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 2

Ionic liquids (ILs) were used as solvents for the FeCl3-catalyzed oxidative 25 

polymerization of 3-octylthiophene (3OT) for the first time. An excellent yield of 99% 26 

was obtained by using 1-butyl-3-methylimidazolium hexafluoroantimonate. The effect 27 

of the IL structure on the oxidative polymerization of 3OT was analyzed by the linear 28 

solvation energy relationship equation.  29 

 30 

 31 

Among the known conducting polymers, polythiophenes (PTs) are one of the most important 32 

conjugated polymers. However, chemical modification of PTs is generally difficult because they are 33 

insoluble in most organic solvents, as well as in water. Therefore, the development of highly soluble 34 

and easy-to-process PTs is of considerable interest. A number of approaches have utilized 35 

incorporation of alkyl, aryl, or sulfonyl groups and carboxyl or sulfonyl groups into thiophenes to 36 

achieve dissolution in organic solvents and water, respectively, in order to synthesize various PTs.1,2 37 

Among the substituted thiophenes, alkylthiophenes (ATs) are generally difficult to polymerize 38 

because the alkyl chain length of the substituent linked to the thiophenic ring has a significant 39 

influence on the electrochemical properties and solubilities of the produced polyalkylthiophenes 40 

(PATs) in the reaction media.3 PATs may be prepared either by electrochemical or chemical 41 

polymerization methods.4 The first chemical synthesis to prepare poly(2,5-thienylene) using transition 42 

metal-catalyzed C-C coupling was reported by Yamamoto et al. in 1980.5 Compared with 43 
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 3

electrochemical polymerization, chemical polymerization offers several advantages, including a 44 

greater selection of monomers, the ability to synthesize perfectly regioregular substituted PATs using 45 

proper catalysts, and higher productivity.4,6-9 Oxidative polymerization using inexpensive ferric(III) 46 

chloride (FeCl3) at room temperature has been reported for the synthesis of PATs for large-scale 47 

production.4,10 However, the selection of solvents as reaction media is still under consideration, 48 

because the reaction media can influence the solubility of the monomer, production yield of PATs, 49 

and molecular weight of PATs. Chloroform is commonly used to synthesize PATs; however, this 50 

solvent has associated environmental and operational issues because of its high toxicity and 51 

volatility.4,10  52 

Recently, ionic liquids (ILs) have been exploited as green solvents in the synthesis of conducting 53 

polymers via electrochemical polymerization and chemical polymerization.11-15 ILs are organic salts 54 

that melt below 100°C. Their nonvolatile character and thermal stability make them attractive 55 

alternatives to volatile organic solvents. In chemical processes, ILs exhibit excellent physical 56 

characteristics, including the ability to dissolve polar and nonpolar organic, inorganic, and polymeric 57 

compounds. Green polymerization systems employing ILs do not utilize any toxic solvents and the 58 

used ILs can be easily recovered after the reaction. Therefore, environmentally friendly, low-cost 59 

routes for the synthesis of PATs may be developed by using ILs. ILs have been used as reaction 60 

media for the FeCl3-catalyzed reactions. Ji et al. reported the FeCl3-catalyzed electrophilic substitution 61 

reactions of indoles with various aldehydes in ILs.16 Pringle et al. showed the FeCl3-catalyzed 62 
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 4

synthesis of PT nanoparticles in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide 63 

([EmIm][Tf2N]).13 Shang et al. reported the synthesis of poly(3-methyl thiophene) nanospheres in 64 

magnetic ionic liquid containing [FeCl4
−].11 In this study, various ILs are used as reaction media for 65 

the chemical synthesis of poly(3-octylthiophene) (P3OT) using FeCl3. First, ILs containing the same 66 

cation, 1-butyl-3-methylimidazolium ([BmIm]), were used to investigate the effect of the anion 67 

structure on the oxidative polymerization of 3OT. Five counter-anions were employed, namely, 68 

[Tf2N], hexafluoroantimonate ([SbF6]), hexafluorophosphate ([PF6]), tetrafluoroborate ([BF4]), and 69 

trifluoromethanesulfonate ([OTf]). The effect of the cation structure was studied by using 1-methyl-3-70 

octylimidazolium trifluoromethanesulfonate ([OmIm][OTf]) (Figure S1, ESI). Additionally, 71 

multiparameter linear regression using the solvatochromic parameters of the ILs was also carried out 72 

to elucidate the effect of the solvent parameters of the ILs on the FeCl3-catalyzed oxidative 73 

polymerization of 3OT.  74 

Green polymerization in various ILs and conventional polymerization in chloroform were performed 75 

at 25°C for 48 h using 0.42 mmol 3OT as a monomer and 1.68 mmol FeCl3 as a catalyst (Scheme 1). 76 

FeCl3-catalyzed oxidative polymerization was successfully achieved in all ILs. The molecular weights, 77 

polydispersity indices (PDI), and yields of the P3OTs are listed in Table 1. The yield of conventional 78 

polymerization in chloroform, as a control experiment, was 87%. The weight-average molecular 79 

weight (Mw) and polydispersity index (PDI) of P3OT produced in chloroform were 34672 g/mol and 80 

