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Abstract 

       In this study, a list of classification models was developed to categories organic solvents 

with respect to their dispersibility of single-walled carbon nanotubes (SWNTs). The organic 

solvents were classified into solvent and nonsolvent based on the ability to disperse the 

SWNTs. Various feature selection techniques combined with different classifier algorithms 

of linear and quadratic discriminate analysis (LDA and QDA), decision trees (random forest 

and J48), neural networks and support vector machine (SVM) were explored on a data set 

consisting of the structurally diverse organic solvents. The physicochemical descriptors such 

as partial charges, volsurf ( the volumes and surfaces of grid points at different energy 

levels), subdivided surface area and some shape descriptors contributed to the classification 

models. The validation studies using test set, leave-one-out and 10-fold cross-validation 

methods provide statistical parameters such as specificity, sensitivity, accuracy, Mathew´s 

correlation coefficient and Kappa index to evaluate the developed classification models. The 

sum of ranking difference (SRD) procedure reveals that the random forest classifier based on 

selected descriptors by the wrapper feature selection method is the best classification model, 

while the SVM, MLP and QDA containing models that are ranked as good models. The 

structural features along with electrostatic interactions of solvent molecules play the 

significant role in discriminating good solvents from nonsolvents in SWNTs dispersion. 

 

Keywords: Classification, Single-walled carbon nanotube (SWNT), Organic solvent, 

Dispersibility  
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1. Introduction 

          Single-walled carbon nanotubes (SWNTs) with extraordinary thermal, mechanical, 

optical and electrical properties 
1
 have been identified as promising nanomaterials in many 

fields including: biomedical,
2
 drug delivery systems and cancer therapy,

3
 energy storage 

devices,
4
 composites fillers,

5
 nanoprobes and sensors

6, 7
 and catalyst.

8
 Because of high 

polarizability, hydrophobic and smooth surface of SWNTs, they always 

tend to aggregate into mixture of bundles or ropes of various species, thus preventing their 

use in many applications.
9, 10

 Therefore exfoliation and debundling of SWNTS to isolated 

ones, usually in a liquid phase, is necessary before use in various areas
11

 and attracting great 

interests as one of the main challenges in carbon nanotube research. 

      Stable dispersion with the aid of surfactants, biomolecules 
12

 and organic polymers 
13, 14

 is 

the most common "solubilization" method of SWNTs in different aqueous and organic 

media. However, these procedures tend to degrade of the SWNTs’ electronic properties
15

 and 

make difficulties for completely removal of these solubilizing agents from nanotubes.
16

 Thus, 

the direct dispersion of nanotubes into proper organic solvent have the potential advantages 

involving the ability to remove the solvent through evaporation and to find suitable 

purification and dispersion methods. 

     Attempts to identify the optimal solvent properties have been based on solubility 

parameters such as Hildebrand or Hansen parameters
17-21

 or surface energy.
17, 22

 Ham et al. 

explored the relation between the Hansen solubility parameters and the degree of dispersion 

state of SWNTs in various organic solvents.
21

 The dispersion state of organic solvents 

classified as three groups of dispersed, swollen and sedimented of SWNTS based on the 

dispersive component of the solubility parameter. Bergin et al. measured the dispersibility of 

SWNTs in a range of organic solvents and explored the nanotube dispersibility based on the 
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Hansen and surface energy solubility parameters of the solvents.
23

 The organic solvents 

classified as solvent and nonsolvent. Nonsolvents are defined as solvents with effectively 

zero of SWNTs dispersibility. However, it was concluded that neither Hansen nor surface 

energy solubility parameters were fundamental to distinct between solvents and nonsolvents  

and to evaluate and predict the dispersion state for SWNTs in different organic solvents. 

    In previous attempt, we investigated the application of quantitative-structure property 

relationship (QSPR) models to predict the dispersibility of SWNTs in various organic 

solvents.
24, 25

 This work aims to develop in-silico classification models, which can be used to 

classify the organic solvents based on their SWNTs dispersibility and to explore the 

important structural features related to the dispersion of carbon nanotubes. Various feature 

selection and classification techniques were used to compare different chemometrics tools to 

approach the difficult problems of predicting the dispersion state of organic solvents for 

SWNTs. 

