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Graphical Abstract 

 

The 
13

C NMR spectra and vicinal proton-proton coupling constants of two tricyclic macrolactone natural products were analyzed using 

computational methods, which resulted in their structural revisions.  
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Abstract 

Glabramycins B and C are antibacterial natural products produced by the fungal organism Neosartorya glabra. Their stereochemical 

structures have not been completely defined to date. In this work, DFT calculations are employed to predict the expected Carbon-13 

NMR chemical shifts and key vicinal proton-proton coupling constants for all of the candidate stereoisomers. By comparison with 

experimentally measured values, the complete relative stereochemical configurations for glabramycins B and C are established. 

 

Keywords: Neosartorya glabra, Glabramycin, structural revision, macrolactone 

1. Introduction 

Glabramycins B and C are two macrolactone natural products first isolated from the fungus Neosartorya glabra, in an effort to 

systematically discover clinically useful antibiotics. Both glabramycins exhibit antibacterial activity against S. pneumoniae; 

additionally, glabramycin C possesses further antibacterial activities against S. aureus and B. subtilis.
1
 It has come to our attention that 

the glabramycins bear striking structural similarities to another natural product Sch-642305.
2
 In addition to the structural similarity, the 

two organisms that produce these natural products are also closely related in taxonomy. Penicillium verrucosum, which produces Sch-

642305, and Neosartorya glabra, which produces glabramycins, are both members of the Trichocomaceae family of fungi. Yet when 

comparing the structures of Sch-642305 and glabramycin C, it is noticeable that the two molecules have different relative configurations 

at the critical ring junction C11 (Figure 1). Furthermore, the relative configuration of the methyl group at C20 in both glabramycins B 

and C was not determined in the original isolation report.
2
 Therefore the aim of this study is to elucidate the stereochemical 

configurations at both C11 and C20 in the two compounds glabramycin B and C. 

 

[Figure 1] 

Figure 1. Structures of Sch-642305, glabramycin B, and glabramycin C with relative configurations and atom numbering indicated. 

Structural differences are highlighted. 

 

Traditionally total synthesis is one of the most important methods (and sometimes the only one) for resolving such stereochemical 

ambiguities. However, while the structure of Sch-642305 has been confirmed beyond any doubt by several total syntheses,
3-9

 no such 

efforts have been reported for the glabramycins. Undoubtedly, synthesizing the compounds in question requires significant efforts.
10-13

 

Thus while total synthesis is the golden standard for structural proof and is still reserved as a method of last resort, almost all molecular 

structures are currently determined by spectroscopic methods, the most important of which is NMR. The measured NMR parameters 

such as chemical shifts and coupling constants can yield a wealth of information about atom connectivity, geometry, and functionalities 

present in the molecule in question. Although organic chemists tend to conceive these parameters as semi-empirical quantities, rigorous 

physical theories defining them have been proposed since the earliest days of NMR.
14

 In the decades following the 1950s, along with 

theoretical developments, calculations of NMR parameters from first principles were attempted. These calculations were mostly carried 

out by specialists on very simple molecules up to approximately the last decade.
15

 In recent years, the exponential increase of computer 

speed and the wide availability of relatively easy-to-use software packages have made highly accurate computational chemistry 

methods accessible to the practicing bench chemist. The ab initio calculation of NMR chemical shifts has proven in numerous cases to 

be a useful tool in the structural elucidation of natural products,
16-22

 such as in the cases of viridiol,
23

 samoquasine A,
24

 

spiroleucettadine,
25

 hassananes,
26

 and obtusallenes.
27

 By comparing the predicted spectroscopic parameters of candidate structures to the 

experimentally observed values, the correct structure can often be identified. Statistical techniques have also been applied in the 

comparison of calculated and experimental values, so that the “matchness” can be quantified in probabilistic terms.
28

 

It is worth noting that this ab initio method is different from the complementary approach of predicting NMR shifts from existing 

data points.
29-31

 The ab initio method, while orders of magnitude slower, can handle unusual molecules and give results with more 

reliability and accuracy.
32
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2. Results and discussion 

