

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Tuning chemistry of graphene oxides by sonochemical approach:
2	Application on adsorption properties
3	Yubing Sun ^{1,2,3*} , Shubin Yang ² , Congcong Ding ² , Zhongxiu Jin, ² Wencai Cheng ^{4,51}
4	1. Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei,
5	230031, P.R. China
6	2. School of Environment and Chemical Engineering, North China Electric Power
7	University, Beijing 102206, P.R. China.
8	3. School for Radiological and Interdisciplinary Sciences, Soochow University,
9	215123, Suzhou, P.R. China
10	4. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher
11	Education Institutions, P.R. China
12	5. Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
13	ABSTRACT: The change in chemical properties of graphene oxides (GOs) can be
14	tuned by the sonochemical approach. The layers of GOs were significantly decreased
15	by the sonochemical approach from the high resolution transmission electron
16	microscopy and atomic force microscopy analysis. The abundant hydroxyl groups and
17	carboxyl groups were introduced with increasing ultrasonic time by the analysis of
18	Raman, FTIR, UV-vis absorbance spectroscopy and XPS techniques. The adsorption
19	of U(VI) on GOs significantly increased at pH 1.0 - 6.0, whereas decreased adsorption
20	was observed at $pH > 8.0$. The adsorption capacities of GOs increased with increasing
21	ultrasonic time. According to EXAFS analysis, the interaction mechanism between

^{*} Corresponding author. Tel: +86 551 65592788; fax: +86 551 65591310. E-mail: <u>sunyb@ipp.ac.cn</u> (Y. B. Sun)

22	radionuclides and GOs was inner-sphere surface complexation. Such an efficient
23	approach to control the chemical properties of GOs further promotes its applications
24	in environmental cleanup.

25 **1. Introduction**

Owing to the excellent water-solubility, large specific surface area, enriched 26 27 oxygenated functional groups, it is demonstrated that graphene oxides (GOs) presents 28 high efficient adsorption capacities for heavy metals and radionuclides [1-4]. Zhao et al. [1] demonstrated that the few-layered GOs presented high adsorption performance 29 30 for heavy metals. Sun et al. [2] also found that the maximum adsorption capacity of few-layered GOs at pH 4.5 and T = 298 K was 175 mg/g for Eu(III), which was much 31 higher than those of other today's materials. It is demonstrated that such high 32 33 adsorption performance is attributed to a variety of hydrophilic oxygenated functional groups such as massive hydroxyl and epoxy groups at the basal plane and the small 34 amounts of carboxyl and carbonyl groups at the sheet edges [5-9]. To the best of the 35 author's knowledge, few studies on the effect of these oxygenated functional groups 36 37 on the adsorption properties of GOs by sonochemical approach were observed 38 [10-14].

Herein, we presented an efficient approach to control the amount of oxygenated functional groups of GOs by using sonochemical approach at different time intervals. The sonochemical approach has been extensively employed to functionalize the various nanostructured materials [15-17]. The objectives of this study were (1) to characterize the change in surface properties and nanostructures of GOs at different

44	ultrasonic time via high resolution transmission electron microscopy (HRTEM),
45	atomic force microscopy (AFM), Raman spectroscopy, Fourier transformed infrared
46	spectroscopy (FTIR), UV-vis absorbance spectroscopy and X-ray photoelectron
47	spectroscopy (XPS); (2) to investigate the adsorption properties of GOs under
48	different ultrasonic time; (3) to determine adsorption mechanism between
49	radionuclides and GOs with a variety of oxygenated functional groups by extended X-
50	ray absorption fine structure (EXAFS) spectroscopy. The highlight of this paper is that
51	the adsorption capacity of GOs significantly increase with increasing ultrasound time
52	at low frequency conditions.
53	2. Experimental
54	2.1 Materials
54 55	2.1 Materials Expandable graphite (< 20 μm) was provided from Qingdao Tianhe Graphite Co., Ltd
55	Expandable graphite (< 20 μ m) was provided from Qingdao Tianhe Graphite Co., Ltd
55 56	Expandable graphite (< 20 μ m) was provided from Qingdao Tianhe Graphite Co., Ltd (Shandong, China). The expandable graphite was used as starting material instead of
55 56 57	Expandable graphite (< 20 μ m) was provided from Qingdao Tianhe Graphite Co., Ltd (Shandong, China). The expandable graphite was used as starting material instead of flake graphite to ensure more uniform oxidization [12, 18]. Sulfuric acid (~ 98%),
55 56 57 58	Expandable graphite (< $20 \ \mu m$) was provided from Qingdao Tianhe Graphite Co., Ltd (Shandong, China). The expandable graphite was used as starting material instead of flake graphite to ensure more uniform oxidization [12, 18]. Sulfuric acid (~ 98%), sodium nitrate, potassium permanganate, sodium borohydride and hydrogen peroxide
55 56 57 58 59	Expandable graphite (< 20 μ m) was provided from Qingdao Tianhe Graphite Co., Ltd (Shandong, China). The expandable graphite was used as starting material instead of flake graphite to ensure more uniform oxidization [12, 18]. Sulfuric acid (~ 98%), sodium nitrate, potassium permanganate, sodium borohydride and hydrogen peroxide (H ₂ O ₂ , 37 %) were purchased from Sinopharm Chemical Reagent Co., Ltd. Milli-Q
55 56 57 58 59 60	Expandable graphite (< 20 μ m) was provided from Qingdao Tianhe Graphite Co., Ltd (Shandong, China). The expandable graphite was used as starting material instead of flake graphite to ensure more uniform oxidization [12, 18]. Sulfuric acid (~ 98%), sodium nitrate, potassium permanganate, sodium borohydride and hydrogen peroxide (H ₂ O ₂ , 37 %) were purchased from Sinopharm Chemical Reagent Co., Ltd. Milli-Q water was used in this study. U(VI) stock solution (0.1 mol/L) was prepared from