2. Methodology 

2.1 Dataset 

     The data on dispersibility of as-produced HiPCO SWNTs in different organic solvents 

extracted from the work of Bergin et.al.
17

 The dispersions of  these nanomaterials were 

determined by measuring the dispersion absorbance as concentration (Cmax) of SWNTs after 

sonication and a mild centrifugation. A detailed description of the method was presented in 

references 22 and 26.
22, 26

 Table 1of supporting information displays a complete list of the 

simplified molecular input line entry specification (SMILES) and molecular structures of the 

solvents. The compounds of 1-29, which are able to disperse SWNTs considered as solvent 

and the others (30-59) where no SWNTs was reliably detected after centrifugation considered 

as nonsolvets. An additional three new amidine compounds (compounds 60-62), extracted 
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from the work of Barman et al.
27

 1,8-diazabicycloundec-7-ene (DBU) was reported as solvent 

and the 1,5-diazabicyclo(4.3.0) non-5-ene (DBN) and 1,1,3,3-tetramethylguanidine (TMG) 

were reported as nonsolvents for SWNTs. This data set contains 30 solvents and 32 

nonsolvents for SWNTs. 

      The Kennard-Stone (KS) algorithm was applied to split the data set into training and test 

sets. The KS method is usually performed on the matrix of molecular descriptors (X) based 

on Euclidean distance measure most representative objects. In modified KS, the response 

vector (y) was added as an additional column to the matrix of descriptors (X). This modified 

method, KS(Xy), help to evenly distribution of samples within both descriptors and response 

spaces
28

 and can enhance the influence of the response on the splitting results.
28

 A training set 

of 48 compounds was used to build and adjust the parameters of the classification models, 

and the rest of the molecule (14 compounds) was used to evaluate classification model’s 

prediction ability as test set. 

2.2 Molecular descriptor calculation 

 The MOE (Chemical Computing Group Inc.) v2010.10 was used to generate different kinds 

of descriptor, including physical properties, potential energies, partial charge, surface area, 

volume and shape indices, adjacency and distance matrices descriptors and conformation-

dependent charge indices of solvent molecules. After elimination of high correlation 

descriptors and those contained only zero or constant values for all solvents, more than 150 

descriptors were initially used in this study before applying feature selection methods. The 

physicochemical descriptors of the solvents were used as independent variables in the 

classification studies. 

2.3 Feature selection techniques 
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  We used different wrapper and filter feature selection (FS) techniques to select the most 

relevant molecular descriptors for the classification models of organic solvents based on their 

ability to disperse SWNTs. We experimented with several evaluators and search methods for 

finding final set of features within the Weka software
29

 including: 

- Correlation-based feature selection (Cfs) subset evaluator (CfssubsetEval) with best 

first search method, which evaluates the worth of a subset of features by considering 

the individual predictive ability of each feature along with the degree of redundancy 

between them. Subsets of descriptors that are highly correlated with the class while 

having low inter-correlation are preferred. The best first search method searches the 

space of descriptor subsets by greedy hill-climbing augmented with a backtracking 

facility.
29

  

- Relief-F attribute evaluator (reliefFAttributeEval) uses instance based learning to 

assign a relevance weight to each feature that each feature’s weight reflects its ability 

to distinguish among the class values.
29

 

-  Information gain (InfoGain) attributes evaluator (InfoGainAttributeEval) uses 

information gain to select attributes by measuring information gain with respect to the 

class.
30

 

- Wrapper attributes subset evaluator (WrapperSubsetEval) which uses the method of 

classification itself to measure the importance of features set.
31

  

   2.4  Classification methods 

The performance of different classification algorithm such as discriminant analysis (DA), 

decision trees (DT), radial basis function (RBF) and multilayer perceptron (MLP) networks 

was examined and compared to identify solvent and nonsolvent compounds for SWNTs 

dispersion.  
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      The DA classification as known and classic method among traditional classifiers, 

performs dimensionality reduction by maximizing the between-class variance and 

minimizing the within-class variance.
32

 Linear discriminant analysis (LDA), can only 

consider linear boundaries while quadratic discriminant analysis (QDA) separates the class 

regions by quadratic boundaries.
33

 

