This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis and characterization of BiPO$_4$/g-C$_3$N$_4$ nanocomposites with significantly enhanced visible-light photocatalytic activity for Benzene degradation

Xuejun Zoua, Yuying Donga, Zhaobo Chena, Dapeng Dongb, Dongxue Hua, Xinyong Lib,*, Yubo Cuia

In order to enhance the photocatalytic activity of g-C$_3$N$_4$ under visible light region, the BiPO$_4$/g-C$_3$N$_4$ nanocomposites photocatalysts with different BiPO$_4$ contents were prepared through hydrothermal with calcination method. Through N$_2$ adsorption-desorption measurement, the BiPO$_4$/g-C$_3$N$_4$ showed large surface area (234.8 m2 g$^{-1}$) and small pore diameter and the incorporation of BiPO$_4$ caused a red-shift of g-C$_3$N$_4$ in visible light region by UV-vis diffuse reflection spectroscopy. The photocatalytic degradation of benzene over BiPO$_4$/g-C$_3$N$_4$ was investigated. The degradation of benzene could get 73% in 2 wt% BiPO$_4$/g-C$_3$N$_4$ photocatalysts under optimum reaction conditions, which was 6 times compared with pure g-C$_3$N$_4$ at the same conditions. The improved photoactivity of BiPO$_4$/g-C$_3$N$_4$ could be ascribed to its effective separation of photogenerated hole-electron pairs between BiPO$_4$ and g-C$_3$N$_4$. Furthermore, the BiPO$_4$/g-C$_3$N$_4$ photocatalysts showed excellent stability. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO$_2$ and H$_2$O were produced as the final products. Through Electron spin resonance (ESR), OH$^-$ and O$_2^-$ were examined in the photocatalytic degradation of benzene.

1 Introduction

The effective applications on solar energy conversion and environmental pollutants removal by semiconductor photocatalysts have attracted considerable attention in modern society$^{1-4}$. In the past decade, traditional photocatalyst TiO$_2$ has still been extensively investigated owing to its merits, such as the nontoxicity, low cost and excellent stability against photocorrosion5,8. However, it can only be activated by the ultraviolet light ($\lambda < 400$ nm), which only constitutes about 4% of the solar spectrum, due to its wide bandgap (anatase 3.4 eV) and have low separation efficiency of electron-hole pairs formed in photocatalytic processes7. Therefore, it is necessary to fabricate efficient new types of photocatalysts responded to visible light in order to improve the utilization of solar energy$^{9-11}$.

Recently, graphitic carbon nitride (g-C$_3$N$_4$), which is as organic semiconductor materials, are increasing interest due to the constructed plastic optoelectronic systems and the chemical structure of organic semiconductor materials since Wang et al. reported that g-C$_3$N$_4$ showed a good photocatalytic performance for hydrogen or oxygen product by water splitting under visible light irradiation12. For g-C$_3$N$_4$, the catalysts possess high stability respect to thermal and chemical attacks due to its tri-s-triazine ring structure and high condensation. Meanwhile, it features a semiconductor band gap of 2.7 eV corresponding to an optical wavelength of 460 nm, which belongs to visible light region13. With an attractive electronic structure, g-C$_3$N$_4$ is an ideal semiconductor and is valuable for photocatalysis driven applications. According to the literatures$^{14-17}$, the conduction band (CB) of g-C$_3$N$_4$ is located at about -1.3 V vs. NHE (pH = 7). Whereas its valence band (VB) top locates at about 1.4 V, resulting in a small thermodynamic driving force for organic pollutants oxidation. Furthermore, the photocatalytic efficiency of bulk g-C$_3$N$_4$ is limited due to fast recombination of electron-hole pairs formed in photocatalytic process. In order to resolve this problem, several routes have been used including non-metal doping (boron18, fluorine19 and sulfur20), optimizing porous structure17, and coupling g-
C₃N₄ with semiconductor. In these methods, there is a great interest in heterostructure of semiconductor catalytic performance. Through the coupling, synergistic effect may be achieved. High utilization efficiency of solar light can be achieved by the narrow band gap semiconductor. Simultaneously, high separation rate of photoinduced electrons-hole pairs can be realized due to the interaction of the two semiconductors. Bismuth salt photocatalysts (such as BiₓWO₄), which reported by other groups, exhibited superior photocatalytic activity for the pollutions degradation. BiPO₄, as one of them, finds applications in catalysis and can be used for separating radioactive elements, which possesses a large negative charge, is postulated to help the electron-hole pairs separation, which plays an important role in its excellent photocatalytic activity.