The GOs were synthesized by the chemical oxidation of expandable graphite in terms of modified Hummers' method [19]. Briefly, the expandable graphite (300 mesh, \sim

66	2.0 g) and NaNO ₃ (co-solvent, 1.5 g) was added into concentrated H_2SO_4 (150 mL)
67	under vigorous stirring and ice-water bath conditions, then KMnO ₄ (9.0 g) was slowly
68	added over about 2 h. The suspension was continually stirred for 5 days at room
69	temperature. Then the suspension was heated to 98 °C, and 280 mL 5 wt% $\rm H_2SO_4$
70	solution was added over about 2 h under vigorous stirring conditions. The residual
71	MnO_4^- ions were removed by adding H_2O_2 solution (12 mL, 30 wt %) at 60 °C. After
72	reactions, the mixture was centrifuged and washed with 10 % HCl solution to remove
73	residual metal ions. The precipitate was then washed with distilled water and
74	centrifuged repeatedly until pH neutral. The few layers of GOs were obtained in the
75	supernatant with an ultrasonic treatment (PS-1008HT dual-frequency ultrasonic
76	cleaner, Hefei climbed Ultrasonic Technology Co., Ltd.) at 40 kHz for 30 min and
77	followed by centrifugation at 13000 rpm for 60 min and then dialysis it over several
78	weeks [20]. The aforementioned GO suspensions were sonicated 0, 8, 16 and 24 h
79	(noted as GO0, GO1, GO2 and GO3, respectively) by using PS-1008HT
80	dual-frequency ultrasonic cleaner operating at a low frequency of 20 KHz. All
81	ultrasonic experiments were conducted at ultrasonic power between 100 and 110
82	mW/mL measured by calorimetry. The oxygenated functional groups in GOs facilitate
83	the exfoliation into monolayers under the sonochemical approach. The advantage of
84	ultrasound is that it prevents aggregation of GOs by the introduction of OH carboxyl
85	and epoxy groups in between the layers of GOs, which may not be achieved by the
86	conventional chemical methods. Details on the synthesis of GOs were well-
87	documented in our published reports [1, 4].

88 2.3 Characterization

89	The morphologies and nanostructures of GO0, GO1, GO2 and GO3 were investigated
90	by AFM (Digital instrumental Nanoscope III) and HRTEM (JEOL 2010 FEG
91	microscope). The samples for HRTEM and AFM analysis were prepared by
92	dispensing a small amount of suspension on 200 mesh copper grids and mica
93	substrate, respectively. A variety of oxygenated functional groups of GO0, GO1, GO2
94	and GO3 were analyzed using XPS with a monochromatic Mg XZ-ray radiation
95	(thermo ESCALAB 250 electron spectrometer) at 10 kV and 5 mA under 10^{-8} Pa
96	residual pressure. The peak energies of XPS spectra were corrected with C 1s peak at
97	284.6 eV as a reference. The deconvolution of C 1s and O 1s lines were performed
98	using XPSPEAK41 program after substraction of the background (Shirley baseline
99	correction). The FTIR spectra of the samples were recorded in pressed KBr pellets
100	(Aldrich, 99%, analytical reagent) by using a PerkinElmer Spectrum 100 system
101	spectrometer at room temperature. The Raman spectra were conducted using a
102	LabRam HR Raman spectrometer with excitation at 514.5 nm for 10 s by Ar^+ laser to
103	avoid overheating of the GOs. The absorbance of the GO0, GO1, GO2 and GO3 in
104	aqueous solution (~ 5 mg/L) was characterized using UV-vis spectroscopy (Varian,
105	Cary 5000). Uranium L_{III} -edge EXAFS of samples were conducted at Shanghai
106	Synchrotron Radiation Facility. The spectra of samples were collected in fluorescence
107	mode with Silicon (111) double-crystal monochromator. The analysis and fitting of
108	EXAFS data were performed using Athena and Artemis interfaces to IFFEFIT 7.0
109	software [21, 22].