       The DT classifiers algorithm are effective and powerful tools for classification which are 

in the form of a tree structure where non-terminal nodes represent tests on one or more 

attributes and terminal nodes reflect decision outcomes.
34

 Random Forest (RF) classifier uses 

a collection of decision trees, in order to improve the classification rate while J48 tree 

algorithm basically uses the divide-and-conquer algorithm by splitting a root tree into a 

subset of two partitions of child nodes.
35

  

   The feed forward multilayer networks or multilayer perceptrons (MLPs) and radial basis 

function networks (RBFN) are two if the most widely used neural network classifiers, which 

are based on the training procedure by an activation function that associates input vectors 

with a corresponding target vector.
36

 The MLP uses one or more hyper planes to isolate the 

classes in the input space, while RBFs use a local approach, which model the separate class 

distributions by localized radial basis functions. Support vector machine learning 

classification are based on the concept of separating planes that define decision boundaries.
37, 

38
 

2.5 Statistical significance of classification models 

     Different variable selection and classifiers techniques were applied on the training set and 

then the developed models were validated using the test set samples. Some parameters  such 

as true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), 

extracted from the confusion matrix of the actual class versus predicted class, are used to 
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assess the quality of a binary classification. Goodness-of-fit parameters were estimated for 

the models on the basis of sensitivity, specificity and accuracy on the training set. Sensitivity 

(Sn) describes the fraction of solvent molecules correctly classified, specificity (Sp) defines 

the fraction of nonsolvent molecules correctly classified, and accuracy (ACC) is the fraction 

of molecules correctly classified. Sensitivity, specificity and accuracy are calculated as 

follows, respectively: 

�� = �� (�� + �	)⁄                      (1) 

�� = �	 (�	 + ��)⁄                   (2) 


�� = (�� + �	) (�� + �	 + �� + �	)⁄                (3) 

Matthew's correlation coefficient (MCC) and Cohen's kappa values are two statistics used to 

validate the predictive performance of classification models. The MCC is computed as 

below: 

MCC = ((�� × �	) − (�� × �	)) �(�� + ��)(�� + �	)(�	 + ��)(�	 + �	)⁄         (4) 

The MCC takes a range of values from +1 to -1, where +1 represents a perfect prediction and 

-1 an inverse prediction. The Kappa statistic is a metric that compares an observed 

accuracy with an expected accuracy. The expected accuracy is defined as the accuracy that 

would be expected to be present by chance alone.
39, 40

 The equation used for computing 

Kappa coefficient, k, is expressed as below:  

� = (�� − ��) (1 − ��⁄ )              (5) 

where Po and Pe are the numbers of observed and expected compounds, respectively. the 

kappa values more than 0.8 are considered as excellent, 0.40-0.8 as fair to good, and less than 

0.40 as poor.
41
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     In order to evaluate the ability of classification models, leave-one-out cross-validation 

(LOO-CV) and 10-fold cross-validation was performed. 

2.6 Software 

    Feature selection methods, DTs, RBF, MLP and LibSVM classifications were performed 

using the Weka software.
29

 The LDA and QDA were calculated by means of the 

classification toolbox
42

, available at http://michem.disat.unimib.it/chm/. Calculations were 

performed using MATLAB 7.6 (MathWorks, Inc., Natick, MA, USA). 

2.7 Sum of ranking difference (SRD) 

    The analysis  of ranking of the classification models were performed using the program 

available at http://knight.kit.bme.hu/CRRN/ .
43, 44

 The average vector corresponding to the 

calculated statistical parameters such as Sp, Sn, ACC, MCC and k-coefficient were used for 

the SRD analysis of the developed classification models. 

3. Results And Discussion 

3.1 Classification models 

  Classification methods are fundamental chemometrics techniques designed to find 

mathematical models able to recognize the membership of each object to its proper class on 

the basis of a set of measurements 
33

. Feature selection is of considerable importance in 

classification procedures. These techniques provide three main benefits: reducing the 

computational complexity, improving the prediction performance of classification models 

and providing a better understanding of the underlying process.
45

 

     Classification models with the ability to predict the SWNTs dispersibility of organic 

solvents were developed based on physicochemical descriptors calculated from MOE 
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software as independent variables. A single model or method will not give the best result for 

 any set of data, hence multiple classification models with different approaches were 

constructed to compare their results. Three filter feature selection methods, as classifier-

independent techniques, based on a specific criteria such as correlation (Cfs), distance 

(ReliefF) and information (InfoGain) and a wrapper method (Wrapper), which are based on 

the performance of a particular classifier, were examined for selecting the most effective 

subset of features. Table 1  displayed the abbreviation and a brief description of the selected 

features for each method. 