Benzenes are regarded as the priority hazardous substance due to its high toxicity, confirmed carcinogenicity, and environmental persistence because it is widely used as a solvent in industrial processes. The concern on the environmental pollution and the environmental persistence of benzene (such as Bi─C₃N₄) finds applications in catalysis and can be used for separating radioactive elements, which possesses a large negative charge, is postulated to help the electron-hole pairs separation, which plays an important role in its excellent photocatalytic activity. Benzene is regarded as the priority hazardous substance due to its high toxicity, confirmed carcinogenicity, and environmental persistence because it is widely used as a solvent in industrial processes. Therefore, how to effectively remove benzene from the ambient environment is necessary by mild technology.

Herein, we synthesized a new inorganic-organic BiPO₄/g-C₃N₄ nanocomposites photocatalysts by hydrothermal with simple calcination method. It was found the photodegradation activity of BiPO₄/g-C₃N₄ for benzene was greatly enhanced under visible light irradiation comparing with the pure g-C₃N₄. And the BiPO₄/g-C₃N₄ nanocomposites photocatalyst show excellent stability during the photochemical reactions. The mechanism for this enhanced photocatalytic benzene degradation can be ascribed to the large surface area, strong absorption in visible light and excellent charge transfer between BiPO₄ and g-C₃N₄ based on the photoluminescence results.

Experimental section

All chemicals were used as received without any further modification. Bi(NO₃)₃·5H₂O, NaH₂PO₄·2H₂O, Melamine and anhydrous ethanol were purchased from Tianjin Kermel Chemical Reagents Development Centre. The distilled water was used in experimental process.

Photocatalysts preparation

BiPO₄ was synthesized by hydrothermal process. Typically, 8 mmol of Bi(NO₃)₃·5H₂O was solved into 160 mL distilled water under magnetic stirring. Then 28.8 mmol NaH₂PO₄·2H₂O was added into the mixture and stirred for 1 h. The resulting suspension was transferred into a Teflon-lined stainless steel autoclave and maintained at 160 °C for 24 h. The products were washed three times with distilled water and anhydrous ethanol respectively before it dried at 120 °C for 8 h.

BiPO₄/g-C₃N₄ with different amount of BiPO₄ was synthesized by calcination method. In a typical procedure, BiPO₄ (0.016, 0.036, 0.048 and 0.065 for sample 1 wt% Bi-CN, 2 wt% Bi-CN, 3 wt% Bi-CN and 4 wt% Bi-CN, respectively) was dissolved in 2 mL of anhydrous ethanol, and then 15.8 mmol melamine was added and dispersed by ultrasonic for 5 min. The mixtures were dried at 85 °C overnight to remove ethanol. Subsequently, the as-prepared mixtures were put into a crucible with cover and heated to 500 °C for 2 h with a heating rate of 20 °C min⁻¹ and 520 °C for another 2 h in a muffle furnace. The pure g-C₃N₄ was also prepared for comparison purpose.

Characterization

The crystal structure of the samples was investigated by X-ray diffraction (XRD) using a powder X-ray diffractometer (LabX-6000, Shimadzu, Japan, λ = 1.5406 Å) with a scan rate of 0.02° s⁻¹ over a 20 range from 20 to 70°. The morphology of the samples was detected by using transmission electron microscopy (TEM; JEOL JEM-2100; accelerating voltage, 200 kV). UV–vis diffuse reflection spectra were recorded on a Shimadzu UV-500 spectrophotometer, using BaSO₄ as reference. The pore structure of the obtained sample was characterized by N₂ adsorption using an adsorption apparatus (Quantachrome NOVA Instruments V 2.2 gas sorption analyzer). Specific surface area of the samples was determined from the Brunauer-Emmett-Teller (BET) equation, and pore volume was determined from the total amount adsorbed at relative pressures near unity. The photoluminescence (PL) spectra were surveyed by an Edinburgh FL/FS900 spectrophotometer. The electron spin resonance (ESR) signals of the radicals trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were detected at ambient temperature with a Bruker (E500) spectrometer. The irradiation source was a Quanta-Ray Nd: YAG pulsed laser system (λ = 532 nm, 10 Hz). The settings for the ESR spectrometer were as follows: center field = 3510 G; sweep width = 200 G; microwave frequency = 9.85 GHz; modulation frequency = 100 kHz and power = 20 mW. To minimize measurement errors, the same quartz capillary tube was used throughout the ESR measurements.

