

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1 The role of nitric oxide and autophagy in liver injuries induced by

2 Selenium deficiency in chickens

- 3 Chunpeng Liu¹, Jing Fu², Ci Liu¹, Shu Li^{1*}
- 4 1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- 5 2. College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
- 6 P. R. China
- 7 All other authors have read the manuscript and have agreed to submit this manuscript in its current
- 8 form for consideration for publication Journal.
- 9 * Corresponding author
- 10 Address: College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030,
- 11 P. R China
- 12 Tel: +86 451 55190083
- 13 E-mail address: lishu@neau.edu.cn
- 14

16	Abstract Selenium (Se) is recognized as a necessary trace mineral in animal diets, including
17	those of birds. Se deficiency induces a number of diseases and injuries in chickens, including liver
18	damage. Nitric oxide (NO) is an essential messenger molecule associated with inflammation and
19	oxidative stress. Autophagy is a cellular pathway that is crucial for development, differentiation,
20	survival, and homeostasis, which maintain the balance of energy and nutrients for basic cell
21	functions in the liver. However, little is known about the role of NO and autophagy in liver injured
22	induced by Se deficiency. The aim of this study was to evaluate the influence of Se deficiency on
23	NO and autophagy in chicken livers. A total of 300 1-day-old sea blue white laying hens were
24	divided into two groups (n=150/group), and each of those groups was randomly divided into
25	groups so that the trials were conducted in triplicate. The Se deficiency group (-Se) was fed a
26	Se-deficient corn-soy basal diet (Se content 0.02 mg/kg), and the Se-adequate group used as a
27	control (+Se) was fed the same basal diet supplemented with Se at 0.2 mg/kg (sodium selenite).
28	The liver tissue was collected and examined for pathological observations, inducible NO synthase
29	(iNOS)-NO activities (including NO content and iNOS activity), and mRNA and protein levels of
30	autophagy genes at 15, 25, 35, 45, 55 and 65 days old. The results showed that numerous
31	autophagosomes, as well as a low density of organelles and glycogen, were observed in the
32	chicken livers from the Se deficiency group. In addition, the NO content and iNOS activity in the
33	Se deficiency group were higher ($p < 0.05$) than in the control group. Transcript expression of
34	autophagy genes (LC3- I , LC3- II , ATG5, Dynein and Beclin1) increased significantly ($p < 0.05$),
35	and TOR gene expression fluctuated (first increased and then decreased) in the Se-deficient group
36	compared with that in the corresponding control group. Meanwhile, the protein expression of
37	autophagy genes (LC3-, LC3- II , Dynein and Beclin1) also increased significantly ($p < 0.05$) in the

- 38 Se-deficient group. This indicated that NO and autophagy are involved in the development of liver
- 39 injury (pathological processes), which is induced by Se deficiency.
- 40 Keywords: Selenium Deficiency, NO, autophagy, Liver, Chicken
- 41
- 42

43 Introduction

44	Selenium (Se) is an essential trace element because it plays a crucial role in antioxidant
45	defence mechanisms ¹ . As an important detoxification organ, the liver plays a central role in
46	maintaining nutrient homeostasis by regulating protein, carbohydrate, and fat metabolism ² . Se
47	deficiency can cause metabolic dysfunction, morphological damage and changes in glutathione
48	peroxidase and the expression of selenoprotein genes in the livers of mice, rabbits, trout, turkeys
49	and chickens ³ . It is also possible that catalytic Se compounds may function in a similar fashion to
50	activate apoptosis ^{4, 5} .

51 Autophagy or cellular self-digestion is a pathway that is crucial for development, differentiation, survival, and homeostasis ⁶. Recent data showed that autophagy is involved in 52 53 major fields of hepatology. As the best-known function of autophagy concerns nutrient starvation, 54 studies on autophagy and liver diseases have focused on liver ischemia/reperfusion with a demonstrable increase in liver cell autophagy⁷. In addition, autophagy was enhanced during acute 55 liver damage in mice⁸. Donati found that the antilipolytic agent 3, 5'-dimethylpyrazole (DMP) 56 57 could increase both autophagic proteolysis and expression of the autophagic genes LC3 and beclin1 in mammalian liver cells in vivo⁹. Kim found that autophagy was the primary catabolic 58 59 process of hepatic proteins and conferred cytoprotection against ischemia/reperfusion liver injury 60 10 . These studies show that disturbance of autophagy function has a major impact on liver 61 physiology and disease. Although autophagy is primarily a survival mechanism, it can also, under 62 certain conditions, lead to autophagic cell death. However, in most liver diseases, it seems clear 63 that one of the major functions of autophagy is to keep cells alive under stressful "life-threatening" conditions. In addition, Se in the form of sodium selenite has been reported to 64 65 exert anti-tumour effect in several cancer cell types by inducing autophagic cell death and

66	apoptosis mediated by reactive oxygen species (ROS) ¹¹ . In addition, it is of potential clinical
67	importance to better understand the molecular mechanisms regulating the autophagic pathway in
68	selenite-induced apoptosis in NB4 cells ¹² . However, the relationship between autophagy and Se
69	deficiency is unclear.

