		0.627		
	DPPH at 10 ⁹ cfu/mL			0.478	

520 Table 2. Correlations between the two assays for antioxidant activity

521 * *p* < 0.05

Torgot	C 1 (control)	$G_2(H_0)$	G 3 (quercetin +	G 4	G 5
Talget	G I (control)	$0.2(H_2O_2)$	$H_2O_2)$	$(CCFM9 + H_2O_2)$	$(CCFM237 + H_2O_2)$
T-AOC	5.34 ± 0.01^{b}	3.19 ± 0.012^a	8.16 ± 0.035^{e}	6.85 ± 0.014^d	$5.91 \pm 0.023^{\circ}$
(U/mgprot)					
SOD	24.46 ± 0.024^{b}	23.82 ± 0.01^{a}	39.59 ± 0.042^{e}	32.63 ± 0.036^d	28.19 ± 0.031^{c}
(U/mgprot)					
GSH-PX	1.11 ± 0.012^a	1.05 ± 0.016^a	3.98 ± 0.013^{b}	6.91 ± 0.04^{d}	5.58 ± 0.064^{c}
(U/mgprot)					
CAT	2.48 ± 0.13^{b}	1.34 ± 0.11^{a}	3.45 ± 0.13^{e}	3.11 ± 0.13^{d}	3.07 ± 0.13^{c}
(U/mgprot)					
POD	1.36 ± 0.016^b	0.88 ± 0.011^{a}	5.10 ± 0.019^{c}	5.30 ± 0.02^{d}	5.25 ± 0.025^d
(U/mgprot)					

523 Table 3: Antioxidant enzyme activities of cell lysate in different treatment groups

524 Different letters indicate statistically significant differences at p < 0.05.

525 T-AOC, total antioxidant capacity; SOD, superoxide dismutase; GSH-PX, glutathione

526 peroxidase; CAT, catalase; POD, peroxidase

528 FIGURE GRAPHICS

529 **Figure 1.**

533 Figure 2A.

536 Figure 2B.

539 **Figure 3**

540

Figure 4.

546 **Figure 5.**

Figure 6B.