Photocatalytic activity test

The photocatalytic degradation of gaseous benzene was carried out under visible light, using a 500W Xe lamp (Shanghai Seagull Colored Optical Glass Co., Ltd.) with a UV-cutoff filter (λ > 400 nm). Photocatalytic degradation of benzene was conducted in a Pyrex glass cylindrical reactor with the volume of 120 mL. 0.1 g of the catalysts was put at the bottom of the reactor. Then, benzene vapor was mixed with the air (78% nitrogen, 21% oxygen as reaction gas) and introduced into the reactor at room temperature. Once the concentration of the reactants had
been stabilized, the inlet and outlet ports were shut off. After adsorption equilibration in the dark for 1 h, the lamp was turned on to allow the photoreaction to proceed. The concentration of benzene was analyzed by gas chromatogram (Agilent7890A) with HP-5 capillary column (30 m×320 μm×0.25 μm).

The in situ FTIR measurement was carried out in a home-built IR cell (about 120 mL), equipped with two NaCl windows and a sample holder for the catalyst wafer to analyze the degradation mechanism of benzene. Benzene vapor mixture with the dry air, which pretreated through a drying column packed with desiccant and molecular sieves, was introduced to the IR cell at room temperature. When the sample was saturated with reaction gas, the inlet and outlet ports were shut off. After adsorption equilibration in the dark for 1 h, the 500 W Xe lamp (Shanghai Seagull Colored Optical Glass Co.) with a UV-cutoff filter (λ > 400 nm) were used as visible light. A Bruker VERTEX 70 FT-IR equipped with a DTGS detector was employed for recording of the FTIR spectra.

171 Results and discussion
172 Characterization of the BiPO4/g-C3N4 nanocomposites
173 XRD pattern is used to investigate the phase structures of the samples, and the typical diffraction patterns are shown in Fig. 1. The peak at 27.4° in the XRD patterns of the samples is due to the stacking of the conjugated aromatic system, which is indexed for graphic materials as the (002) peak of the g-C3N4. For BiPO4, Evidently, the same diffraction peaks of BiPO4 (JCPDS 15-0766) have been detected, in which the peaks at 25.5°, 29.5°, 31.3°, 41.9° and 48.7° are corresponding to the diffraction peaks of (110), (200), (102), (211) and (212) crystal planes of BiPO4. For BiPO4/g-C3N4 samples, these peaks are intensified with the increasing amount of BiPO4, while the ones belonging to C3N4 gradually decreased. The intensity of the peak is decreased which indicated that BiPO4 nanoparticles may be wrapped in the interlayer of g-C3N4 and weaken the force of interlayer stacking, accordingly. In addition, no impurity peaks were observed.

![Fig. 1.](image)

Fig. 1. XRD patterns of the BiPO4, pure g-C3N4 and Bi-CN.

Fig. 2 shows a comparison of the FTIR spectra of BiPO4, pure g-C3N4 and Bi-CN samples. In the case of BiPO4, 032 cm⁻¹ and 596 cm⁻¹ could be attributed to δ(P=O) and ν(P=O), respectively. For the g-C3N4, the broad band at 3155 cm⁻¹ is attributed to stretching modes of NH and NH2. The band at 1 325 cm⁻¹ corresponds to C(sp2)=N stretching, and the band at 1 641 cm⁻¹ assigns to C(sp2)=N stretching modes. The 807 cm⁻¹ band is attributed to triazine ring vibration modes. The C–NH–C unit is found in melem (1 252 and 1 325 cm⁻¹). It can be clearly seen that the main characteristic peaks of g-C3N4 and BiPO4 all appeared in the Bi-CN photocatalysts.

![Fig. 2.](image)

Fig. 2. FTIR spectra of the BiPO4, pure g-C3N4 and Bi-CN.

The existence of BiPO4 in the g-C3N4 was visualized by the TEM observations, as shown in Fig. 3. The g-C3N4 shows layer structure (Fig. 3a and b), which is consistent with results reported previously. BiPO4 nanoparticles with average size of about 20 nm were well dispersed in the g-C3N4 phase (Fig. 3c). The HRTEM reveals that the fringe spacing of 0.326 nm can be indexed to the (002) crystal planes of g-C3N4 (Fig. 3d), while the lattice spacing of 0.210 nm can be assigned to the (200) facets of BiPO4.

