RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Journal Name

RSCPublishing

COMMUNICATION

A Base-controlled Chemoselective Transfer Hydrogenation of α,β-Unsaturated Ketones Catalyzed by [IrCp^{*}Cl₂]₂ With 2-Propanol

Shu-jie Chen^a, Guo-ping Lu^a, and Chun Cai^a

Received 00th January 2012, Accepted 00th January 2012

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

www.rsc.org/

A simple homogeneous catalyst system based on commercially available $[IrCp^*Cl_2]_2$ has been developed for the conjugate reduction of α,β -unsaturated ketones. Under the optimized conditions, a wide range of α,β -unsaturated ketones was reduced to saturated ketones in 83-98% yield. While switching the base from K₂CO₃ to KOH, saturated alcohols was selectively obtained.

The catalytic transfer hydrogenation of unsaturated organic compounds is an attractive methodology in synthetic organic chemistry.¹ Chemoselective reduction of α , β -unsaturated carbonyl compounds is one of the most important subjects in this field. Since the second half of the 20th century, a number of protocols have been developed for the transfer hydrogenation of α , β -unsaturated ketones with the aim of avoiding the use of hazardous hydrogen gas²⁻³ and other costly hydrogen sources (hydrosilanes,⁴ NaBH₄,⁵ Hantzsch ester⁶ etc.). This type of transformation has been achieved by the use of transition metals derived from ruthenium,⁷⁻⁸ rhodium,⁹⁻¹⁰ palladium,¹¹ iridium,¹² and nickel.¹³ The use of alcohols, formic acid and its salts is oftentimes preferred. Among them, 2-propanol is the most attractive hydrogen donor due to it's good solvent properties, less expensive, and easy to remove from the reaction system as itself or the generated acetone.^{1c}

Despite all these advances, considering the constitution of these catalyst systems, most of the catalysts required tedious steps of synthesis or additive ancillary ligands. Only a few processes directly applied the commercially available catalyst, and most of them also suffered from drawbacks such as low yields, high temperature, and the use of toxic solvents.⁸⁻⁹ In this respect, the search for simple and practical catalyst system especially consisting of commercially available catalyst is still in high demand.

As part of our continuing interest in homogeneous iridium catalysts for organic transformations,¹⁴ we herein reported the potential of commercial available catalyst [IrCp^{*}Cl₂]₂ in transfer hydrogenation of α , β -unsaturated ketones with 2-propanol as hydrogen source and solvent.

We began our studies by utilizing chalcone 1a as a model substrate in the presence of $[IrCp^*Cl_2]_2^{15}$ under various conditions (Table 1). Treatment of 1a with catalytic amount of [IrCp*Cl₂]₂ and K₂CO₃ in MeOH at 85 °C for 5 h gave the conjugate reduction product 2a in 31 % yield with none of the double hydrogenation product **3a** (Table 1, entry 1). A screening on other straight-chain fatty alcohols, that is, EtOH, 1-PrOH, and 1-BuOH, gave 2a in 36%, 70%, and 57% yields, respectively (entries 2-4). To our delight, when 2-PrOH was used, the reaction proceeded smoothly, yielding the 2a in 92% yield with excellent chemoselectivity (entry 5). To further improve the yield, a series of bases was then screened and Na₂CO₃ gave the similar result to K₂CO₃ (entry 6). Interestingly, in the case of Cs₂CO₃, the generated 2a was further hydrogenated to the saturated alcohol 3a in 64% yield (entry 7). Other strong bases, such as KOH and NaOH, gave 3a in 86, 84% yields, respectively (entries 8-9). Organic base NEt₃ exhibited inhibitory effect on the reaction and resulted in a low yield (entry 10). It should be noted that decreasing the amount of K₂CO₃ to 5 mol% led to full conversion of 1a and 99 % of the 2a was obtained within 5 h (Table 1, entry 11). However, in the absence of K₂CO₃, the reaction proceeded sluggishly (entry 12).

$$[Cp^{*}IrCl_{2}]_{2} \longrightarrow 2 [Cp^{*}IrCl_{2}] + OH \xrightarrow{base}_{HCl} OIrClCp^{*} \xrightarrow{\beta-elim}_{-ketone} Cp^{*}IrHCl (1)$$

$$Cp^{*}IrHCl + OH \xrightarrow{base}_{HCl} OIrHCp^{*} \xrightarrow{\beta-elim}_{-ketone} Cp^{*}IrH_{2} (2)$$