2.1 Structural revision of glabramycin C 

2.1.1 Calculation of chemical shifts in 
13

C NMR 

Given the availability of a wealth of NMR parameters disclosed in the original isolation report,
1
 we chose to pursue a computational 

NMR investigation on the structures of glabramycins B and C. We started the investigation with glabramycin C and identified four 

possibilities for its true relative configuration. They arise from the diastereomeric combination of the stereochemical configurations at 

the ring junction C11 and the methyl C20. These four cases were labeled (11R,20R), (11R,20S), (11S,20R), and (11S,20S) (structures 

shown in Figure 2). Due to the polycyclic nature of these structures, there was only one low-energy conformer for each of the candidate 

isomers, as we found out in conformational searches using molecular mechanics. The geometries of the four structures were minimized 

at the B3LYP/6-31G** level, and their 
13

C NMR chemical shifts were then calculated at the GIAO/mPW1PW91/6-31G** level of 

theory. While B3LYP is widely recognized for giving excellent molecular geometry, its performance in predicting 
13

C NMR chemical 

shifts is questionable. In a benchmarking comparison of the accuracy of density functionals for the prediction of 
13

C NMR chemical 

shifts of 15 natural products, Cimino and coworkers found that the performance of B3LYP was inferior to that of mPW1PW91.
33

 Wu 

and coworkers similarly concluded that the LYP correlation functional was less accurate than PW91 for NMR calculations in a more 

extensive comparison of 21 exchange-correlation functionals.
34

 We therefore chose mPW1PW91 as the density functional to carry out 

the NMR calculations. The particular basis set was chosen as a good compromise between speed and accuracy. The expected mean 

absolute error is less than 1.5 ppm from the experimental values for this particular combination of density functional and basis set.
33

 The 

IEF-PCM solvation model was employed in these steps to enhance the accuracy of the calculation.
32, 35

 

The calculations produced a set of predicted 
13

C chemical shifts for each one of the four candidate stereoisomers of glabramycin C. 

The results are plotted in Figure 2. The differences (in ppm) between the calculated and observed 
13

C chemical shift are shown as 

vertical bars for each of the carbon atoms. Surprisingly, the predicted 
13

C NMR shifts for all four of the candidate stereoisomers 

deviated significantly from the experimental measurements, far beyond the range of expected calculation errors. We eventually traced 

the problem to two sources. Firstly, the predictions for the carboxylate C1 were off by as much as 6–8 ppm. This was most likely due to 

the neglect of carboxylic acid dimerism in the calculation, as documented in previous computational
36, 37

 and experimental studies.
38

 

However, modeling the dimeric form of glabramycin C would be prohibitively expensive because the computational cost of DFT 

calculations increases as N
3
 for a system of N electrons.

39
 We therefore chose to simply exclude the C1 chemical shift as a data point in 

all subsequent statistical comparisons.
35

 Secondly, we came to the conclusion that the C18 and C19 
13

C NMR peaks were most likely 

misassigned in the original isolation report and had to be exchanged. Because their corresponding 
1
H NMR peaks were very close, the 

original assignments of C18 and C19 by HMBC could have easily been confused. Other researchers have also encountered similar 

issues of spectrum misassignment when comparing calculated and experimental 
13

C NMR shifts.
40

 

 

[Figure 2] 

Figure 2. Comparing calculated and observed 
13

C NMR chemical shifts for the four proposed stereochemical models of glabramycin C. 

Chemical shift differences in ppm are plotted for each C atom in the molecule. The chemical shift values used to plot the charts here 

were scaled by linear regression against the observed values (See experimental section 4.2). Note that in all four plots the predicted 

chemical shifts for the carboxylate C1 atoms were all underestimated; and the predicted chemical shifts for C18 and C19 atoms are 

consistently under- and overestimated, respectively, indicative of misassignment. 
 