111	The batch adsorptions of U(VI) onto GO0, GO1, GO2 and GO3 (0.25 g/L) were
112	conducted under pH 4.0 and $T = 293$ K within the U(VI) concentration ranging from 1
113	to 100 mg/L. Briefly, the bulk suspensions of GO0, GO1, GO2 and GO3 with $NaClO_4$
114	were pre-equilibrated for 24 hr, then U(VI) stock solutions were spiked into the bulk
115	suspension gradually to avoid the formation of schoepite precipitate. Subsequently,
116	the suspensions were shaken for 48 h to ensure that the adsorption reaction could
117	achieve adsorption equilibrium (preliminary experiments demonstrated that 6 h was
118	adequate for the suspension to obtain adsorption equilibrium). To eliminate the effect
119	of U(VI) adsorption on polycarbonate tube walls, the adsorption of U(VI) without
120	adsorbents was carried out under the same experimental conditions. The solid and
121	liquid phases were separated by centrifugation at 9000 rpm for 30 min. The
122	concentration of U(VI) was analyzed by kinetic phosphorescence analyzer (KPA-11,
123	Richland, USA). All experimental data were the average of triplicate determinations
124	and the error bars (5 %) were provided.

125 **3. Results and Discussion**

126 *3.1 Characterization*

The characterization of GO0, GO1, GO2 and GO3 were conducted via HRTEM, AFM, Raman spectroscopy, FT-IR, UV-vis absorbance spectroscopy and XPS. The morphology and nanostructure of GO0 and GO3 were visualized in terms of HRTEM (Figure 1A and B). It can be clearly seen that the lattice lines decreased from several tens of nanometers for GO0 (~10 nm, Figure 1A) to around 1.0 nm for GO3 (~ 1.0 nm,

7 / 24

132	Figure 1B), which could be correspond to multilayer and monolayer of GOs
133	respectively, which was consistent with the results of Stankovich et al. [23]. The
134	slightly higher thickness of monolayer GOs (~ 1.2 nm) could be due to the presence
135	of oxygenated functional groups [24]. Results from HRTEM images revealed that the
136	lateral dimensions of GOs decreased by the sonochemical approach.
137	Figure 1C and D showed the AFM images of GO0 and GO3, respectively. As shown
138	in Figure 1C, the thickness of GO0 was ca. 1-2 nm, whereas approximately 1.0 nm
139	was observed for GO3 (Figure 1D). The results of AFM analysis indicated that the bi-
140	and mono-layer GO nanosheets can be obtained by the sonochemical approach. The
141	significant differences in the morphology of GO0, GO1, GO2 and GO3 were further
142	demonstrated in terms of SEM images in Figure S1 in Supporting Information (SI).
143	The BET specific surface area of GO0, GO1, GO2 and GO3 was measured to 124.7,
144	126.1, 132.5, and 144.8 m^2/g , respectively. The larger specific surface area of GO3
145	could be due to the formation of smaller size at elevated ultrasonic time conditions,
146	which increases their adsorption capacity.
147	It is well-known that Raman spectroscopy is the nondestructive and most direct
148	technique to characterize the structure of carbon-based materials. As shown in Figure
140	24 the Paman spectra of COU CO1 CO2 and CO3 displayed a D hand (disordered

149 2A, the Raman spectra of GO0, GO1, GO2 and GO3 displayed a D-band (disordered 150 sp³-hybridized carbon) at ~ 1360 cm⁻¹ and a broad G-band (graphitic sp²-hybridized 151 carbon) at ~ 1590 cm⁻¹. The significant blue shift of G band (e.g., 1594 and 1604 cm⁻¹ 152 for GO0 and GO1, respectively) was observed, indicating the layers of GOs were 153 decreased by the sonochemical approach [25, 26]. It was demonstrated that the D band