Base on the above findings and the literature data, we inferred that the role of the base was to generate a highly active Cp^*IrH_2 catalyst from the dichloride (eqns. (1) and (2)).¹⁶ In addition, an excess of base resulted in low solubility of the substrate, which ultimately led to low yield. To validate our assumption, a series of controlled experiments based on the volume of 2-PrOH was carried out under the condition of entry 5, as showed in Figure 1. As expected, the yield of **2a** was merely moderate when the concentration of K₂CO₃ was high. Increasing the volume of 2-PrOH improved the yield of **2a**. A full conversion of **1a** and 99% yield of **2a** was achieved when the amount of 2-PrOH was increasing to 2 mL. Continue increasing the volume of 2-PrOH to 5 mL did not change the yield of **2a**.

Table 1. Optimization of reaction conditions in transfer hydrogenation of chalcone^a

0	[IrCp*Cl ₂]2	O ∥ . +	OH
Ph	-	Ph Ph	Ph
1a		2a	3a

Entry	Solvent	Base	Yield $(\%)^b$	
			2a	3a
1	MeOH	K ₂ CO ₃	31	0
2	EtOH	K ₂ CO ₃	36	0
3	1-PrOH	K_2CO_3	70	0
4	1-BuOH	K_2CO_3	57	0
5	2-PrOH	K_2CO_3	92	0
6	2-PrOH	Na ₂ CO ₃	89	0
7	2-PrOH	Cs_2CO_3	16	64
8	2-PrOH	KOH	2	86
9	2-PrOH	NaOH	3	84
10	2-PrOH	NEt ₃	14	0
11 ^c	2-PrOH	K ₂ CO ₃	99	0
12	2-PrOH	-	66	0

^{*a*} Reactions conditions: **1a** (0.2 mmol), [IrCp^{*}Cl₂]₂ (1 mol%), base (0.5 equiv.), solvent (1 mL), 85 °C, 5 h. ^{*b*} GC yield. ^{*c*} 5 mol% K₂CO₃ was used. Cp^{*}: 1,2,3,4,5-pentamethylcyclopentadiene.

Figure 1. Effect of the volume of 2-PrOH on the catalytic transfer hydrogenation of chalcone with $[IrCp^*Cl_2]_2$.

With the optimized conditions in hands, various α,β -unsaturated ketones were then subjected to the reaction to establish the scope and generality of this protocol (Table 2). Firstly, a series of substituted chalcones were investigated (entries 2-16). The chalcones bearing electron-donating group Me and MeO on the 4' position respectively required a higher catalyst loading and temperature to achieve

satisfactory results (entries 2-3); while the chalcones bearing Me and MeO groups on the 4 position respectively were easy to reduce cleanly (entries 10-11). The transformations of halogen- and trifluoromethylsubstituted chalcones afforded desired products in 92-98% yields, and the position of the substituted groups did not significantly affect the reactivity (entries 4-7, 12-15). A similar result was observed in the case of 4',2-disubstituted chalcone (entry 16). We also studied the cases of heterocyclic a-enones. To our delight, it still exhibited high activity and good selectivity, provided the desired products in excellent yields (entries 17-18). When the R² group was occupied by H or alkyl groups, the reaction also proceeded smoothly in good to excellent yields (entries 19-21). Activated α_{β} -unsaturated ketones 1v and 1w, which have been proved to be good substrates in the previous reports, were also reduced in high yields (entries 22-23). Furthermore, the present catalytic system also displayed high catalytic efficiency for the reduction of cyclic enones (entries 24-25). However, $\alpha,\beta,\gamma,\epsilon$ unsaturated enone 1z was proved to be sluggish substrate and only trace amount of 2z was observed (entry 26). The transfer hydrogenations of α,β -unsaturated ketones to the corresponding alcohols were also investigated by applying KOH as the base. As expected, the desired

Table 2. [IrCp^{*}Cl₂]₂ catalyzed transfer hydrogenation of α , β -unsaturated ketones^{*a*}