70 NO has broad biological functions as an active intracellular messenger. Several studies have 71 demonstrated the importance of NOS-mediated signaling in many Se deficiency models. Se 72 deficiency not only induced oxidative damage and upregulated NO and iNOS content in chicken intestinal tracts ¹³ but also induced oxidative stress with NO by inducing apoptosis in chicken 73 immune cells ¹⁴. In addition, Se deficiency induced pancreatic injury by influencing NO and 74 selenoproteins in the chicken pancreas¹⁵. Thus, it can be seen that NO radicals function efficiently 75 76 in a number of physiological systems and pathophysiological states. NO impaired autophagy 77 during the early stages of autophagosome formation. Some researchers indicated that NO inhibits 78 autophagosome synthesis via a number of mechanisms ¹⁶. Yang reported that reactive oxygen 79 species (ROS) and NO generation were induced by evodiamine in a time-dependent manner and 80 acted in synergy to trigger mitochondria-dependent apoptosis and autophagy through the induction 81 of mitochondrial membrane permeabilization (MMP) by increasing the Bax/Bcl-2 or Bcl-xL ratio 17 82

Although the relationship between Se deficiency and liver damage has been widely studied, the effects of Se deficiency on the NO system and autophagy have not been investigated in the chicken liver. Herein, we first established a model of chicken liver damage induced by Se deficiency. Second, we investigated the pathological changes in liver tissue. Third, we investigated the NO content and iNOS activity in the livers of chickens after induced by Se

- 88 deficiency. Finally, we investigated the mRNA and protein expression levels of several autophagy
- 89 genes (LC3-I, LC3-II, ATG5, TOR, Dynein and Beclin1) in the liver tissue during Se deficiency.
- 90 The present study provides some compensated data about the effect of Se deficiency on changes in
- 91 NO and autophagy in chicken liver.

93 Materials and Methods

94 Birds, Diets and Tissue Collections

95 All of the procedures used in the present study were approved by the Institutional Animal 96 Care and Use Committee of Northeast Agricultural University. A total of 300 1-day-old sea blue 97 white laying hens were divided into control and Se deficiency groups. Each treatment group 98 consisted of 150 chickens, and each of these groups was randomly divided into subgroups so that 99 the trials were conducted in triplicate. The chickens were maintained either on a Se-deficient diet 100 (-Se group, Se-deficient granulated diet including corn, soybean meal and wheat bran from 101 Longjiang County, a typical Se-deficient region of the Heilongjiang Province in China (Weiwei 102 Co. Ltd., Harbin, China)) or a normal Se content diet (Control group, +Se; Weiwei Co. Ltd., 103 Harbin, China) for 65 days. According to the different nutritional needs during the growth stages 104 of sea blue white chickens (0-21 days, 22-42 days and 43-65 days), different types of feed were 105 prepared for the +Se and -Se groups. According to National Research Council (NRC), the nutrient 106 requirements of chicken corresponded to 0.2 mg/kg in the control group (+Se) and 0.02 mg/kg in 107 the Se-deficient group (-Se), which was determined by fluorescence spectrophotometry using 108 GB/T 13,883-2008 (PONY TEST Co., Beijing, China). Throughout the entire experimental period, 109 the chickens were allowed ad libitum consumption of feed and water. Clinical symptoms and 110 mortality were also recorded. The 15 chickens in each group were killed with sodium 111 pentobarbital at 15, 25, 35, 45, 55 and 65 days old. The liver tissues were quickly removed, 112 minced and stored at -80 °C to determine the index of oxidative stress and isolate the RNA and 113 protein. In this study, 15 chickens were killed per group at the six sampling events, and 5 chickens 114 per group were used in the official test (n=5), which was repeated in triplicate. The remaining

RSC Advances Accepted Manuscript

115 tissues were used in the preliminary experiment and served as standby tissues.

116 Ultrastructural observations

117	For electron microscopy, liver tissue specimens were fixed with 2.5% glutaraldehyde in 0.1
118	M sodium phosphate buffer (pH 7.2) for 3 h at 4 $^\circ C$, washed in the same buffer for 1 h at 4 $^\circ C$ and
119	postfixed with 1% osmium tetroxide in sodium phosphate buffer for 1 h at 4 $^\circ$ C. The tissues were
120	then dehydrated in a graded series of ethanol starting at 50% for 10 min after two changes in
121	propylene oxide. The tissue specimens were embedded in araldite. Ultrathin sections were stained
122	with Mg-uranyl acetate and lead citrate for transmission electron microscope evaluation.
123	Determination of NO Content and iNOS Activity in Liver
124	Chicken livers were homogenized on ice in physiological saline and centrifuged at 700×g for
125	15 min at 4°C before supernatant collection. Here, we detected NO and iNOS as indices of
126	oxidative damage. The NO content and iNOS activity were determined using NO and iNOS
127	activity assay kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The method used
128	in the present study was according to the procedure previously published by our lab ¹⁸ with an
129	ELX800 Microplate reader (BioTek Instruments, USA) to detect the OD at 550 and 530 nm,
130	respectively.