     The features selected by aforementioned FS methods were applied to different 

classification techniques, namely DA, DT, RBF, MLP and SVM classifiers. Tables 2-4 gave 

the statistical performance results of the obtained classification models based on different 

feature selection techniques and classifiers. The statistical parameters such as Sp, Sn, ACC 

and MCC were calculated from the confusion matrix of the training and test set and the LOO 

and 10-fold cross-validation techniques for all developed classification models. Here, Sn is 

the ability of the classification model to correctly recognize solvent compounds as solvent 

and Sp is a measure of the classification model to identify nonsolvent compounds as 

nonsolvent (both in percentage). All the developed classification models were validated by 

LOO and 10-fold cross-validation and test set methods. 

      Sum of ranking difference (SRD) values were calculated for all classification models in 

order to compare the performance of each method. The SRD carried using simulated random 

numbers in conjunction with the theoretical distribution of the SRD values called comparison 

of ranks with random numbers (CRRN) procedure. Table 5 provides the SRD and p% 

interval of the variables of the classification analyses while Fig. 1. displayed the SRD-CRRN 

test results of the data matrix given in Table 5. As shown in Fig.1 and Table 5, the RF 

classification based on the variables selected by wrapper method feature selection method, 
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gave the best ranking values with the smallest SRD (the smaller SRD, the better the model).           

As bolded in Table 3 and labeled in Fig. 1., the developed Wrapper-RF model gave an 

accuracy more than 95 and 71% in the training and test sets respectively, and reasonable 

results on cross-validation techniques.  

The LDA classifier that can only learn linear boundaries, showed the worst performance in 

developed classification models, while the QDA, RBF and SVM that also can learn nonlinear 

boundaries and are therefore more flexible, showed better performance and significant 

results.  

     A deeper inspection in the Tables 2-5, reveals that the wrapper method yielded better 

performance in classification models with significant statistical parameters. In this study, a 

wrapper FS technique adopted with genetic algorithm as a random search method was used 

for all classifier procedures. As mentioned above, Wrapper method is based on the 

performance of a particular classifier  to measure the importance of features set; hence they  

generally result in better performance than filter methods in which the feature subset selected 

based on a specific criteria.  

3.2 Interpretation of the contributing descriptors 

     Analysis and interpreting the descriptors entered the classification models can provide 

detailed information on the molecular structure of organic solvents and gain some insight into 

the factors affecting the dispersibility of SWNTs in organic solvents. Dispersion or 

solubilization processes of carbon nanotubes strongly depend on the magnitude and sign of 

the enthalpy of mixing (∆Hmix) and as discussed in details elsewhere
16, 17, 46

 The magnitude 

and quantity of solvent-nanotube interactions have an effective impact to successfully 

disperse a nanotube in a solvent. A stable dispersion is accomplished when the SWCNT-

dispersing media interaction energy is more favorable compared to the media-media or 

nanotube-nanotube interactions.
47
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     As indicated in Table 1, different kind of descriptors involved in the classification models 

generated to discriminate between solvents and nonsolvents for SWNTs dispersion. Most of 

selected descriptors are partial charge descriptors, that depends on the partial charge of each 

atom of a chemical structure, such as fractional polar van der Waals surface area 

(PEOE_VSA_FPOL), fractional positive van der Waals surface area (Q_VSA_FPOS), total 

polar van der Waals surface area (PEOE_VSA_POL) and positive charge weighted surface 

area (CASA
+
). The selected features of vsurf_CW1, vsurf_CW6 and  vsurf_EWmin1 are 

volsurf descriptors. The volsurf descriptors depend on the structural connectivity and the 

conformation of the molecules.
48, 49

 The vsurf_CW descriptor describes the capacity factor of 

a molecule at different energy levels and reveals the hydrophilicity of the molecules on unit 

surface area. The vsurf_EWmin1 represents the lowest hydrophilic energy of a molecule. The 

SMR_VSA1, as a subdivided surface area descriptor, defined as Van der Waals surface area 

(VSA) descriptor
49

 that characterized as the amount of surface area with molar refractivity 

and describes the polarizability of a molecule. The BCUT_SLOGP_2 is a BCUT descriptor 

using atomic contribution to logP (octanol/water). The BCUT descriptor encodes atomic 

properties relevant to intermolecular interactions and calculated from the distance and 

adjacency matrices.
50

 The std_dim2 is the second largest standardized dimension and depends 

on the structure connectivity and conformation of molecule. As a count atom descriptor, 

a_nO represent the number of oxygen atoms.  