![Fig. 3.](image)

Fig. 3. TEM images of pure g-C3N4 (a and b) and 2 wt% Bi-CN (c) and HRTEM image (d) of 2 wt% Bi-CN.

Fig. 4 shows N2 adsorption-desorption isotherms of the 2 wt% Bi-CN and pure g-C3N4. The 2 wt% Bi-CN and pure g-C3N4 were found to be of IV-type isotherms according to the BDDT classification. The hysteresis loops for the 2 wt% Bi-CN and g-C3N4 were similar, which
shown the incorporation of BiPO$_4$ didn’t affect the specific surface area of g-C$_3$N$_4$. The BET surface areas of the 2 wt% Bi-CN and g-C$_3$N$_4$ were 234.8 and 232.6 m2 g$^{-1}$, respectively (see Table 1). The large surface area can provide more photocatalytic active sites and will be beneficial for the photocatalytic application. Meanwhile, the pore size of 2 wt% Bi-CN was calculated as 2.432 nm based on the N$_2$ adsorption-desorption isotherms, exhibiting a character of mesoporous materials. It has been reported that large pore volume might be beneficial for the catalytic activity, while a small average pore diameter might also be one of the reasons for the increasing catalytic activity$^{34, 35}$.

Table 1 Physical properties of 2 wt% Bi-CN and g-C$_3$N$_4$.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface Area (m2/g)</th>
<th>Pore Volume (m3/g)</th>
<th>Average Pore Diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 wt% Bi-CN</td>
<td>234.8</td>
<td>0.301</td>
<td>2.432</td>
</tr>
<tr>
<td>g-C$_3$N$_4$</td>
<td>232.6</td>
<td>0.286</td>
<td>2.441</td>
</tr>
</tbody>
</table>

Fig. 5a-5f shows the XPS spectra of 2 wt% Bi-CN. Fig. 5a is the XPS survey spectrum of the sample which contains the peaks of Bi 4p, Bi 4d, Bi 4f, Bi 5d, O KLL, O 1s, P 2s, P 2p, N 1s, and C 1s. The peaks at 164.9 eV and 159.6 eV can be assigned to the binding energies of Bi 4f 5/2 and Bi 4f 7/2 (Fig. 5b), which indicates the existence of a trivalent oxidation state for Bi$^{3+}$. A broad signal peak at about 132.7 eV suggests that the P in the sample exist in the oxidation state of P$^{5+}$ (Fig. 5c)33. For the O 1s, the peak at 530.9 eV is attributed to the crystal lattice oxygen, while the peak at 532.6 eV is related to adsorbed oxygen (Fig. 5d). The binding energy of 288.2 eV can be corresponded to the C-N-C coordination in the C 1s (Fig. 5e). In the N 1s spectrum several binding energies can be separated (Fig. 5f). The main signal shows occurrence of C–N–C groups (398.7 eV) and tertiary nitrogen N–(C)$_3$ groups (400.7 eV)37. The absorption range of light plays an important role in the photocatalysis, especially for the visible light photodegradation of contaminants. Fig 6a shows the UV-vis DRS of the as-synthesized samples. As it can be observed, BiPO$_4$ only can absorb UV light, which absorbance region is from 257 to 368 nm. However, for pure g-C$_3$N$_4$ and Bi-CN samples, strong absorption in the visible region can be appeared, which absorbance region is from 371 to 465 nm and Bi-CN samples exhibit absorption edge of 571 nm together with an increased light absorption, which has a significant redshift (ca. 106 nm) compared with g-C$_3$N$_4$. The results indicated that loading of BiPO$_4$ improved the light absorption ability. There are two major reasons to explain the resultd. Firstly, the interaction of heterojunction between BiPO$_4$ and g-C$_3$N$_4$ effectively enhances the separation of electron-hole pairs account for the band gap transition of photo-generated electrons and then enhanced the absorption in the visible light region11. Secondly, as a colour change of the composites samples, which become darker, that is, from pale yellow to grey, along with an increasing amount of BiPO$_4$ was introduced into the g-C$_3$N$_4$ would also cause the absorbance enhanced15. The band gap of the pure g-C$_3$N$_4$ is estimated to be about 2.7 eV (Fig 6b). It is noteworthy that the band gap of Bi-CN samples, which is from 2.3 to 2.5 eV due to incorporation different amount of BiPO$_4$, tends to be smaller than that of pure g-C$_3$N$_4$, indicating that the absorption of the Bi-CN samples is shifted to the lower energy region.
Photocatalytic degradation performance of the BiPO$_4$/g-C$_3$N$_4$ photocatalysts