154	(sp ³ -hybridized carbons) was resulted from the structural defection created by the
155	attachment of hydroxyl and epoxy groups on the carbon basal plane [27]. Therefore,
156	the integrated intensity ratio of the D- and G-bands (I_D/I_G) indicated the oxidation
157	degree of sp^2 ring clusters in a network of sp^3 and sp^2 bonded carbon [28]. The slight
158	enhance of I_D/I_G of GO0 (0.920) and GO3 (0.926) suggested that the abundant
159	structural defection of GOs was observed due to the presence of massive oxygenated
160	functional groups. The 2D band at approximately 2700 cm ⁻¹ was the inset in Figure3A.
161	The significant change of 2D band of GO3 (approximately 2760 cm ⁻¹) was due to the
162	decrease of thickness of AB stacked flakes [31]. The change in oxygenated functional
163	groups can be demonstrated by FTIR spectra. As shown in Figure 2B, GO0, GO1,
164	GO2 and GO3 presented the various oxygenated functional groups such as hydroxyl
165	(at 3450 - 3150 cm ⁻¹), carboxyl (at ~ 1725 cm ⁻¹), C=C (at ~1635 cm ⁻¹), ether or epoxy
166	group (at 1250-1050 cm ⁻¹) [29, 30]. The sharp peaks centered at 1400 cm ⁻¹ was
167	corresponded to the C-O vibration mode [32]. The relative intensities at ~ 1725, 1635,
168	1050 cm ⁻¹ increased with increasing ultrasonic time, indicating that more carboxyl
169	and epoxy groups were generated by the sonochemical approach. It should be noted
170	that the relative intensities of GO3 at 3150 cm ⁻¹ was decreased, whereas the relative
171	intensity of GO3 at 1725 cm ⁻¹ was significantly increased. It was quite evident from
172	FTIR analysis that the amount of hydroxyl groups was decreased, whereas the amount
173	of carboxyl and epoxy groups was increased with increasing ultrasonic time.
174	According to the UV-vis absorbance spectra (Figure 2C), the relative intensities of
175	absorbance spectra of GOs were decreased by the sonochemical approach. The

9 / 24

176	maximum peak at 224 nm (inset in Figure 2C) corresponded to $\pi \rightarrow \pi^*$ transitions of
177	aromatic C-C bonds [33]. Figure 2D showed the deconvolution of C 1s XPS spectra
178	of GO0, GO1, GO2 and GO3. The spectra presented five different components,
179	including sp ² -hybridized carbons in aromatic rings (C-C, 284.6 eV), hydroxyl (C-OH,
180	285.0 eV), epoxy (C-O-C, 286.5 eV), carbonyl (-C=O, 287.0 eV) and carboxyl groups
181	(COOH, 288.5 eV), which can be comparable to previous reports [34-36]. The
182	deconvolution of O 1s spectra (Figure S2 in SI) also exhibited four peaks around
183	531.08, 532.03, 533.43 and 534.7 eV, which can be assigned to oxygen doubly
184	bonded to aromatic carbon (C=O), oxygen singly bonded to aliphatic carbon (C-O-C),
185	oxygen singly bonded to aromatic carbon (C-OH) and chemisorbed/intercalated
186	adsorbed water molecules (adsorbed H ₂ O), respectively. It should be noted that the
187	relative peak intensities of C-C groups significantly decreased with increasing
187 188	relative peak intensities of C-C groups significantly decreased with increasing ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O
188	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O
188 189	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O groups were observed. The results form XPS analysis indicated that the abundant
188 189 190	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O groups were observed. The results form XPS analysis indicated that the abundant hydroxyl groups and carboxyl groups were introduced by the sonochemical approach.
188 189 190 191	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O groups were observed. The results form XPS analysis indicated that the abundant hydroxyl groups and carboxyl groups were introduced by the sonochemical approach. The change in the oxygenated functional groups of GOs under sonochemical
188 189 190 191 192	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O groups were observed. The results form XPS analysis indicated that the abundant hydroxyl groups and carboxyl groups were introduced by the sonochemical approach. The change in the oxygenated functional groups of GOs under sonochemical approach was further demonstrated by XRD patterns in Figure S3 in SI. According to
188 189 190 191 192 193	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O groups were observed. The results form XPS analysis indicated that the abundant hydroxyl groups and carboxyl groups were introduced by the sonochemical approach. The change in the oxygenated functional groups of GOs under sonochemical approach was further demonstrated by XRD patterns in Figure S3 in SI. According to XRD patterns, the diffraction peak of GOs at $2\theta \sim 12.31^{\circ}$ shifted to lower angle with
188 189 190 191 192 193 194	ultrasonic time, whereas the enhanced relative peak intensities of C-O and O-C=O groups were observed. The results form XPS analysis indicated that the abundant hydroxyl groups and carboxyl groups were introduced by the sonochemical approach. The change in the oxygenated functional groups of GOs under sonochemical approach was further demonstrated by XRD patterns in Figure S3 in SI. According to XRD patterns, the diffraction peak of GOs at $2\theta \sim 12.31^{\circ}$ shifted to lower angle with increasing ultrasonic time, indicating that the intersheet distance for GOs film slightly

increasing ultrasonic times, which indicating that the smaller size of GOs was
observed [38]. On the basis of various characterization results, it was quite clear that
the fewer layers and the smaller size of GOs was obtained at elevated ultrasonic time,
and the abundant hydroxyl groups and carboxyl groups were introduced under the
sonochemical approach.