     The importance of partial charges descriptors, which are dominated by electrostatic 

interactions, in classification models imply the role of electronic properties of  organic 

solvents in the dispersibility of SWNTs. The impact of volsurf, subdivided surface area and 

shape descriptors in developed classification models highlight the effect of structural features 

of solvent molecules on their ability to disperse SWNTs. 

4. Conclusion  
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     Different chemometrics approaches were used in order to build the predictive models with 

the aim of classifying organic solvents as solvents and nonsolvent for SWNTs. These in-

silico studies will be useful to reduce the computational cost and time consumption. The 

partial charges, volsurf, surface area and shape descriptors were chosen based on feature 

selection methods and used to discriminate between solvents and nonsolvents. The SRD 

values showed that the developed wrapper-RF model was the superior model in 

discrimination of solvents and nonsolvents for SWNTs dispersibility with ACC more than 

95% and 71% for training and test sets respectively. The structural features along with 

electrostatic interactions of solvent molecules play an important role in discriminating good 

solvents from nonsolvents in SWNTs dispersion. 

      As a first report on the classification of organic solvents based on their SWNTs 

dispersibility, simple molecular descriptors and freely available classification packages were 

used to develop classification models. One important challenge in constructing in-silico 

modeling would be possibility to develop a reliable and predictive model based on a limited 

number of experimental data on nanomaterials.
51

 The influence of training sample size on the 

classification performance and the hypothesis that variance in classification learning can be 

expected to decrease as training set size increases were examined and confirmed by many 

studies.
52-54

 We examined different feature selection techniques combined by various 

classifier algorithm to overcome the sample size effect on classification difficulty. However, 

the results obtained from this study are significant and can be improved with larger sample 

size and with sophisticated classifier methods.  

     Supporting Information: A complete list of the simplified molecular input line entry 

specification (SMILES) and molecular structures of the organic solvents used for 

classification model with their dispersion state of SWNTs.  
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Table 1. Molecular descriptors selected by different feature selection techniques, 

their abbreviation and description. 

Selected descriptors Description Subset evaluator 

a_nO Number of oxygen atoms ReliefF 

BCUT_SLOGP_2 BCUT descriptors using atomic contribution to logP Wrapper 

CASA
+
 Positive charge weighted surface area InfoGain, Cfs 

GCUT_PEOE_0 GCUT descriptors Wrapper 

PEOE_VSA_FNEG Fractional negative van der Waals surface area Wrapper 

PEOE_VSA_FPOL Fractional polar van der Waals surface area Cfs 

PEOE_VSA_FPPOS Fractional positive polar van der Waals surface area Wrapper 

PEOE_VSA_POL Total polar van der Waals surface area ReliefF 

PEOE_VSA_PPOS Total positive polar van der Waals surface area ReliefF 

PEOE_VSA
+4
 Sum of vi where qi is in the range (0.20,0.25) ReliefF 

Q_VSA_FPOS Fractional positive van der Waals surface area InfoGain, Cfs 

Q_VSA_NEG Total negative van der Waals surface area Wrapper 

SMR_VSA1 Sum of atomic molar refractivity with  

polarities in the range 0.11 to 0.26  

Cfs 

std_dim2 Standard dimension 2 Wrapper 

vsurf_CW1 Capacity factor of order 1 Wrapper 

vsurf_CW6 Capacity factor of order 6 InfoGain, Cfs 

vsurf_EWmin1 Lowest hydrophilic energy InfoGain 
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Table 2. Performance of DA classifiers with various feature selection techniques. 