$\begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ P \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} $ \\ \\ \\ \\								
2 1 3								
Entry	1	\mathbf{R}^1 \mathbf{R}^2		Yield (%)				
-				2^{b}	3 ^c			
1	1a	Ph	Ph	97 (2a)	88 (82)			
2^d	1b	p-MeC ₆ H ₄	Ph	90 (2b)	83			
3^d	1c	p-MeOC ₆ H ₄	Ph	85 (2c)	78			
4	1d	p-FC ₆ H ₄	Ph	92 (2d)	85			
5	1e	p-ClC ₆ H ₄	Ph	98 (2e)	91			
6	1f	p-BrC ₆ H ₄	Ph	92 (2f)	88			
7	1g	$m-ClC_6H_4$	Ph	94 (2g)	84			
8	1h	o-MeC ₆ H ₄	Ph	96 (2h)	90			
9	1i	2-naphthyl	Ph	95 (2i)	85			
10	1j	Ph	p-MeC ₆ H ₄	94 (2j)	84			
11	1k	Ph	p-MeOC ₆ H ₄	93 (2k)	85			
12	11	Ph	p-ClC ₆ H ₄	97 (2I)	89			
13	1m	Ph	p-CF ₃ C ₆ H ₄	96 (2m)				
14	1n	Ph	m-CF ₃ C ₆ H ₄	95 (2n)				
15	10	Ph	o-CF ₃ C ₆ H ₄	94 (2o)				
16	1p	p-ClC ₆ H ₄	o-CF ₃ C ₆ H ₄	93 (2 p)				
17	1q	furanyl	Ph	93 (2q)				
18	1r	thiophenyl	Ph	97 (2 r)				
19	1s	Ph	Н	87 (2s)				
20	1t	Ph	$Ph(CH_2)_2$	96 (2 t)				
21	1u	Ph	$CH_3(CH_2)_5$	94 (2 u)				
22	1v	Me	Ph	95 (2v)	92^e			
23	1w	Me	furanyl	94 (2w)				
24	1x	-C ₃ H ₆ -		91 (2x)				
25	1y	- C ₂ H ₄ -		$97^{c}(2y)$				
26	1z	Ph	PhCH=CH	trace $(2z)$				

^{*a*} Condition A: 1 (0.4 mmol), $[IrCp^*Cl_2]_2$ (1 mol%), K_2CO_3 (5 mol%), 2-PrOH (4 mL), 85 °C, 5 h; condition **B**: 1 (0.4 mmol), $[IrCp^*Cl_2]_2$ (1 mol%), KOH (50 mol%), 2-PrOH (4 mL), 85 °C, 5 h. ^{*b*} Isolated yield. ^{*c*} Yields were determined by GC analysis using *n*-hexadecane as internal standard (yield in parentheses is the isolated yield). ^{*d*} $[IrCp^*Cl_2]_2$ (2 mol%), $K_2CO_3(10$ mol%), 100 °C, 10 h. ^{*e*} 8 h. Page 3 of 4

saturated alcohols were obtained in 78-92% yields, which established our findings on the base-controlled chemoselectivity (entries 1-12, 22). Finally, an α , β -unsaturated ketone **1aa** bearing a non-polarized double bond was subjected to the condition (eqn. (3)). To our delight, the present catalytic system selectively reduced the enone and kept the nonpolarized double bond.

A plausible mechanism is proposed in Scheme 1 to explain the selective transfer hydrogenation of α,β -unsaturated ketones to the saturated ketones or alcohols.¹⁷ In the initial step, the active catalyst A was generated via the sequences showed in eqns. (1) and (2). The α enone 1a then coordinated to A, followed by a hydride transfer to give intermediate B, which underwent an enolization to produce C. The resulting Ir-enolate C was protonated by 2-PrOH to give product 2a and produced the catalytic species **D**, which sequently underwent a β elimination to reproduce the active catalyst A. Although detailed mechanism for the secondary hydrogenation of the resulting ketones in the presence of KOH is not clear. A base promoted Meerwein-Ponndorf-Verley type reaction may be responsible for this unexpected results.¹⁸ More detailed studies are required to clarify the detailed mechanism.