131 Quantification of autophagy gene mRNA expression

The method of quantification used was same as in our previous research ¹⁹. After quantification,
the expression levels of autophagy genes were determined by quantitative reverse transcription
PCR using SYBR Premix ExTaq TM (Takara, China) and an ABI PRISM 7500 real-time PCR
system (Applied Biosystems). The PCR primers (Table 1) were designed using Oligo Primer
Analysis software (version6.0) and synthesized by Invitrogen (Shanghai, China).

137

RSC Advances

Reactions consisted of the following: 10 µl of 2× SYBR Green I PCR Master Mix (TaKaRa,

138	China), 0.4 μ l of 50× ROX reference Dye II, 0.4 μ l of each primer (10 μ M), 2 μ l of diluted cDNA,
139	and 6.8 μl of PCR-grade water. The PCR program for amplification of Hsp genes and GAPDH
140	consisted of 95°C for 30 s followed by 40 cycles at 95°C for 15 s and 60°C for 30 s. The results
141	(fold changes) were expressed as $2^{-\Delta\Delta Ct}$ in which
142	$\Delta\Delta Ct = (Ct_{LC3-1}-Ct_{GAPDH}) t - (Ct_{LC3-1}-Ct_{GAPDH}) c$, where Ct_{LC3-1} and Ct_{GAPDH} are the cycle
143	thresholds for chicken LC3-1 and GAPDH genes in the different treated groups, respectively, t is
144	the Se-deficient group, and c is the control group (Se-adequate group).
145	Western blot analysis
146	Protein extracts were subjected to SDS-polyacrylamide gel electrophoresis under reducing
147	conditions on 12% gels. Separated proteins were then transferred to nitrocellulose membranes
148	using a tank transfer for 2 h at 200 mA in Trisglycine buffer containing 20% methanol.
149	Membranes were blocked with 5% skim milk for 16-24 h and incubated overnight with diluted
150	primary chicken antibodies against Dynein (1:1,400), Beclin1 (1:500), LC3- I and LC3-II (1:500;
151	Dynein, Beclin1, LC3- I and LC3- II polyclonal antibodies were produced by our lab) followed by
152	a horseradish peroxidase (HRP)-conjugated secondary antibody against rabbit IgG (1:1,500, Santa
153	Cruz, CA, USA). To verify the equal loading of samples, the membrane was incubated with a
154	monoclonal β -actin antibody (1:1,000, Santa Cruz, CA, USA) followed by a HRP-conjugated goat
155	antimouse IgG (1:1,000). The signal was detected by X-ray films (Trans Gen Biotech Co., China).
156	The optical density (OD) of each band was determined using the Image VCD gel imaging system,
157	and Dynein, Beclin1, LC3- I and LC3-II expression were detected as the OD ratio between
158	Dynein, Beclin1, LC3- I and LC3- II and that of β -actin respectively.

159 Statistical analyses

160	Data analysis was performed using SPSS for Windows system (SPSS, Chicago, IL, USA).
161	Data were expressed as the mean \pm standard deviation. The K-S test was used to verify normal
162	distribution in the data and the homogeneity of variances. The data that meet the normal
163	distribution and showed no significant difference (>5% significance level) was used for further
164	analyzing. The differences between means were assessed using a two-tailed paired Student's T-test.
165	P < 0.05 was considered statistically significant."

167	Results
168	Ultrastructural observations
169	The Se deficiency effects on the histopathology of the liver electron microscopy are shown in
170	(Fig. 1). No obvious ultrastructural changes were observed in the control group (Fig. 1A).
171	Widened intercellular space between hepatocytes was observed in the Se-deficient group. In the
172	Se-deficient group, hepatocytes showed numerous autophagosomes as well as a low density of
173	organelles and of glycogen. Moreover, some hepatocytes presented morphological characteristics
174	of autophagic cell death (also called type II cell death) (Fig. 1B and 1C).
175	Changes in NO Content and iNOS Activity
176	The effects of Se deficiency on NO content and iNOS activity in liver are shown in (Table.
177	2and Fig. 2). As shown in Fig. 2A, the NO content in the Se-deficient group was significantly
178	increased ($p < 0.05$) compared to that of the each corresponding control groups in a
179	time-dependent manner (from day 15 to day 65). The NO content at day 65 in the Se-deficient
180	group was increased 4.45-fold in the liver compared with the control group. During the trial period,
181	the NO content peaked at day 65 in the Se-deficient group. The NO content increased 4.45-fold in
182	liver compared to the control group.
183	As shown in Fig. 2B, iNOS activity in the Se-deficient group was also significantly increased
184	(p < 0.05) compared to that of the each corresponding control group in a time-dependent manner
185	(from day 15 to day 65). iNOS activity at day 65 in the Se-deficient group was increased 2.29-fold
186	in liver compared with that of the control group.