With these two issues rectified, the calculation data were reprocessed, and the resulting predictions were again compared against the 

experimental chemical shifts (Figure 3). The 11R isomers had nearly twice the mean absolute errors as the 11S isomers. The errors were 

mostly concentrated in the region of C10 to C15. This was the region of the six-membered ring of glabramycin C, and therefore was 

expected to show the most deviations had the C11 ring junction stereochemistry been misassigned. This suggested that 11S was most 

likely to be the correct relative configuration. It was also noticed that the two 11S isomers had relatively small errors, even though the 

C20 NMR shift was predicted to be 7 ppm more downfield than the experimental value in the (11S,20R) model. However, this error was 
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absent in the (11S,20S) isomer, suggesting that 20S was most likely to be the true relative configuration of glabramycin C. Overall, 

based on the mean absolute error and the maximum error, the (11S,20S) isomer was overwhelmingly more favorable than the other 

three possibilities. The calculations were also repeated with several other combinations of density functionals, basis sets and solvation 

models (Table 1), and the same trend was observed. In Table 1, entry 3 employed a different solvation model (CPCM), whiles the 

calculations in entries 1 and 2 were done in a vacuum. Entry 4 used a different functional and basis set (B3LYP/cc-pVDZ) for the 

calculation of chemical shifts. Different methods for geometry optimization were also explored. Entries 2 and 3 used mPW1PW91/6-

31G**, while entry 1 was done using a non-DFT method (HF/3-21G). In all of the cases, the (11S,20S) isomer always had the smallest 

mean absolute error (MAE) and maximum error (ME) when compared with the other candidate isomers. 

 

[Figure 3] 

Figure 3. Comparison between calculated and observed 
13

C NMR chemical shifts for the four proposed stereochemical models of 

glabramycin C, after excluding C1 atom and swapping the spectral assignments for C18 and C19 atoms. The chemical shift values used 

to plot the charts here were scaled by linear regression against the observed values (See experimental section 4.2). 

 

[Table 1] 

Table 1. Evaluating the calculated 
13

C chemical shifts for the four candidate isomers of glabramycin C against experimental values. 

MAE (mean absolute error) and ME (maximum error) values were calculated after linear regression corrections. 
a
Results are tabulated for the following computational methodologies: 

1. Geometry: HF/ 3-21G, vacuum; NMR: GIAO mPW1PW91/6-31G**, vacuum 

2. Geometry: mPW1PW91/6-31G**, vacuum; NMR: GIAO mPW1PW91/6-31G**, vacuum 

3. Geometry: mPW1PW91/6-31G**, vacuum; NMR: GIAO mPW1PW91/6-31G**, CPCM CHCl3 

4. Geometry: B3LYP/ 6-31G**, IEF-PCM CHCl3; NMR: GIAO B3LYP/cc-pVDZ, IEF-PCM CHCl3 

5. Geometry: B3LYP/ 6-31G**, IEF-PCM CHCl3; NMR: GIAO mPW1PW91/6-31G**, IEF-PCM CHCl3 
b
Mean absolute error in ppm. 

c
Maximum error in ppm. 

d
Not calculated. 

 

2.1.2 Calculation of 
3
JHH coupling constants in 

1
H NMR 

While 
13

C NMR chemical shifts are certainly influenced by stereochemical isomerism, the proton-proton vicinal coupling constants 

(
3
JHH) are much more direct indicators of stereochemistry. They are more amenable to interpretation by organic chemists 

41
 and are used 

extensively in the determination of dihedral angles. However, calculation of indirect spin-spin coupling constants is significantly more 

challenging than that of chemical shifts. There are several distinct mechanisms that contribute to the coupling constants. The 

interactions of the nuclear magnetic fields with the orbital movement of electrons are represented by the diamagnetic spin-orbit term 

and the paramagnetic spin-orbit term; the interactions between the electronic spins and the nuclear magnetic fields are represented by 

the spin-dipole term and the Fermi-contact term.
42

 The relative magnitudes of these terms vary depending on the types of nuclei 

involved and the chemical bonds between them, among many other factors. Therefore, all of the terms may have to be accounted for in 

order to achieve accurate results, and consequently can require much more computational resources than calculating NMR shifts. 