Conclusions

We have demonstrated that [IrCp*Cl₂]₂ was a highly effective and versatile catalyst for the transfer hydrogenation of α,β -unsaturated ketones with 2-PrOH. The simplicity of this protocol employing commercially available catalyst makes it attractive for laboratory hydrogenations without the need for hazardous H₂ and other costly hydrogen sources. By changing the base from K₂CO₃ to KOH, the products could be switched from saturated ketones to saturated alcohols.

Experimental section

An Ar purged flame-dried Schlenk tube (25 mL) containing α,βunsaturated ketone 1 (0.40 mmol, 1 equiv), [IrCp*Cl₂]₂ (1 mol%), and K₂CO₃ (5 mol%) were added 2-PrOH (4 mL). The reaction mixture was stirred at 85 °C for 5 h unless stated otherwise. After the reaction was

complete, the solvent was removed under reduced pressure. The crude residue was purified by flash column silica gel chromatography (petroleum ether/ ethyl acetate: 95:5 to 90:10) to yield the product 2. Notes and references

Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. China. E-mail: c.cai@mail.njust.edu.cn

Electronic Supplementary Information (ESI) available: Experimental details, ¹H-NMR, ¹³C-NMR, and ¹⁹F-NMR spectra of all isolated products. See DOI: 10.1039/c000000x/

- Selected reviews: (a) R. A. W. Johnstone, A. H. Wilby, I. D. 1 Entwistle, Chem. Rev. 1985, 85, 129; (2) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97; (c) J.-i. Ito, H. Nishiyama, Tetrahedron Lett. 2014, 55, 3133.
- 2 (a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley-VCH, Weinheim, 1994; (b) M. Bartók, A. Molnár, Heterogeneous Catalytical Hydrogenation, Wiley-VCH, Weinheim, Chapter 16. pp. 843-908, 1997; (c) S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley-VCH, Weinheim, 2001; (d) Fine Chenicals through Heterogeneous Catalysis, Eds: R. A. Sheldon, H. van Bekkum, Wiley-VCH, Weinheim, 2001.
- Selected reference see: (a) G. Szöllösi, B. Török, L. Baranyi and M. 3 Bartók, J. Catal. 1998, 179, 619; (b) G. Szöllősi, Á. Mastalir, Á. Molnár and M. Bartók, React. Kinet. Catal. Lett. 1996, 57, 29; (c) A. Mori, Y. Miyakawa, E. Ohashi, T. Haga, T. Maegawa, H. Sajiki, Org. Lett. 2006, 8, 3279; (d) S. Jagtap, Y. Kaji, A. Fukuoka, K. Hara, Chem. Commun. 2014, 50, 5046.
- 4 (a) M. Sugiura, N. Sato, S. Kotani, M. Nakajima, Chem. Commun. 2008, 4309; (b) A. Pelss, E. T. Kumpulainen, A. M. Koskinen, J. Org. Chem. 2009, 74, 7598; (c) M. Benohoud, S. Tuokko, P. M. Pihko, Chem. Eur. J. 2011, 17, 8404; (d) J.-Y. Shang, F. Li, X.-F. Bai, J.-X. Jiang, K.-F. Yang, G.-Q. Lai, L.-W. Xu, Eur. J. Org. Chem. 2012, 2809.
- (a) B. C. Ranu, S. Samanta, J. Org. Chem. 2003, 68, 7130; (b) A. T. 5 Russo, K. L. Amezcua, V. A. Huynh, Z. M. Rousslang, D. B. Cordes, Tetrahedron Lett. 2011, 52, 6823.
- Q. Liu, J. Li, X.-X. Shen, R.-G. Xing, J. Yang, Z. Liu, B. Zhou, Tetrahedron Lett. 2009, 50, 1026.
- 7 (a) S. Bolaño, L. Gonsalvi, F. Zanobini, F. Vizza, V. Bertolasi, A. Romerosa, M. Peruzzini, J. Mol. Catal. A: Chem. 2004, 224, 61; (b) C. A. Mebi, R. P. Nair, B. J. Frost, Organometallics 2007, 26, 429; (c) S. Naskar, M. Bhattacharjee, Tetrahedron Lett. 2007, 48, 465.
- 8 (a) Y. Sasson, J. Blum, Tetrahedron Lett. 1971, 12, 2167; (b) J. Blum, Y. Sasson, S. Iflah, Tetrahedron Lett. 1972, 13, 1015; (c) Y. Sasson, J. Blum, J. Org. Chem. 1975, 40, 1887; (d) I. Ryu, T. Doi, T. Fukuyama, J. Horiguchi, T. Okamura, Synlett 2006, 721;
- (a) D. Beaupere, P. Bauer and R. Uzan, Can. J. Chem. 1979, 57, 218; 9 (b) Z. Baán, Z. Finta, G. Keglevich, I. Hermecz, Green Chem. 2009, 11, 1937.
- 10 X. Li, L. Li, Y. Tang, L. Zhong, L. Cun, J. Zhu, J. Liao, J. Deng, J. Org. Chem. 2010, 75, 2981.
- 11 (a) B. Basu, M. H. Bhuiyan, P. Das and I. Hossain, Tetrahedron Lett. 2003, 44, 8931; (b) B. Basu, S. Das, P. Das, A. K. Nanda, Tetrahedron Lett. 2005, 46, 8591; (c) K. Fujimoto, T. Yoneda, H. Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 2014, 53, 1127; (d) D. B.