RSC Advances Accepted Manuscript

187 Effects of Se deficiency on the mRNA expression levels of LC3- I , LC3- II , ATG5, TOR,

188 **Dynein and Beclin1 in chicken livers**

189	To determine the effects of Se deficiency on the expression of autophagy genes in livers of
190	chickens at different time intervals, the mRNA expression levels were examined by quantitative
191	reverse transcription PCR (Table. 3). Compared with the corresponding control groups, the
192	mRNA levels of the LC3- I , LC3-II , ATG5 and Dynein gene in the livers of Se-deficient
193	chickens in the 35-, 45-, 55- and 65-day treatment groups were significantly increased ($p < 0.05$)
194	(Figs. 3A, 3B, 3C and 3E). Compared with the corresponding control groups, the mRNA levels of
195	the Beclin1 gene in livers of Se-deficient chickens in the 25-, 35-, 45-, 55- and 65-day treatment
196	groups all significantly increased ($p < 0.05$) (Fig. 3F). However, TOR gene expression fluctuated,
197	first increasing ($p < 0.05$) and then decreasing ($p > 0.05$) (Fig. 3D).
198	Western bolt analysis of autophagy levels
199	The protein expression levels of LC3-, LC3-II, Dynein and Beclin1 were examined by
200	western blots. The results (Table. 4 and Fig. 4) revealed that protein expression of the four
201	autophagy genes in the Se-deficient group were gradually increased in the livers of chickens
202	compared with the control group. What is more, the western blot results of LC3- I , LC3-II ,
203	Dynein and Beclin1 were consistent with LC3- I , LC3-II , Dynein and Beclin1 mRNA responses
204	to Se deficiency.
205	

208	Se is an essential micronutrient and plays an important role in biological functions in humans
209	and many other species ²⁰⁻²² . Se-deficient diets not only increase the AST and ALT values (clinical
210	indices of liver damage) and ²³ caused morphological damage in rat livers ²⁴ ; but also caused
211	mouse liver cytosolic oxidative stress ²⁵ and down-regulation of GPx1 mRNA. The loss of GPx1
212	activity causes cellular damage in rabbit livers ²⁶ . Some research has also shown that apoptosis or
213	a synchronized process of apoptosis and necrosis can be induced by Se deficiency ^{27, 28} . Abundant
214	studies have indicated that macroautophagy in the liver is important for the balance of energy and
215	nutrients for basic cell functions, the removal of misfolded proteins and the turnover of major
216	subcellular organelles, such as the endoplasmic reticulum, mitochondria, and peroxisomes, under
217	both normal and pathophysiological conditions ²⁹ . Therefore, the aim of the present study was to
218	examine autophagy during liver damage induced by Se deficiency. In the present study, the data of
219	histopathological changes indicated that autophagy occurred in the chicken liver tissues in which
220	damage was induced by Se deficiency (Fig. 1B, C).
221	NO is a small signalling molecule with important regulatory effects in many tissues. Some
222	reports showed that Se deficiency up-regulated NO concentrations and led to lesions in the small
223	intestines of humans ³⁰ ; Se deficiency can induce iNOS activity and NO overproduction in chicken
224	immune tissues ¹⁴ . Consistent with the studies described above, we found that Se deficiency
225	induced high levels of iNOS and NO in chicken livers and that the NO content and iNOS activity
226	were significantly increased in the Se-deficient chicken livers throughout the experimental period
227	(from day 15 to 65). These results indicated that under conditions of Se deficiency, the antioxidant
228	defence system was undermined in vivo, which led to the accumulation of ROS and the
229	subsequent release of a large number of inflammatory mediators while stimulating an increase in

230 iNOS expression and the excessive release of NO 13 .

231	NO, provided by the donor S-nitrosocysteine (SNOC), induced cell death and autophagy
232	with autophagosomes engulfing injured mitochondria ³¹ . However, little is known about the effect
233	of NO on autophagy induced by Se deficiency. In the present study, Se deficiency induced a
234	statistically significant increase in the levels of the NO system and hepatic tissue autophagy in
235	chickens. Some data show that NO inhibits autophagic flux in mammalian cells. NO S-nitrosylates
236	JNK1 and IKK β affect autophagy, as NO decreases JNK1 activity and Bcl-2 phosphorylation and
237	activates mTORC1 in an IKK β - and TSC2-dependent manner. Overexpression of NOS isoforms
238	also impairs autophagic flux. Conversely, the inhibition of NO synthesis induces autophagy and
239	protects against neurodegeneration in models of Huntington's disease ¹⁶ . Our data indicate the role
240	of NO in regulating autophagy, which may have underlying implications for its myriad of cellular
241	functions. A previous study showed that ROS/NO contributed to the activation of autophagy over
242	a short incubation period and acted to prevent autophagy during a long incubation period. Such
243	reports have demonstrated that ROS can exert an inductive effect on autophagy, the mechanism of
244	which has been suggested to be related to its specific regulation of the activity of Atg4 32 . This
245	may be because ROS can regulate autophagy under amino acid and serum starvation conditions,
246	whereas superoxide has been suggested to be the major ROS species involved in ROS-mediated
247	autophagy ^{33,34} .
248	The autophagy-related genes play essential roles at different stages of the autophagic process,
249	including induction, vesicle formation, autophagosome formation and autolysosome formation,
250	and were first identified and characterized in yeast ³⁵ . LC3 is a specific marker of autophagosome

251 formation and the Atg proteins are crucial for autophagosome assembly. It has been reported that