The photocatalytic degradation of gaseous benzene over the BiPO$_4$/g-C$_3$N$_4$ photocatalysts was illustrated in Fig. 7a. As shown in Fig. 7a, the photocatalytic activities of BiPO$_4$ and g-C$_3$N$_4$ were very low under visible light. The conversion of benzene was only 2% and 11%, respectively. In contrast, Bi-CN samples presented much higher photocatalytic activity for benzene under the same conditions. Especially, the conversion of benzene over 2 wt% Bi-CN achieved 73% after 4 h under visible light irradiation. The Bi-CN exhibit a higher photocatalytic activity for the decomposition of gaseous benzene compared to pure g-C$_3$N$_4$ under visible light irradiation, which is due to its strong absorption in visible-light region (from 571 to 363 nm) and excellent charge separation characteristics. However, the removal of benzene decreased with increasing amount of BiPO$_4$, which might result from the additional recombination of photo induced electron-hole pairs in the excess amount of BiPO$_4$ particles and decreasing the diffraction intensity assigned to g-C$_3$N$_4$ because the crystal had important role in photocatalytic oxidation process$^{39, 40}$. The photocatalytic reaction followed a pseudo-first-order reaction, and the rate constant of benzene decomposition over 2 wt% Bi-CN, which was estimated to be about 0.316 h$^{-1}$, was faster than the other samples (Fig. 7b). Furthermore, the photochemical stability of 2 wt% Bi-CN was tested. As shown in Fig. 7c, the benzene degradation efficiency declines only about 8% after four consecutive runs. Therefore, the as-synthesized BiPO$_4$/g-C$_3$N$_4$ photocatalyst exhibits excellent stability in the visible light photochemical degradation reactions. The PL spectroscopy is usually utilized to investigate the separation of the photogenerated electron-hole pairs during photocatalytic process$^{41, 42}$. Fig. 7d shows the PL spectra of g-C$_3$N$_4$ and Bi-CN. The PL spectrum of g-C$_3$N$_4$ shows a strong emission, which indicates the electrons and holes recombine rapidly. By contrast, for Bi-CN photocatalysts, there was weak PL peak observed, indicating that the photogenerated electron-hole pairs recombination was very slow. It is concluded that the heterojunction of BiPO$_4$ and g-C$_3$N$_4$ may act as an active center for decreasing the recombination of photoinduced electron-hole pairs. On the other hand, according to the result of the N$_2$ adsorption-desorption, Bi-CN showed large specific surface area, which means that its surface can provide more photocatalytic active sites.

Fig. 7. (a) Photocatalytic degradation of benzene using the as-prepared the BiPO$_4$, pure g-C$_3$N$_4$ and Bi-CN photocatalysts 1-5 ([benzene]$_0$ = 115 ppm, [catalysts]$_0$ = 100 mg, I_0 = 200 mW cm$^{-2}$). (b) The variation of ln (C/C$_0$) of benzene by different processing routes. (c) Cyclic photodegradation of benzene over 2 wt% Bi-CN under visible light irradiation. (d) PL spectra of g-C$_3$N$_4$ and Bi-CN.

Real-time monitoring of transient events occurring on the catalyst during the reaction and the surface adsorbed species, which were detected by in situ FTIR, will give an important insight into the reaction mechanisms. In this work, a set of IR transmittance spectra are obtained during the photocatalytic oxidation of benzene over 2 wt% Bi-CN (Fig. 8). Prior to light irradiation ($t=0$), when benzene reached adsorption equilibrium on the surface of the 2 wt% Bi-CN, strong peaks due to gas-phase benzene appeared at 3 090, 3 055 and 3 047 cm$^{-1}$, which are assigned to the C-H stretching mode of benzene, respectively37 (Fig. 8a). The band of 1 483 cm$^{-1}$ is associated with C=C stretching. The vibrational bands at 1 804, 1 820, 1 951, and 1 966 cm$^{-1}$ are assigned to C-H out-of-plane bending mode37 (Fig. 8c). The bands at 1 050, 1 038 and 1 025 cm$^{-1}$ could be ascribed to C-H in-plane deformation vibrations37 (Fig. 8d). After reaction, the intensity of bands at 3 090, 3 055 and 3 047 cm$^{-1}$ decreased significantly with increasing reaction.
time. After 4 h, most of benzene was decomposed. Meanwhile, the bands at 2 360 and 2 342 cm\(^{-1}\) (Fig. 8b) corresponding to CO\(_2\) increased as the reaction proceeded, and some new surface species, which appeared at 1 109, 949 and 791 cm\(^{-1}\), were evidenced by the FTIR spectra in Fig. 8d. Among them, bands at 1 109 cm\(^{-1}\) is assigned to the C-O-C stretching vibration which existed in ester\(^{45}\). The 949 cm\(^{-1}\) band is assigned to O-H out-of-plane deformation vibration of carboxylic acid, and 791 cm\(^{-1}\) is assigned to C-H deformation vibration of aldehyde\(^{46}\). On the basis of the previous reports and the results, ethylacetate, carboxylic acid and aldehyde are the intermediate products during the photocatalytic degradation of benzene, CO\(_2\) and H\(_2\)O are produced as the final product.