203 *3.2 pH effect*

204 Figure 3A showed the effect of pH on U(VI) on GO0, GO1, GO2 and GO3 in the 205 presence of 0.01 mol/L NaClO₄ solution. One can see that the adsorption of U(VI)206 significantly increased with increasing pH from 1.0 to 6.0, then high-level adsorption 207 was observed at pH 6.0 -7.0. The decreased adsorption of U(VI) on GO0, GO1, GO2 and GO3 at pH > 8.0 was due to the electrostatic repulsion between negatively 208 209 charged GOs and negatively charged U(VI) species at high basic conditions, which 210 was consistent with previous studies [22, 39, 40]. It was demonstrated the GOs 211 synthesized by Hummers method was negatively charged through the wide range of pH from 2.0 to 9.0 [41, 42]. The distribution of U(VI) species in aqueous solutions 212 213 was calculated in our previous studies [4, 22]. One can see that the main U(VI) species was UO_2^{2+} at pH < 4.0, whereas a variety of positively charged U(VI) species 214 215 (i.e., $UO_2(OH)^+$, $(UO_2)_3(OH)_5^+$ and $(UO_2)_4(OH)_7^+$ species) were observed at pH 5.0 – 216 7.0. Therefore, the increased adsorption of U(VI) on GOs at pH 2.0 - 7.0 was likely 217 due to the electrostatic attraction between negatively charged GOs and positively 218 charged U(VI) species.

220	To investigate the application of GOs in the environmental cleanup, we conducted the
221	adsorption behaviors of U(VI) on GOs by batch techniques. As shown in Figure 3B,
222	the adsorption of U(VI) on GOs significantly increased with increasing initial
223	concentration. The adsorption behaviors of U(VI) on GO0, GO1, GO2 and GO3 can
224	be satisfactorily fitted by Langmuir model ($R^2 > 0.997$, Table S1 in SI). As
225	summarized in Table S1, the maximum adsorption capacities of GO0, GO1, GO2 and
226	GO3 calculated from Langmuir model at pH 4.0 and $T = 293 K$ were approximate
227	102.0, 126.6, 137.0 and 151.5 mg/g, respectively, which were significantly higher
228	than those of other today's adsorbents reported currently. The increased adsorption
229	capacity of GO3 could be attributed to its high specific surface area (144.8 m^2/g) as
230	compared to GO1 (124.7 m^2/g). However, the normalized maximum adsorption
231	capacities (Qs = Qe/ S_{BET}) of GO0, GO1, GO2 and GO3 were calculated to be 0.818,
232	0.999, 1.034 and 1.046 mg/m ² , respectively. Therefore the increased Qs values were
233	not only attributed to their specific surface area but also their chemical properties.
234	Sonochemical approach normally leaded to hydroxylation of GOs due to the
235	generation of OH radicals by acoustic cavitation. The hydroxyl and carboxyl groups
236	of GOs were responsible for the enhanced adsorption of U(VI) by following Eqn. (1)
237	and (2), respectively:

238 S-OH +
$$UO_2^{2+}$$
 = S-OU O_2^{+} + H⁺ (1)

239 S-COOH +
$$UO_2^{2+}$$
 = S-COOU O_2^{+} + H⁺ (2)

where S-OH and S-COOH referred to the hydroxyl and carboxyl groups of GOs. Theabundant hydroxyl groups and carboxyl groups were introduced, which increased the

RSC Advances Accepted Manuscript

adsorption of U(VI) with increasing ultrasonic time. Therefore, the enhanced
adsorption capacity of GOs for radionuclides could be attributed to their large specific
surface area and massive oxygenated functional groups with increasing ultrasonic
time, which was consistent with the characteristic results.

246 *3.4 Interaction mechanism*

The interaction mechanism between GOs and U(VI) was elucidated by uranium 247 248 L_{III} -edge EXAFS spectra (Figure 4A). As shown in Figure 4A, the EXAFS spectra of GO0, GO1, GO2 and GO3 displayed the similar distinct cyclic evolution, whereas a 249 poor signal-to-noise ratio of GO0, GO1, GO2 and GO3 was observed at $\kappa > 8$ Å⁻¹. 250 251 Figure 4B showed the Fourier transforms (FT, uncorrected phase shift) of EXAFS spectra for U(VI)-reacted GOs. As shown in Figure 4B, the EXAFS spectra of GO0, 252 253 GO1, GO2 and GO3 displayed the similar features. The corresponding fitted results 254 were also shown in Figure 4B (dash lines) and Table 1. The bond distance $(R + \Delta R)$ in the FT feature at ~ 1.4 and 1.9 Å can be satisfactorily fitted by two axial oxygen 255 (U-Oax at ~ 1.80 Å) and 4-5 equatorial oxygen (U-Oeq, at ~ 2.42 Å in Table 1), 256 257 respectively. We attempted to fit equatorial U-Oeq shell into two shells (U-Oeq1 and U-Oeq2) caused the convergence of two shells at the same bond distance. For samples 258 259 of GO0, GO1, GO2 and GO3, the FT peak at ~ 2.5 Å (R + Δ R) can be fitted by U-C 260 shell very well [43], revealing the formation of inner-sphere surface complexes between GOs and U(VI). The fitting results indicated that the adsorption mechanism 261 262 between U(VI) and GOs was inner-sphere surface complexation.