Furthermore, it is often observed that very large basis sets are needed to obtain accurate results.
43, 44

 For chemists with only modest 

computational resources, these calculations are rarely undertaken. Therefore, the calculation of NMR coupling constants for the 

structural assignment of natural products has only been employed in a few occasions.
45-47

  

Bally and Rablen investigated this challenging problem in great detail.
48

 They systematically benchmarked the performance of a 

large number of available methods and procedures for the calculation of proton-proton coupling constants. Several simplifications were 

identified that greatly improved the computational efficiency. They found that for calculating the 
3
JHH coupling constant in the context 

of the usual organic molecules, it was sufficient to only consider the Fermi-contact term among the many contributing terms, and then 

scale the resulting number empirically to make up for the other contributions.
48

 They also advocated using a “mixed basis set” for the 

calculation. In their approach, the 1s part of the basis set for H atoms is decontracted and augmented to improve the description of 
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electron density in the inner region of the atom,
49

 while all other atoms are treated by the standard 6-31G** Pople basis set to reduce the 

computational cost.
48

 They reported that accurate results (within 0.5 Hz) can be obtained in very reasonable lengths of time using their 

method.
48

 

Encouraged by their report,
48

 and also noting that the conformational rigidity of the polycyclic glabramycins was advantageous for 

the calculation of 
3
JHH values, we computed the theoretical values of 

3
J10-11 and 

3
J11-12 for all four possible candidate structures of 

glabramycin C (Table 2). Upon comparison with experimental measurements, it was clear that the 11S models in general agreed with 

the experimental values. One of the four models (11S,20S) had a particularly close match, with a difference of no more than 0.3 Hz 

from the experimental values. The coupling constant calculation, taken together with the 
13

C NMR chemical shift calculation, strongly 

suggests that the (11S,20S) model is the correct stereochemical structure of glabramycin C. 

 

[Table 2] 

Table 2. Experimental and calculated 
3
JHH values (Hz) for the four stereochemical models of Glabramycin C.  

a
Data extracted from  isolation report.

1
 

b
Dihedral angle of H10-C10-C11-H11 in geometry optimized models. 

c
Dihedral angle of H11-C11-C12-H12 in geometry optimized models. 

 

2.2 Structural revision of glabramycin B 

We next turned our attention to glabramycin B, which is almost identical to glabramycin C except for a saturated C12-C13 bond 

(Figure 1). We repeated the 
13

C NMR shift calculation on this compound, and found that the NMR peaks for C12 and C13 were again 

misassigned and should be swapped, as in the case of glabramycin C (see above §2.1.1). The results of the calculations, after making the 

adjustment, are shown in Figure 4. The (11S,20S) isomer is much closer to the experimental values than the other three candidates.  

 

[Figure 4] 

Figure 4. Comparison between the calculated and the observed 
13

C NMR chemical shifts for the four proposed stereochemical models 

of glabramycin B. The chemical shift values used to plot the charts here were scaled by linear regression against the observed values 

(See experimental section 4.2). 

 

3. Conclusion 

In conclusion, through the computational analysis of 
13

C chemical shifts and 
3
JHH coupling constants in the NMR spectra of 

glabramycins B and C, we have revised the relative stereochemical assignment at the critical C11 ring junction of the tricyclic core of 

the molecules. Furthermore, the originally undefined methyl stereocenter at C20 has now been established. 

Despite all of the developments in chromatographic and spectroscopic methodologies, the isolation and structural determination of 

complex natural products are still universally recognized as challenging tasks, and especially so in the determination of stereochemistry. 

The studies presented here serve as an additional example in a growing repertoire of works that demonstrate the utility of computational 

tools in aiding the efforts of structural determination. 

4. Experimental section 

4.1 Conformational search 

A large number of conformers with random torsional angles were generated and then optimized using MMFF as implemented in 

MacroModel.
50

 A number of the lowest energy conformers were then optimized again with DFT to verify their relative energies. The 

second lowest conformers for the four diastereomers were >1 kcal/mol above the ground conformers and were therefore not included in 

subsequent calculations in view of their small Boltzmann weights. 
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4.2 
13

C NMR chemical shift 

The molecular structures were first minimized by MMFF as implemented in MacroModel.
50