Bagal, B. M. Bhanage, *RSC Adv.* 2014, 4, 32834; (e) L.-H. Gong, Y.-Y. Cai, X.-H. Li, Y.-N. Zhang, J. Su, J.-S. Chen, *Green Chem.* 2014, 16, 3746; (f) N. M. Patil, T. Sasaki, B. M. Bhanage, *Catalysis Letters* 2014, 144, 1803.

- (a) S. Sakaguchi, T. Yamaga, Y. Ishii, *J. Org. Chem.* 2001, 66, 4710;
 (b) Y. Himeda, N. Onozawa-Komatsuzaki, S. Miyazawa, H. Sugihara, T. Hirose, K. Kasuga, *Chem. Eur. J.* 2008, 14, 11076; (c) J. Li, Y. Zhang, D. Han, G. Jia, J. Gao, L. Zhong, C. Li, *Green Chem.* 2008, 10, 608.
- N. Castellanos-Blanco, M. Flores-Alamo, J. J. García, Organometallics 2012, 31, 680.
- 14 S. –J. Chen, G. -P. Lu, C. Cai, *Synthesis* 2014, **46**, 1717.
- [IrCp*Cl₂]₂ was an efficient catalyst for the hydrogen autotransfer (or hydrogen-borrowing) process, for reviews, see: (a) G. Guillena, J. R. D, M. Yus, *Chem. Rev.* 2010, **110**, 1611; (b) Y. Ishii, Y. Obora, *Synlett* 2011, 30; (c) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, *ChemCatChem* 2011, **3**, 1853; d) T. Suzuki, *Chem. Rev.* 2011, **111**, 1825; (e) A. C. Marr, *Catal. Sci. Technol.* 2012, **2**, 279.
- 16 A. Aranyos, G. Csjernyik, K. J. Szabó, J.-E. Bäckvall, Chem. Commun. 1999, 351.
- (a) K. Fujita, C. Asai, T. Yamaguchi, F. Hanasaka, R. Yamaguchi, *Org. Lett.* 2005, 7, 4017; (b) C. Löfberg, R. Grigg, M. A. Whittaker, A. Keep, A. Derrick, *J. Org. Chem.* 2006, 71, 8023; (c) S. Whitney, R. Grigg, A. Derrick, A. Keep, *Org. Lett.* 2007, 9, 3299; (d) S. Bhat, V. Sridharan, *Chem. Commun.* 2012, 48, 4701.
- 18 For base promoted reactions of ketones or alcohols under transitionmetal-free conditions, see: (a) C. Walling, L. Bollyky, *J. Am. Chem. Soc.* 1964, **86**, 3750; (b) A. Berkessel, T. J. S. Schubert, T. N. Mu⁻Iler, *J. Am. Chem. Soc.* 2002, **124**, 8693; (c) Y.-F. Liang, X.-F. Zhou, S.-Y. Tang, Y.-B. Huang, Y.-S. Feng, H.-J. Xu, *RSC Adv.* 2013, **3**, 7739, and references therein.