263

264 4	. C	oncl	lusio	ons

Based on the characterization results, the abundant hydroxyl groups and carboxyl groups were introduced by the sonochemical approach. The results indicated that the increase of adsorption performance of GOs was observed by the sonochemical approach. The adsorption mechanism between U(VI) and GOs was determined to be inner-sphere surface complexation by the analysis of EXAFS spectra. This paper gives the insights into the further development of GOs in environmental cleanup by the selective decoration of oxygenated functional groups.

272 Acknowledgments

Financial support from Scientific Research Grant of Hefei Science Center of CAS
(2015SRG-HSC009; 2015SRG-HSC006), National Natural Science Foundation of
China (21207135, 21225730 and 91126020), Anhui Provincial Natural Science
Foundation (1408085MB28) and Hefei Center for Physical Science and Technology
(2012FXZY005) are acknowledged.

278 Electronic Supplement Materials: Additional characterization data of SEM, XPS

- and XRD, the fitting of adsorption data by Langmuir and Freundlich models.
- 280 **REFERENCES**
- 1 G. X. Zhao, J. X. Li, X. M. Ren, C. L. Chen and X. K. Wang, *Environ. Sci. Technol.*,
- **282** 2011, **45**, 10454-10462.
- 283 2 Y. B. Sun, Q. Wang, C. L. Chen and X. K. Wang, *Environ. Sci. Technol.*, 2012, 46, 6020-6027.
- 285 3 A. Y. Romanchuk, A. S. Slesarev, S. N. Kalmykov, D. V. Kosynkin and J. M. Tour,

RSC Advances Accepted Manuscript

- 286 Phys. Chem. Chem. Phys., 2013, **12**, 2321-2327.
- 4 Y. B. Sun, D. D. Shao, C. L. Chen, S. B. Yang and X. K. Wang, *Environ. Sci. Technol.*, 2013, 47, 9904-9910.
- 289 5 A. Lerf, H. He, M. Forster and J. Klinowshi, J. Phys. Chem. B, 1998, 102,
 4477-4482.
- 6 I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An and R. S.
- 292 Ruoff, J. Phys. Chem. C, 2008, 112, 8499-8506.
- 293 7 G. Eda and M. Chhowalla, Adv. Mater. 2010, 22, 2392-2415.
- 8 O. C. Compton and S. T. Nquyen, *Small*, 2010, 6, 711-723.
- 295 9 D. Chen, H. B. Feng and J. H. Li, *Chem. Rev.* 2012, **112**, 6027-6053.
- 296 10 C. S. Lim, A. Ambrosi and M. Pumera, Phys. Chem. Chem. Phys., 2014, 16,
- **297 12178-12182**.
- 298 11 K. Krishnamoorthy, G. S. Kim and S. J. Kim, *Ultrason. Sonochem.*, 2013, 20,
 644-649.
- 300 12 S. Anandan, A. Manivel and M. Ashokkumar, *Fuel Cells*, 2012, **6**, 956-962.
- 301 13 K. Vinodgopal, B. Neppolian, I. V. Lightcap, F. Grieser, M. Ashokkumar and P. V.
- 302 karnat, J. Phys. Chem. Lett., 2010, 1, 1987-1993.
- 14 M. Sametband, U. Shimanovich and A. Gedanken, New J. Chem., 2012, 36, 36-39.
- 304 15 H. Q. Wang, L. C. Jia, P. Bogdanoff, S. Fiechter, H. Möhwald and D. Shchukin,
- 305 *Envergy Eviron. Sci.*, 2013, **6**, 799-804.
- 16 H. Q. Wang, X. H. Yan, G. L. Li, C. Pilz-Allen, H. Möhwald and D. Shchukin, Adv.
- 307 *Heathc. Mater.*, 2014, **3**, 825-831.

308	17 L. Zhang, V. Belova, H. Q. Wang, W. F. Dong and H. Möhwald, Chem. Mater.,
309	2014, 26 , 2244-2248.
310	18 X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science, 2008, 319, 1229-1232.
311	19 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
312	20 X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. J. Dai,
313	Nano Res., 2008, 1, 203-212.
314	21 M. Newville, J. Synchrotron Rad., 2001, 8, 96-100.
315	22 Y. B. Sun, J. X. Li and X. K. Wang, Geochim. Cosmochim. Acta, 2014, 140,
316	621-643.
317	23 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A.
318	Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature, 2006, 442, 282-286.
319	24 D. W. Lee, T. K. Hong, D. Kang, J. Lee, M. Heo and J. Y. Kim, J. Mater. Chem.,
320	2011, 21 , 3438-3442.
321	25 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S.
322	Piscanec, D. Juang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett.,
323	2006, 97 , 187401-187404.
324	26 G. K. Ramesha and S. Sampath, J. Phy. Chem. C, 2009, 113, 7985-7989.
325	27 T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis and I. Dékány,
326	Chem. Mater., 2006, 18, 2740-2749.
327	28 D. Yang, A. Velamakannim, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S.
328	Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr and R. S. Ruoff, Carbon, 2009,
329	47 , 145-152.