 All torsional angles were systematically 

varied to search for the global minimum. The molecular mechanics minimized structures were then imported to Gaussian
51

 for all 

subsequent steps. Geometry optimization was conducted at the B3LYP/6-31G(d,p) level of theory. IEF-PCM solvation in chloroform 

was used for the glabramycin C stereoisomers; methanol was used for the glabramycin B stereoisomers. Chloroform and methanol were 

the solvents in which experimental NMR spectra were acquired. 
13

C NMR shielding constants σ were calculated at the 

GIAO/mPW1PW91/6-31G(d,p) level, with IEF-PCM solvation in the appropriate solvent. Chemical shifts were calculated as δcalcd = σref 

− σ, where σref = 196.594 was the chemical shielding constant of tetramethylsilane calculated at the same level of theory. The values of 

δcalcd were then scaled linearly: δscaled = a + bδcalcd. The scaling constants a and b were determined by least squares linear regression 

between the calculated chemical shifts δcalcd and the experimental ones δexp. The differences between the theoretical and the 

experimental chemical shifts, ∆δ = δscaled − δexp, were calculated for each carbon atom and plotted in Figures 2 to 5. Mean absolute error 

was calculated as MAE = Σ(|∆δ |)/n; maximum error was defined as the largest |∆δ|. The carboxylate C1 atom was excluded from the 

calculations, unless otherwise noted. 

4.3 Calculation of 
3
JHH NMR coupling constant 

On the same geometry-optimized structures, proton-proton coupling constants were calculated using literature recommended 

procedures.
48

 The B3LYP/6-31G** level of theory was used. The core basis functions for hydrogen atoms were uncontracted and 

augmented. Only the contribution of Fermi-contact term to the nuclear spin couplings was calculated. The resulting coupling constants 

were empirically scaled by 0.9155. 
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Exp. 

valuesa 

Calculated values for candidate models 

(11R,20R) (11R,20S) (11S,20R) (11S,20S) 
3J10-11 8.5 14.9 14.4 7.6 8.8 

φ10-11
b - 170° 167° 33° 28° 

3J11-12 4.5 2.4 2.5 4.8 4.6 

φ11-12
c - 94° 94° 50° 53° 

 

Calc. 
Methoda 

Deviations from experimental values 

(11R,20R) (11R,20S) (11S,20R) (11S,20S) 

MAEb MEc MAE ME MAE ME MAE ME 

1 4.0 12.3 3.6 10.9 NAd NA 1.6 5.9 

2 3.6 9.3 3.1 8.4 NA NA 1.5 4.0 

3 3.6 10.4 3.1 10.8 NA NA 1.5 3.5 

4 4.1 10.2 3.6 9.5 NA NA 1.6 4.3 

5 3.6 9.2 3.1 9.6 1.7 6.9 1.3 4.1 

Table 2. Experimental and calculated 3JHH values (Hz) for the four stereochemical models of Glabramycin C.  
aData extracted from isolation report.1 
bDihedral angle of H10-C10-C11-H11 in geometry optimized models. 
cDihedral angle of H11-C11-C12-H12 in geometry optimized models. 

Table 1. Evaluating the calculated 13C chemical shifts for the four candidate isomers of glabramycin C against experimental values. MAE (mean 

absolute error) and ME (maximum error) values were calculated after linear regression corrections. 
aResults are tabulated for the following computational methodologies: 
1. Geometry: HF/ 3-21G, vacuum; NMR: GIAO mPW1PW91/6-31G**, vacuum 

2. Geometry: mPW1PW91/6-31G**, vacuum; NMR: GIAO mPW1PW91/6-31G**, vacuum 

3. Geometry: mPW1PW91/6-31G**, vacuum; NMR: GIAO mPW1PW91/6-31G**, CPCM CHCl3 
4. Geometry: B3LYP/ 6-31G**, IEF-PCM CHCl3; NMR: GIAO B3LYP/cc-pVDZ, IEF-PCM CHCl3 
5. Geometry: B3LYP/ 6-31G**, IEF-PCM CHCl3; NMR: GIAO mPW1PW91/6-31G**, IEF-PCM CHCl3 

bMean absolute error in ppm. 
cMaximum error in ppm. 
dNot calculated. 
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