252	LC3 and ATG5 take part in the formation of the autophagosome ³⁶ . In the present study, the mRNA
253	expression of LC3-I, LC3-II and ATG5 significantly increased in the chicken livers in which
254	damage was induced by Se deficiency. The protein kinase target of rapamycin (TOR) is
255	inactivated in response to an exogenous stimulus ³⁷ . In the current study, the mRNA levels of TOR
256	fluctuated (first increased and then exhibited the largest decrease observed on the 65 day) in the
257	livers exposed to Se deficiency, which reflects the development of a compensatory mechanism in
258	response to increased oxidative stress. Dyneins are large multi-component microtubule-based
259	molecular motors involved in many fundamental cellular processes, including vesicular transport,
260	mitosis and ciliary/flagellar beating ³⁸ . In our study, the mRNA and protein levels of Dynein were
261	increased in chicken livers exposed to Se deficiency. Thus, Dynein may be a transporter that plays
262	an important role in the combination of autophagosomes and lysosomes in the liver after exposure
263	to Se deficiency. Beclin1 participates in the early stages of autophagosome formation, promoting
264	autophagosome nucleation ³⁹ . Protein expression of Beclin 1 was increased in PC-12 cells exposed
265	to cadmium ⁴⁰ . Consistent with the prior study, the mRNA and protein levels of Beclin 1 were
266	increased in chicken livers exposed to Se deficiency.
267	In conclusion, the present study clearly showed that Se deficiency increased the NO

increased in chicken livers exposed to Se deficiency. In conclusion, the present study clearly showed that Se deficiency increased the NO production and the activity of iNOS and eventually induced the autophagy of liver tissue. These results strongly indicate that NO and autophagy are involved in the development of liver injury and play a major role in the liver damage induced by Se deficiency.

271 Acknowledgments

268

269

270

This work was supported by the Graduate innovative research project in Heilongjiang
Province China (No. YJSCX 2012 - 005HLJ), China Postdoctoral Science Foundation (No. 2012

- 274 M520702), Startup Foundation for Doctors of Northeast Agricultural University, China (No.
- 275 2012RCB92), the Science Foundation of the Education Department of Heilongjiang Province
- 276 (No.12541024), and Heilongjiang Postdoctoral Fund (LBH-Z13028).

277

279	Refer	rences:
280	1.	K. M. Brown and J. R. Arthur, Public health nutrition, 2001, 4, 593-599.
281	2.	R. F. Burk and K. E. Hill, Annual review of nutrition, 2005, 25, 215-235.
282	3.	P. J. Thuluvath and D. R. Triger, Journal of hepatology, 1992, 14, 176-182.
283	4.	M. S. Stewart, J. E. Spallholz, K. H. Neldner and B. C. Pence, Free radical biology &
284		medicine, 1999, 26 , 42-48.
285	5.	H. D. Yao, Q. Wu, Z. W. Zhang, J. L. Zhang, S. Li, J. Q. Huang, F. Z. Ren, S. W. Xu, X. L.
286		Wang and X. G. Lei, The Journal of nutrition, 2013, 143, 613-619.
287	6.	P. E. Rautou, A. Mansouri, D. Lebrec, F. Durand, D. Valla and R. Moreau, Journal of
288		hepatology, 2010, 53 , 1123-1134.
289	7.	P. D. Schneider and C. M. Gorschboth, The Journal of surgical research, 1983, 34, 550-554.
290	8.	M. C. Yang, C. P. Chang and H. Y. Lei, International immunology, 2010, 22, 661-670.
291	9.	A. Donati, A. Ventruti, G. Cavallini, M. Masini, S. Vittorini, I. Chantret, P. Codogno and E.
292		Bergamini, Biochemical and biophysical research communications, 2008, 366, 786-792.
293	10.	J. S. Kim, T. Nitta, D. Mohuczy, K. A. O'Malley, L. L. Moldawer, W. A. Dunn, Jr. and K. E.
294		Behrns, Hepatology, 2008, 47, 1725-1736.
295	11.	Park SH, Kim JH, Chi GY, Kim GY, Chang YC, Moon SK, Nam SW, Kim WJ, Yoo YH, Choi
296		YH, Toxicol Lett, 2012 Aug 3;212(3):252-61.
297	12.	Ren Y, Huang F, Liu Y, Yang Y, Jiang Q, Xu C, BMB Rep, 2009 Sep 30;42(9):599-604.
298	13.	J. Yu, H. Yao, X. Gao, Z. Zhang, J. F. Wang and S. W. Xu, Biological trace element research,
299		2015, 163 , 144-153.
300	14.	Z. W. Zhang, J. L. Zhang, Y. H. Gao, Q. H. Wang, S. Li, X. L. Wang and S. W. Xu, Biometals :
301		an international journal on the role of metal ions in biology, biochemistry, and medicine, 2013,
302		26 , 355-365.
303	15.	X. Zhao, H. Yao, R. Fan, Z. Zhang and S. Xu, Biological trace element research, 2014, 161,
304		341-349.
305	16.	S. Sarkar, V. I. Korolchuk, M. Renna, S. Imarisio, A. Fleming, A. Williams, M.
306		Garcia-Arencibia, C. Rose, S. Luo, B. R. Underwood, G. Kroemer, C. J. O'Kane and D. C.
307		Rubinsztein, Molecular cell, 2011, 43, 19-32.
308	17.	J. Yang, L. J. Wu, S. Tashino, S. Onodera and T. Ikejima, Free radical research, 2008, 42,
309		492-504.
310	18.	Z. W. Zhang, Z. H. Lv, J. L. Li, S. Li, S. W. Xu and X. L. Wang, Poultry science, 2011, 90,
311		1555-1561.
312	19.	C. P. Liu, J. Fu, F. P. Xu, X. S. Wang and S. Li, Biometals : an international journal on the
313		role of metal ions in biology, biochemistry, and medicine, 2014.
314	20.	J. Loflin, N. Lopez, P. D. Whanger and C. Kioussi, Journal of inorganic biochemistry, 2006,
315		100 , 1679-1684.
316	21.	H. D. Yao, Q. Wu, Z. W. Zhang, S. Li, X. L. Wang, X. G. Lei and S. W. Xu, Biochimica et
317		biophysica acta, 2013, 1830, 3112-3120.
318	22.	H. D. Yao, W. Liu, W. C. Zhao, R. F. Fan, X. Zhao, P. A. Khoso, Z. W. Zhang and S. W. Xu,
319		RSC advances, 2014, 4, 64032.
320	23.	Matsumoto K, Ui I, Satoh K, Tobe T, Ushio F, Endo K, Redox Re,2002;7(5):351-4.
321	24.	K. Matsumoto, I. Ui, K. Satoh, T. Tobe, F. Ushio and K. Endo, Redox report : communications