![Infrared spectra recorded as a function of irradiation time following the photooxidation of toluene over 2 wt% Bi-CN photocatalyst.](image)

In order to detect the reactive species evolved during the photocatalytic reaction process, such as hydroxyl radical and superoxide radical species, the electron spin resonance (ESR) technique was usually used\(^{47}\). As shown in Fig. 9a, four characteristic peaks of DMPO-OH\(^{•}\) with intensity 1:2:2:1 can be observed with visible light irradiated aqueous dispersions of 2 wt% Bi-CN. Similarly, the stronger six characteristic peaks of the DMPO-O\(_2\)\(^{•}\) adducts are also observed with visible light irradiated methanol dispersions of 2 wt% Bi-CN in Fig 9b. ESR results indicate that the generation of OH\(^•\) radical and O\(_2\)\(^{•}\) radical species is crucial during the reaction and it is confirmed that both OH\(^•\) and O\(_2\)\(^{•}\) radicals are produced on the surface of 2 wt% Bi-CN and OH\(^•\) radicals with strong oxidation capability act as the predominant species.

![ESR spectra of radical adducts trapped by DMPO in 2 wt% Bi-CN dispersions after 60 s visible-light irradiation (\(\lambda > 400\) nm): (a) DMPO-OH\(^•\) formed in irradiated aqueous dispersions; (b) DMPO-O\(_2\)\(^{•}\) formed in irradiated methanol dispersions.](image)

Scheme. 1. Schematic diagram showing the possible mechanism for the photocatalytic degradation of benzene over the BiPO\(_4\)/g-C\(_3\)N\(_4\).

Conclusions

In summary, we have successfully synthesized BiPO\(_4\)/g-C\(_3\)N\(_4\) by hydrothermal with calcination method for efficient photocatalytic degradation of gaseous benzene under visible light irradiation. The photocatalytic activities of BiPO\(_4\)/g-C\(_3\)N\(_4\) on benzene degradation under visible light irradiation increase to about 6.0 times as high as
those of pure g-C₃N₄. The significant enhancement on photocatalytic performance was ascribed to strong absorption in visible light and rapid photogenerated electron transfer rate and charge separation efficiency in BiPO₄-g-C₃N₄. Through in situ FTIR technique, phenol, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO₂ and H₂O are determined as the final product during the reaction process. Through ESR, OH and O₂⁻ are examined in the photocatalytic degradation of benzene. Such BiPO₄-g-C₃N₄ nanocomposites with high photocatalytic performances may provide an alternative of traditional catalysts to address energy conversion, green chemistry, and environmental issues.

Acknowledgements

This work was supported financially by the National Nature Science Foundation of China (No. 21477001, No. 21301023, No. 51208131 and No. 51278088), Liaoning province high school program for excellent talents (second levels), Dalian Science and Technology Fund (2013J21DW016), National rural areas supporting science-technology project of China (No. 2013BAJ12B02) and special grand national science-technology project (No. 2014ZX07204-005, 2012ZX07201003-002). The authors are grateful to the Institute of Environmental Biotechnology in Dalian Nationalities University for their technical and logistic assistance.

Notes and references

16. L. Ge, C. C. Han, X. L. Xiao and L. L. Guo, Applied Catalysis B: Environmental, 2013, 142, 414-422.
31. Z. Li, B. Li, S. Peng, D. Li, S. Yang and Y. Fang, RSC Advances, 2014, 4, 35144-35188.
37. S. Wang, D. Li, C. Sun, S. Yang, Y. Guan and H. He, Applied Catalysis B: Environmental, 2014, 144, 885-892.