16 / 24

- 330 29 Y. Si and E. T. Samulski, *Nano Lett.*, 2008, **8**, 1679-1682.
- 30 A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, *Nat. Chem.*, 2010, 2, 581-587.
- 333 31 A.C. Ferrarl, J.C. Meyer, V. Scardacl, C. Caslraghl, M. Lazzerl, F. Maurl, S.
- Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A. K. Geim, *Phys. Rev. Lett.*, 2006, **97**,
- **335** 18704.
- 336 32 D. W. Lee, V. L. De Los Santos, J. W. Seo, L. leon Felix, D. A. Bustamante, J.
- 337 M. Cole and C. H. W. Barnes, J. Phys. Chem. B, 2010, 114, 5723-5728.
- 338 33 J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso and J. M. D. Tascon, *Langmuir*,
- **339** 2008, **24**, 10560-10564.
- 34 T. Ramanathan, F. T. Fisher, R. S. Ruoff and L. C. Brinson, *Chem. Mater.*, 2005, 17,
 1290-1295.
- 35 Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang and X. H. Xia, *ACS Nano*,
 2011, 5, 4350-4358.
- 36 X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang, *Adv. Mater.*, 2008,
 20, 4490-4493.
- 346 37 Y. B. Sun, C. L. Chen, D. D. Shao, J. X. Li, X. L. Tan, G. X. Zhao, S. B. Yang and
- 347 X. K. Wang, *RSC Adv.*, 2012, **2**, 10359-10364.
- 38 Y. B. Sun, S. T. Yang, G. D. Sheng, Q. Wang, Z. Q. Guo and X. K. Wang, *Radiochim. Acta*, 2012, **100**, 779-784.
- 350 39 T. D. Waite, J. A. Davis, T. E. Payne, G. A. Waychunas and N. Xu, Geochim.
- 351 *Cosmochim. Acta* 1994, **58**, 5465-5478.

- 40 Y. B. Sun, S. T. Yang, G. D. Sheng, Z. Q. Guo X. L. Tan, J. Z. Xu and X. K. Wang, *Sep. Purif. Technol.*, 2011, 83, 196-203.
- 41 I. Chowdhury, M. C. Duch, N. D. Mansukhani, M. C. Hersam, D. Bouchard,
- 355 Environ. Sci. Technol. 2013, 47, 6288-6296.
- 42 L. Wu, L. Liu, B. Gao, R. M. Carpena, M. Zhang, H. Chen, Z. H. Zhou, H. Wang,
- 357 *Langmuir* **2013**, *29*, 15174-15181.
- 43 J. R. Bargar, R. Reitmeyer, J. J. Lenhart and J. A. Davis, Geochim. Cosmochim.
- *Acta*, 2000, **64**, 2737-2749.

Figure captions

Figure 1. HRTEM images (A and B) and AFM images (C and D) of GO0 and GO3.

Figure 2. Characterization of GO0, GO1, GO2 and GO3, A: Raman spectra; B: FT-IR

spectra; C: UV/vis absorbance spectra; D: XPS spectra.

Figure 3. A: The effect of pH on U(VI) adsorption onto GO0, GO1, GO2 and GO3, T

= 293 K, I = 0.01 mol/L NaClO₄; B: Adsorption isotherms of U(VI) on GO0, GO1,

GO2 and GO3, pH 4.0, *T* = 293 *K*, *I* = 0.01 mol/L NaClO₄;

Figure 4. B: EXAFS spectra of U(VI)-reacted GO, pH 4.0, T = 293 K, I = 0.01 mol/LNaClO₄.

Table captions

Table 1. Fitting Results of U L_{III}-edge EXAFS spectra for reference samples and U(VI) –reacted GO0, GO1, GO2 and GO3, T = 293 K, I = 0.01 mol/L NaClO₄