Subset 

evaluator 
Classifier 

Training set Test set LOO-CV 10-fold-CV 

Sp Sn ACC MCC k Sp Sn ACC MCC k ACC MCC ACC MCC 

Cfs 

LDA 

70.83 60.71 62.50 0.25 0.25 50.00 50.00 57.14 0.13 0.13 56.25  0.13 56.25 0.13 

InfoGain 
70.83 65.38 66.67 0.33 0.33 50.00 50.00 57.14 0.13 0.13 56.25 0.13 60.42 0.21 

ReliefF 
75.00 78.26 77.08 0.54 0.54  83.33 71.43 78.57 0.58 0.57 77.08 0.54 79.17 0.58 

Wrapper 
75.00 69.23 70.83 0.42 0.42 83.33 50.00 57.14 0.23 0.19 60.42 0.21 66.67 0.33 

Cfs 

QDA 

75.00 78.26 77.08 0.54 0.54 75.00 60.00 62.50 0.26 0.42 52.08 0.04 58.33 0.12 

InfoGain 
83.33 60.61  64.58 0.31 0.29 70.83 58.62 58.33 0.19 0.57 52.08 0.04 60.42 0.21 

ReliefF 
79.17 79.17 79.17 0.58 0.58 75.00 75.00 75.00 0.50 0.71 75.00 0.50 77.08 0.54 

Wrapper 
83.33 90.91 87.50 0.75 0.75 62.50 60.00 60.42 0.21 0.16 60.42 0.21 58.33 0.17 

Sp: Specificity (%), Sn: Sensitivity (%), ACC: Accuracy (%), MCC: Matthews Correlation Coefficient, k: Kappa coefficient, LOO-CV: leave-

one-out cross-validation 

Table 3. Performance of DT classifiers with various feature selection techniques. 

Subset 

evaluator Classifier 
Training set Test set LOO-CV 10-fold-CV 

 Sp Sn ACC MCC k Sp Sn ACC MCC k ACC MCC ACC MCC 

Cfs 

RF 

95.83 79.31 85.42 0.72 0.71 100.00 75.00 85.71 0.75 0.72 79.17 0.58 81.25 0.63 

InfoGain 
95.83 76.67 83.33 0.69 0.67 100.00 66.67 78.57 0.65 0.59 68.75 0.38 70.83 0.43 

ReliefF 
70.83 100.00 85.42 0.74 0.71 83.33 71.43 78.57 0.58 0.57 66.67 0.33 72.92 0.46 

Wrapper 
100.00 92.31 95.83 0.92 0.92 100.00 60.00 71.43 0.55 0.47 68.75 0.38 70.83 0.42 

Cfs 

J48 

83.33 86.96 85.42 0.71 0.71 83.33 62.50 71.43 0.46 0.44 77.08 0.54 68.75 0.38 

InfoGain 
100.00 72.73 81.25 0.67 0.63 83.33 50.00 57.14 0.23 0.19 75.00 0.53 72.92 0.48 

ReliefF 
58.33 100.00 79.17 0.64 0.58 66.67 80.00 78.57 0.56 0.55 70.83 0.44 66.67 0.34 

Wrapper 
100.00 62.50 81.25 0.67 0.63 66.67 57.14 64.29 0.29 0.29 64.58 0.29 62.50 0.25 

Sp: Specificity (%), Sn: Sensitivity (%), ACC: Accuracy (%), MCC: Matthews Correlation Coefficient, k: Kappa coefficient, LOO-CV: leave-

one-out cross-validation 
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Table 4. Performance of SVM, RBF and MLP classifiers with various feature selection techniques. 

Subset 

evaluator Classifier 
Training set Test set LOO-CV 10-fold-CV 

 Sp Sn ACC MCC k Sp Sn ACC MCC k ACC MCC ACC MCC 

Cfs 

LiBSvm 

83.33 90.91 87.50 0.75 0.75 83.33 83.33 85.71 0.71 0.71 81.25 0.63 81.25 0.63 

InfoGain 
66.67 72.73 70.83 0.42 0.42 83.33 62.50 71.43 0.46 0.44 62.50 0.25 60.42 0.21 

ReliefF 
70.83 100.00 85.42 0.74 0.71 83.33 62.50 71.43 0.46 0.44 54.17 0.16 75.00 0.50 