322		in free radical research, 2002, 7, 351-354.
323	25.	R. F. Burk, K. E. Hill, A. Nakayama, V. Mostert, X. A. Levander, A. K. Motley, D. A. Johnson,
324		J. A. Johnson, M. L. Freeman and L. M. Austin, Free radical biology & medicine, 2008, 44,
325		1617-1623.
326	26.	Muller AS, Pallauf J, J Anim Physiol Anim Nutr (Berl), 2002 Oct; 86(9-10):273-87.
327	27.	W. H. Cheng, F. W. Quimby and X. G. Lei, Free radical biology & medicine, 2003, 34,
328		918-927.
329	28.	H. Zeng, The Journal of nutrition, 2002, 132, 674-679.
330	29.	X. M. Yin, W. X. Ding and W. Gao, Hepatology, 2008, 47, 1773-1785.
331	30.	L. H. Duntas, Hormone and metabolic research = Hormon- und Stoffwechselforschung =
332		Hormones et metabolisme, 2009, 41, 443-447.
333	31.	M. J. Barsoum, H. Yuan, A. A. Gerencser, G. Liot, Y. Kushnareva, S. Graber, I. Kovacs, W. D.
334		Lee, J. Waggoner, J. Cui, A. D. White, B. Bossy, J. C. Martinou, R. J. Youle, S. A. Lipton, M.
335		H. Ellisman, G. A. Perkins and E. Bossy-Wetzel, The EMBO journal, 2006, 25, 3900-3911.
336	32.	R. Kiffin, U. Bandyopadhyay and A. M. Cuervo, Antioxidants & redox signaling, 2006, 8,
337		152-162.
338	33.	Y. Chen, M. B. Azad and S. B. Gibson, Cell death and differentiation, 2009, 16, 1040-1052.
339	34.	R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil and Z. Elazar, The EMBO journal,
340		2007, 26 , 1749-1760.
341	35.	D. J. Klionsky, J. M. Cregg, W. A. Dunn, Jr., S. D. Emr, Y. Sakai, I. V. Sandoval, A. Sibirny, S.
342		Subramani, M. Thumm, M. Veenhuis and Y. Ohsumi, Developmental cell, 2003, 5, 539-545.
343	36.	Z. Yang and D. J. Klionsky, Nature cell biology, 2010, 12, 814-822.
344	37.	C. H. Jung, S. H. Ro, J. Cao, N. M. Otto and D. H. Kim, FEBS letters, 2010, 584, 1287-1295.
345	38.	S. M. King, Biochimica et biophysica acta, 2000, 1496, 60-75.
346	39.	A. Kihara, T. Noda, N. Ishihara and Y. Ohsumi, The Journal of cell biology, 2001, 152,
347		519-530.
348	40.	Q. Wang, J. Zhu, K. Zhang, C. Jiang, Y. Wang, Y. Yuan, J. Bian, X. Liu, J. Gu and Z. Liu,
349		Biochemical and biophysical research communications, 2013, 438, 186-192.
350		

2	5	1
- >	.)	
~	~	•

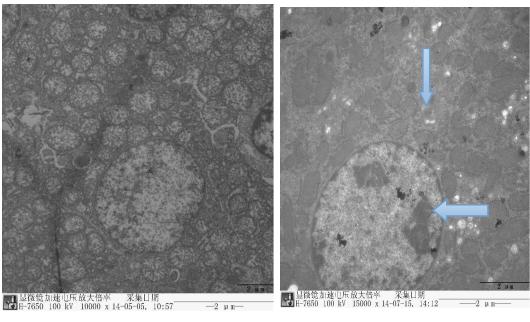
Table. 1 Primers used for quantitative real-time PCR