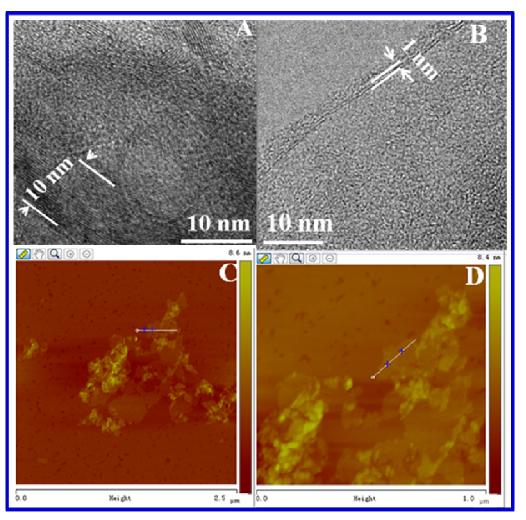


Figure 1

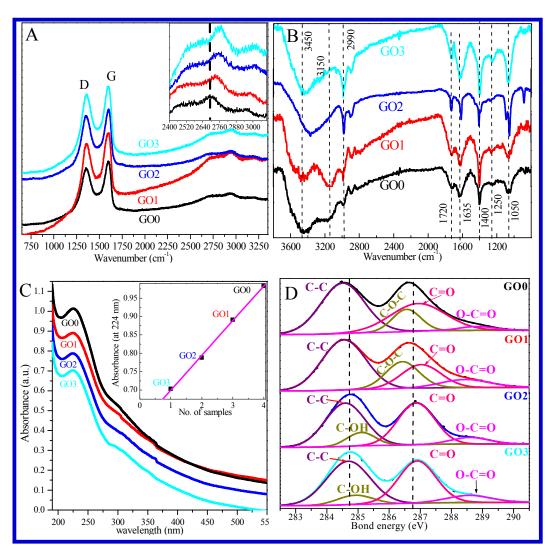


Figure 2

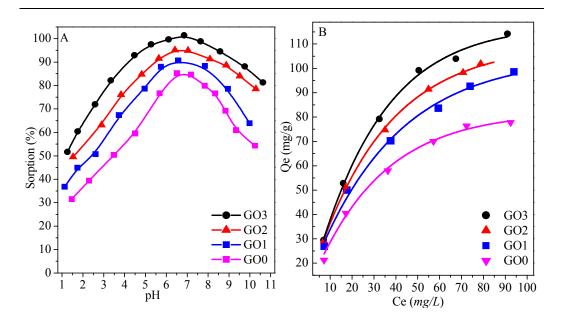
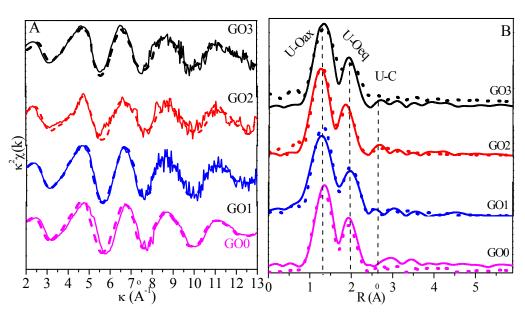
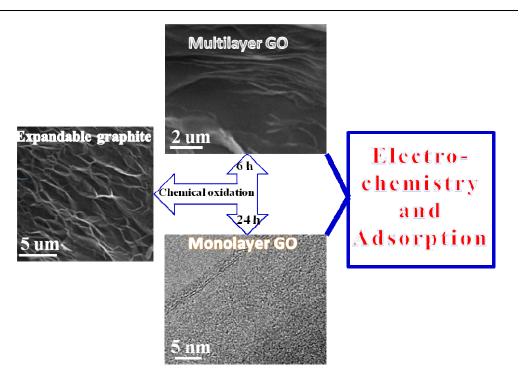


Figure 3




Figure 4

O(V1) -reacted $OO0, OO1, OO2 and OO3, 1 - 293 K, 1 - 0.01 mol/L NaClO4$				
Samples	Shell	$R(A)^{a}$	CN^{b}	$\sigma^2 (\AA^2)^{c}$
UO ₃	U-O _{ax}	1.740(8)	1.8(7)	0.00466
	U-O _{eq}	2.253(9)	5.5(5)	0.0057
	U-U	3.853(2)	0.2(3)	0.0167
U(VI)(aq)	U-O _{ax}	1.826(0)	1.9(5)	0.0076
	U-O _{eq}	2.577(1)	6.2(7)	0.0051
	U-U	4.096(9)	1.9(5)	0.0053
GO0	U-O _{ax}	1.8049(6)	2.0(0)	0.00309
	U-O _{eq}	2.4277(0)	4.9(9)	0.00834
GO1	U-O _{ax}	1.7874(6)	2.0(0)	0.00381
	U-O _{eq}	2.4099(0)	4.5(9)	0.00592
	U-C	3.2308(1)	1.1(3)	0.01050
GO2	U-O _{ax}	1.8088(0)	2.0(0)	0.00545
	U-O _{eq}	2.4446(0)	4.2(3)	0.00627
	U-C	3.3100(7)	1.7(8)	0.00180
GO3	U-O _{ax}	1.8088(0)	2.0(0)	0.00545
	U-O _{eq}	2.4304(0)	5.0(2)	0.00139
	U-C	3.3115(6)	1.7(7)	0.00257

Table 1. Fitting Results of U L_{III}-edge EXAFS spectra for reference samples and U(VI) –reacted GO0, GO1, GO2 and GO3, T = 293 K, I = 0.01 mol/L NaClO₄

^a R is the bond distance; ^b CN is coordination numbers of neighbors; ^c σ^2 is the Debye-Waller factor.

24 / 24

Schematic 1. A schematic diagram of the synthesis protocol.