Wrapper 
95.83 92.00 93.75 0.88 0.88 83.33 55.56 64.29 0.34 0.31 58.33 0.17 64.58 0.29 

Cfs 

RBFN 

79.17 100.00 89.58 0.81 0.79 83.33 71.43 78.57 0.58 0.57 77.08 0.54 75.00 0.51 

InfoGain 
75.00 87.50 79.17 0.59 0.58 100.00 66.67 78.57 0.65 0.59 56.25 0.13 62.50 0.25 

ReliefF 
70.83 94.44 83.33 0.69 0.67 83.33 83.33 85.71 0.71 0.71 68.75 0.38 66.67 0.33 

Wrapper 
95.83 100.00 97.92 0.96 0.96 50.00 50.00 57.14 0.13 0.13 58.33 0.17 60.42 0.21 

Cfs 

MLP 

 

79.17 82.61 81.25 0.63 0.63 83.33 71.43 78.57 0.58 0.57 77.08 0.55 77.08 0.54 

InfoGain 
65.22 62.50 64.58 0.29 0.29 50.00 60.00 64.29 0.26 0.26 60.42 0.21 62.50 0.25 

ReliefF 
75.00 85.71 81.25 0.63 0.63 83.33 71.43 78.57 0.58 0.57 56.25 0.46 75.00 0.50 

Wrapper 
70.83 70.83 70.83 0.42 0.42 66.67 50.00 57.14 0.17 0.16 56.25 0.56 60.42 0.21 

Sp: Specificity (%), Sn: Sensitivity (%), ACC: Accuracy (%), MCC: Matthews Correlation Coefficient, k: Kappa coefficient, LOO-CV: leave-one-out 

cross-validation 
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Table 5. Sum of ranking difference (SRD) and p% interval of 

the variables of the classification analyses 
 Ranking results p% 

Model Model code SRD x < SRD > =x 

Wrapper-RF 12 10 7.45E-05 1.73E-04 
Cfs-MLP 21 14 3.88E-04 8.44E-04 

Wrapper-QDA 8 18 1.78E-03 3.67E-03 
Cfs-RBF 25 18 1.78E-03 3.67E-03 

Wrapper-SVM 20 20 3.67E-03 7.35E-03 
Cfs-QDA 5 22 7.35E-03 1.43E-02 

InfoGain-RF 10 22 7.35E-03 1.43E-02 
ReliefF-RF 11 22 7.35E-03 1.43E-02 

Cfs-J48 13 22 7.35E-03 1.43E-02 
ReliefF-SVM 19 24 1.43E-02 2.71E-02 
ReliefF-RBF 27 24 1.43E-02 2.71E-02 

Wrapper-LDA 4 26 2.71E-02 5.00E-02 
Cfs-SVM 17 26 2.71E-02 5.00E-02 

Wrapper-J48 16 28 5.00E-02 8.98E-02 
InfoGain-SVM 18 28 5.00E-02 8.98E-02 
InfoGain-MLP 22 28 5.00E-02 8.98E-02 
InfoGain-QDA 6 32 0.16 0.27 

Cfs-RF 9 32 0.16 0.27 
Wrapper-MLP 24 32 0.16 0.27 
ReliefF-QDA 7 34 0.27 0.44 
ReliefF-MLP 23 34 0.27 0.44 
InfoGain-J48 14 36 0.44 0.72 
ReliefF-J48 15 36 0.44 0.72 

InfoGain-RBF 26 36 0.44 0.72 
Wrapper-RBF 28 36 0.44 0.72 

Cfs-LD 1 38 0.72 1.13 
InfoGain-LD 2 38 0.72 1.13 
ReliefF-LD 3 44 2.60 3.80 

 XX1 46 4.61 5.47 

 Q1 58 24.45 27.12 

 Med 66 48.78 52.08 

 Q3 74 73.59 76.22 

 XX19 84 94.77 95.59 

XX1-frst icosaile (5%), Q1-frst quartile, Med-median, Q3-last quartile, XX19-last 

icosaile (95%). 
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Figure. 1. SRD-CRRN results of the classification models. XX1: first icosaile (5%), Q1:first 

quartile, Med: median, Q3:last quartile, XX19:last icosaile (95%). The label numbers 

indicated the model code given in the Table 5. 
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