12.9, respectively. The highest yield of P3OT achieved to date via FeCl3-catalyzed chemical oxidative 81 
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polymerization of 3OT was obtained herein with the use of [BmIm][SbF6] (Table S1, ESI).17-21 A 82 

remarkable 99% yield of P3OT with a Mw of 42584 g/mol and PDI of 15.9 was obtained using 83 

[BmIm][SbF6]. The oxidative polymerization of 3OT is initiated by the reaction between 3OT 84 

monomer and the Fe3
+ ions and then the propagation reactions between the cationic 3OT monomeric 85 

radicals are repeated. The high yield of P3OT in [BmIm][SbF6] may be due to the strong acidic 86 

condition of SbF6 anion which can help producing radicals in thiophene rings.22 Hence, the proposed 87 

alternative synthetic approach for the synthesis of PATs using [BmIm][SbF6] instead of chloroform 88 

may have remarkable advantages such as higher product yield, greener reaction medium, easier work-89 

up, and more facile reusability of the reaction medium in large-scale production for the development 90 

of environmentally friendly and energy efficient industrial processes.23 91 

As shown in Table 1, the Mw, PDI, and yield of P3OT were strongly influenced by the structure of the 92 

ILs. The highest Mw of P3OT was obtained with [BmIm][BF4] and it was about 1.5 times higher than 93 

the Mw of P3OT synthesized in chloroform, whereas the lowest Mw was obtained with [BmIm][Tf2N]. 94 

The higher Mw may be derived from the higher solubility of 3OT and P3OT in ILs. The lowest PDI 95 

was obtained with [BmIm][Tf2N], whereas the highest PDI was obtained with [OmIm][OTf]. The PDI 96 

was highly influenced by the cation structure of the ILs because the PDI of P3OT synthesized in 97 

[OmIm][OTf] was much higher than that synthesized in [BmIm][OTf]. It may be caused by the 98 

different solubility of P3OT, because the hydrophobicity of [OmIm][OTf] is much higher than that of 99 

[BmIm][OTf] while other physicochemical properties of two ILs are very similar. The yield of P3OT 100 
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synthesized in ILs containing the [BmIm] cation increased in the following order: [BmIm][OTf] < 101 

[BmIm][BF4] < [BmIm][PF6] < [BmIm][Tf2N] < [BmIm][SbF6]. Changing the cation structure of the 102 

ILs did not enhance the yield of P3OT.  103 

In order to elucidate the effect of the physicochemical properties of the ILs on the oxidative 104 

polymerization of 3OT, the correlation between the hydrophobicity (log P), hydrophilicity (water 105 

solubility, log Sw), dipolarity/polarizability (π*), hydrogen bond acidity (α), and hydrogen bond 106 

basicity (β) of the ILs and the Mw, PDI, and yield of P3OT was evaluated. Table 2 lists various 107 

parameters of the ILs. The logarithm of the Mw of P3OT was well correlated with the π* value, with a 108 

high coefficient of determination (r2) value of 0.788 (n = 6). The Mw of P3OT increased with 109 

increasing dipolarity/polarizability of the ILs. On the other hand, the logarithm of the yield of P3OT 110 

was well correlated with the β value, with an r2 value of 0.649 (n = 6). The yield of P3OT increased 111 

with decreasing hydrogen bond basicity of the ILs. Although the mechanism of FeCl3-catalyzed 112 

oxidative polymerization of 3-alkylthiophenes (3AT) is still unclear, Niemi et al. proposed a radical 113 

mechanism and reported that FeCl3 must be solid to be active as a polymerization oxidant for 3AT.4 114 

They also reported that polymerization of 3AT did not occur when FeCl3 was completely dissolved in 115 

organic solvents. However, these results could be more clearly understood by considering the 116 

hydrogen bond basicity of the solvents. The β values of chloroform (0.10), hexane (0.00), and carbon 117 

tetrachloride (0.00), in which polymerization can be achieved, are much lower than those of formic 118 

acid (0.38), diethylether (0.47), and acetone (0.43), in which polymerization is unsuccessful (Table S2, 119 
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ESI).24,25 When the logarithm of the yield of P3OT was correlated with the β values of the ILs and that 120 

of chloroform (n = 7), a higher r2 value (0.743) could be obtained than the r2 value (0.649) calculated 121 

using the ILs only. This indicates that the hydrogen bond basicity of the solvents is a very important 122 

factor for the successful performance of FeCl3-catalyzed oxidative polymerization.  123 

It is generally difficult to elucidate the effect of a solvent on various physicochemical systems using 124 

only one solvent parameter. Therefore, Kamlet et al. developed a linear solvation energy relationship 125 