Target gene	Primer Sequence(5'-3')
LC3- I	Forward 5'-TTACACCCATATCAGATTCTTG-3'
	Reverse 5'-ATTCCAACCTGTCCCTCA-3'
LC3-II	Forward 5'-AGTGAAGTGTAGCAGGATGA-3'
	Reverse 5'-AAGCCTTGTGAACGAGAT-3'
ATG5	Forward 5'-GGCACCGACCGATTTAGT-3'
	Reverse 5'-GCTGATGGGTTTGCTTTT-3'
TOR	Forward 5'-GGACTCTTCCCTGCTGGCTAA-3'
	Reverse 5'-TACGGGTGCCCTGGTTCTG-3'
Dynein	Forward 5'-CGGCTTGACCTATGGAATCT-3'
	Reverse 5'-CATCACTGCGAGGAACTGC-3'
Beclin1	Forward 5'- CGACTGGAGCAGGAAGAAG-3'
	Reverse 5'- TCTGAGCATAACGCATCTGG-3'
GAPDH	Forward5'-AGAACATCATCCCAGCGT-3'
	Reverse5'-AGCCTTCACTACCCTCTTG-3'

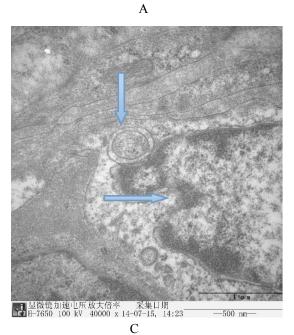
	group	Relative level and value P						
		15day	25day	35day	45day	55day	65day	
	+Se	11.982±0.877	11.993±0.869	12.061±0.622*	12.018±0.207*	12.148±1.270*	12.329±0.374*	
	-Se	17.219±0.356	26.920±1.703	31.192±1.024	42.098±1.043	58.591±3.441	67.288±4.334	
NO	Р	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	
	+Se	1041.826±33.417	1095.995±169.673	1131.809±148.519*	1164.417±79.787*	1215.533±68.573*	1226.174±61.16	
	-Se	1571.171±31.659	1964.438±236.664	2289.594±167.672	2386.171±83.249	3258.926±249.659	4034.070±244.5	
iNOS	Р	0.0001	0.0014	0.0002	0.0001	0.0001	0.0001	

			C	hicks			
gene	group	Relative mRNA level and value P					
		15day	25day	35day	45day	55day	65day
	+Se	1.000 ± 0.000	1.052±0.020	1.091±0.139*	1.108±0.086*	1.085±0.031*	1.086±0.086'
	-Se	1.134±0.112	1.264±0.111	1.573±0.125	1.772±0.160	2.723±0.150	3.290±0.316
LC3-1	Р	0.344	0.255	0.045	0.036	0.047	0.001
	+Se	1.000 ± 0.000	1.033±0.091	1.079±0.106*	1.159±0.101*	1.208±0.115*	1.235±0.104
	-Se	1.260±0.101	1.519±0.126	2.130±0.126	2.387±0.197	2.451±0.231	3.475±0.238
LC3-2	Р	0.159	0.205	0.032	0.012	0.018	0.014
	+Se	1.000 ± 0.000	1.010±0.100	1.040±0.103*	1.075±0.104*	1.084±0.043*	1.103±0.106
	-Se	1.036±0.090	1.955±0.123	2.415±0.224	2.416±0.180	2.967 ± 0.274	4.514±0.347
ATG5	Р	0.743	0.054	0.031	0.001	0.020	0.043
	+Se	1.000±0.000*	1.042±0.100*	1.093±0.108	1.099±0.104	1.121±0.079	1.292±0.118
	-Se	3.399±0.298	3.048±0.268	1.942±0.142	1.668±0.110	1.180 ± 0.114	0.279±0.022
TOR	Р	0.010	0.007	0.053	0.365	0.693	0.041
	+Se	1.000 ± 0.000	1.023±0.097	1.053±0.084*	1.023±0.101*	1.059±0.102*	1.146±0.111
	-Se	1.050±0.083	2.070±0.139	2.224±0.160	2.669±0.231	3.450±0.252	4.717±0.254
Dynein	Р	0.688	0.199	0.003	0.039	0.001	0.014
	+Se	1.000 ± 0.000	1.025±0.101*	1.145±0.100*	1.115±0.109*	1.108±0.110*	1.153±0.087
	-Se	1.081±0.094	1.804±0.156	2.897±0.189	3.294±0.285	4.451±0.315	4.628±0.358
Beclin1	Р	0.490	0.001	0.029	0.003	0.001	0.015

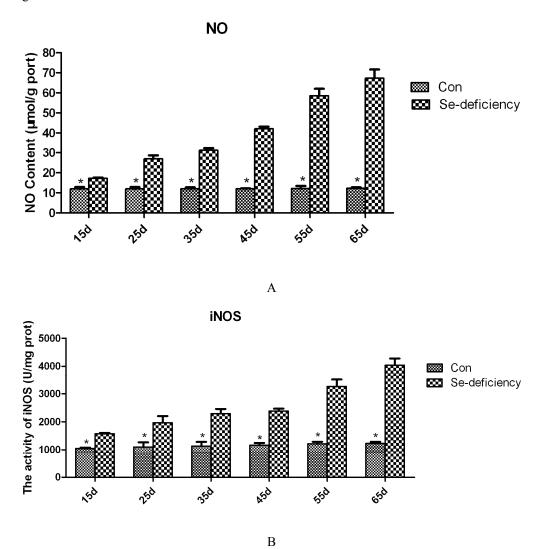
357 **Table. 3** Effects of dietary Se deficiency on liver relative mRNA abundance of autophagy genes in


359

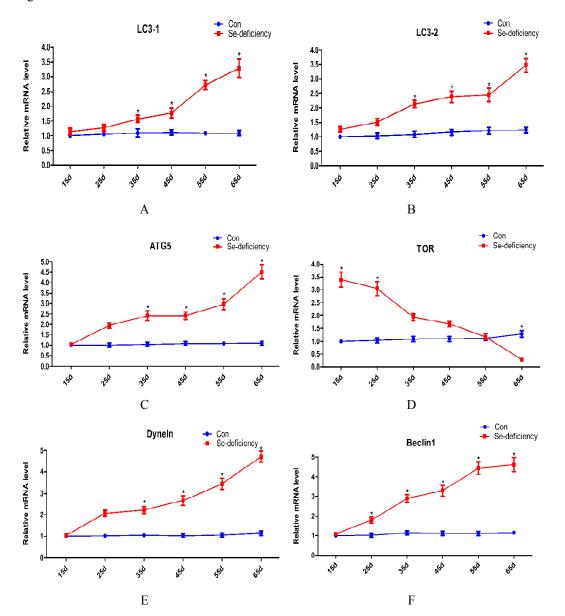
			genes	in chicks			
gene group Relative protein level and value P							
		15day	25day	35day	45day	55day	65day
	+Se	1.000 ± 0.000	1.061±0.040	1.100±0.137*	1.017±0.105*	1.094±0.051*	1.094±0.105*
	-Se	1.110±0.121	1.227±0.120	1.506±0.134	1.685±0.168	1.821±0.158	1.951±0.322
LC3-1	Р	0.196	0.103	0.023	0.031	0.022	0.016
	+Se	1.000 ± 0.000	1.043±0.110	1.088±0.125*	1.167±0.120*	1.115±0.134*	1.142±0.122*
	-Se	1.224±0.110	1.457±0.134	1.507±0.135	2.018±0.205	2.296±0.238	2.217±0.245
LC3-2	Р	0.072	0.077	0.019	0.005	0.002	0.003
	+Se	1.000 ± 0.000	1.033±0.116	1.062±0.103*	1.032±0.120*	1.068±0.121*	1.054±0.130*
	-Se	1.035±0.092	1.353±0.148	1.459±0.168	1.792±0.239	2.195±0.259	2.335±0.261
Dynein	Р	0.605	0.109	0.013	0.005	0.0001	0.0001
	+Se	1.000 ± 0.000	1.135±0.119*	1.153±0.119*	1.123±0.128*	1.117±0.129*	1.162±0.106*
	-Se	1.063±0.102	1.314±0.165	1.698±0.197	2.054±0.292	2.295±0.322	2.551±0.364
Beclin1	Р	0.161	0.016	0.011	0.004	0.0006	0.004


Table. 4 Effects of dietary Se deficiency on liver on liver protein expression levels of autophagy

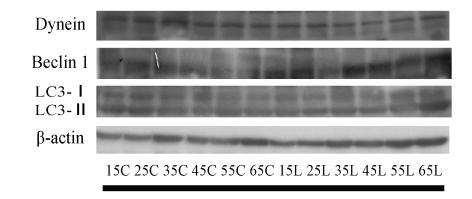
366	
367	Figure legends:
368	
369	Fig. 1 The effects of Se deficiency on liver tissue changes, as observed by histopathology under an
370	electron microscopy. A is in control group. B and C are in Se-deficient group.
371	
372	Fig. 2 The effect of redox activities on the liver induced by selenium deficiency in chickens. A,
373	shows the changes in NO activity. B, shows the changes in iNOS activity. *indicates that there
374	were significant differences (p<0.05) between the control group and the Se-deficient group at the
375	same time point. Each value represents the mean \pm SD of five individuals.
376	
377	Fig. 3 Effects of Se deficiency on mRNA expression in chicken livers. A-F The mRNA expression
378	of LC3- I, LC3-II, ATG5, TOR, Dynein and Beclin1 genes, respectively. In the experiment, the
379	relative mRNA levels of the autophagy genes were detected by qPCR; the relative mRNA levels
380	from the 15-, 25-, 35-, 45-, 55- and 65-day control group were used as the reference values in A-F.
381	Each value represents the mean \pm SD of five individuals. *, significant differences (p<0.05)
382	between the control group and the Se-deficient group at the same time point.
383	
384	Fig. 4 Effects of Se deficiency on LC3-, LC3-II, Dynein and Beclin1 protein expression in
385	chicken livers. C indicates the control group, and L indicates the Se-deficient group. The
386	experiment time points are 15-, 25-, 35-, 45-, 55- and 65-days.
387	Figures:
200	



В



391 Fig. 2



395 Fig. 4

396