(LSER) using four independent parameters: π*, α, β, and the solubility parameter; the LSER equation 126 

has been successfully applied to many equilibrium and kinetic phenomena, including solubilities, 127 

partition coefficients, toxicities, and catalytic reactions. The general form of the LSER for the solvent 128 

effect is as follows:26 129 

2
1H212121212

0 )∆∆ (δhβbαaπsδdGG * +++++=   (1) 130 

where subscripts 1 and 2 refer to the solvent and solute, respectively, and δ, π*, α, β, and δH represent 131 

the polarizability correction, dipolarity/polarizability, acidity, basicity, and Hildebrand solubility 132 

parameter, respectively. Recently, LSER equations have been successfully used to analyze the effect 133 

of ILs on various chemical reactions, enzyme reactions, and equilibrium phenomena.26-28 Typically, 134 

only three solvatochromic parameters are used for LSER analysis because π*, α, and β values for 135 

various ILs have been reported, whereas the δH values have rarely been measured. LSER analysis was 136 

conducted for the present system by using three solvatochromic parameters to elucidate the effect of 137 

the ILs. The multiparameter linear regression analysis of the yield data produced the relation: 138 
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βα )11.0(15.1)98.0(77.5)39.0(63.0)87.0(13.5)log(yield * ±−±−±+±= π  (2) 139 

where n = 6, r2 = 0.986, and SEE = 0.028. As shown in Figure 1, the experimental yield data were 140 

well predicted by the LSER equation containing π*, α, and β.  141 

The UV-vis spectra of P3OT synthesized using [BmIm][SbF6] as a solvent were acquired in CHCl3 142 

solutions (Figure S2, ESI). In CHCl3 solutions (10 mg/mL), the most intense maximum peak was 143 

observed at 420 nm. Figure 2 shows the photoluminescence (PL) spectra of monomeric 3OT and 144 

P3OT synthesized using various ILs. The intensity of the peak at 560 nm for P3OT synthesized using 145 

various ILs was significantly enhanced in comparison with that of monomeric 3OT. This result 146 

indicates that P3OT was successfully polymerized by FeCl3 in the ILs and could be useful as a light-147 

emitting polymer in a wide variety of applications such as organic light emitting diodes (OLEDs), 148 

optical sensors, and luminescent devices. 149 

150 
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Conclusions 151 

An environmentally friendly and energy efficient protocol for the synthesis of P3OT using ILs instead 152 

of chloroform was presented. An excellent yield of 99% was obtained by using [BmIm][SbF6]. The 153 

molecular weight and yield of P3OT were strongly influenced by the dipolarity/polarizability and 154 

hydrogen bond basicity of the ILs, respectively. The yield of P3OT in the ILs was well predicted by 155 

multiparameter linear regression using three solvatochromic parameters. FeCl3-catalyzed oxidative 156 

polymerization using ILs could have remarkable advantages such as higher product yield, greener 157 

reaction conditions, and easier solvent reusability than conventional systems. P3OTs synthesized by 158 

using ILs may have potential applications in the field of OLEDs, optical sensors, and luminescent 159 

devices.  160 

161 
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Scheme 1. Reaction scheme for the synthesis of P3OT via FeCl3-catalyzed oxidative 

polymerization in ILs. 
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Table 1. Molecular weight, polydispersity index, and yield of P3OTs synthesized in 

various solvents 

 

Solvent 
Mw 

(g/mol) 
PDI 

(Mw/Mn) 
Yield 
(%) 

[BmIm][SbF6] 42584 15.9 99 

[BmIm][Tf2N] 16088 10.6 51 

[BmIm][PF6] 22921 19.2 45 

[BmIm][BF4] 51444 17.7 44 

[BmIm][OTf] 26109 15.5 38 

[OmIm][OTf] 32842 43.2 39 

CHCl3 34672 12.9 87 

Synthesis of P3OT was carried out using 83 mg OT, 273 mg FeCl3, and 5 g solvent. 

Polymerization reactions were performed at 25°C for 48 h. 
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Table 2. Solvent parameters of various ILs used for the synthesis of P3OT 

 

Solvent log P log Sw π
* α β 

[BmIm][SbF6] -2.66 0.108  1.038 0.630 0.136 

[BmIm][Tf2N] -0.55 0.061  0.950 0.635 0.293 

[BmIm][PF6] -2.06 0.220  0.982 0.664 0.235 

[BmIm][BF4] -2.71 1.121  1.036 0.626 0.450 

[BmIm][OTf] -1.63 1.183  1.000 0.613 0.537 

[OmIm][OTf]  0.17 1.183  0.974 0.605 0.595 

CHCl3 1.97 -  0.28 0.00 0.10 
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Figure 1. (a) Calculated values of log(yield) against experimental values of log(yield) 

and (b) linear plot of log(yield) against β values of ILs. 
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Figure 2. PL spectra of P3OT synthesized using various ILs (excitation wavelength = 

420 nm). 

 

Page 17 of 18 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

Ionic liquids (ILs) were used as solvents for the FeCl3-catalyzed oxidative polymerization of 

3-octylthiophene (3OT) for the first time. An excellent yield of 99% was obtained by using 1-

butyl-3-methylimidazolium hexafluoroantimonate. The effect of the IL structure on the 

oxidative polymerization of 3OT was analyzed by the linear solvation energy relationship 

equation. 
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