

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Effects of hydrogen peroxide on an upward flow biological filter bed (BFB)
2	containing manganese dioxide fillers
3	Wei Qian ^a , Ya Xiong ^{*a, b} , Shuanghong Tian ^{*a, b} , Lianpeng Sun ^{a, b} , Xin Chen ^a ,
4	Lingjun Kong ^{a, c} , Jialin Zhang ^a
5 6	^a School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
7 8	^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
9 10	^c School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
11	* E-mail addresses: cesxya@mail.sysu.edu.cn (Y. Xiong).
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

1	
2	Highlights:
3	(a) A lab-scale upward flow BFB with a high decomposition efficiency of H_2O_2
4	is constructed.
5	(b) This BFB not only removes the detrimental effect of H_2O_2 but also turns it
6	into DO to boost aerobic microbial metabolism.
7	(c) A concentration of 120 mg/L H_2O_2 in feed wastewater increases COD
8	removal efficiency by 39%.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Page 3 of 21

RSC Advances

RSC Advances Accepted Manuscript

1	Abstract: Generally, there is some residual hydrogen peroxide (H_2O_2) present in
2	treated wastewater from the Fenton and Fenton-like oxidation process. We
3	investigated the influence of residual H_2O_2 on a lab-scale upward flow biological
4	filter bed (BFB) containing manganese dioxide (MnO ₂) particles. The H_2O_2 in the
5	feed wastewater was rapidly decomposed into oxygen due to the catalytic role of the
6	MnO ₂ particles in the bottom layer of the BFB, resulting in a significant increase in
7	the efficiency of chemical oxygen demand (COD) removal. A concentration of 120
8	mg/L H_2O_2 in the feed wastewater increased the COD removal efficiency by 39%.
9	This increase can be attributed to the generation of dissolved oxygen (DO) from H_2O_2
10	decomposition due to aerobic microorganism growth.
11	Keywords: hydrogen peroxide, biological filter bed, manganese dioxide, dissolved
12	oxygen
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

RSC Advances Accepted Manuscript

1 **1. Introduction**

2 In recent years, Fenton and Fenton-like advanced oxidation technologies have 3 garnered attention due to their treatment efficiency and extensive adaptability [1-4]. 4 However, their high operating costs always perplex wastewater engineers. A 5 frequently used strategy to decrease the cost is to combine Fenton or Fenton-like 6 advanced oxidation with biological technologies [5-10]. In these combination 7 processes, the treated wastewater from the Fenton or Fenton-like reactor usually 8 contains some residual hydrogen peroxide (H_2O_2). However, this residual H_2O_2 has a 9 negative effect on the biological process due to its strong oxidative power [11]. 10 Therefore, a regulation pool is typically built between the Fenton reactors and the 11 biological reactors to remove the residual H_2O_2 [12-14]. H_2O_2 can be catalytically 12 decomposed into H_2O and O_2 by certain metal oxides, as shown in reaction (1) 13 [15-18]. If metal oxide particles are used as the bottom fillers of an upward flow 14 biological filter bed (BFB), H₂O₂ in the wastewater can be decomposed into oxygen 15 as the H₂O₂-containing wastewater flows through the filler layer. Thus, it can be 16 expected that metal oxide filler particles can not only reduce the regulation pool but 17 also provide dissolved oxygen to enhance the growth of microorganisms inside the 18 BFB.

19

$$2H_2O_2 \rightarrow O_2 + 2H_2O \tag{1}$$

In the paper, a lab-scale upward-flow BFB was constructed, as shown in Fig. 1. In the BFB, MnO_2 particles (0.075~0.15 mm in diameter) were used as catalysts for the reaction (1) because MnO_2 is reported to be an efficient catalyst for H_2O_2 decomposition [19-21]. In this paper, we mainly focus on the effects of H_2O_2 in the BFB. These effects include changes in DO, COD removal, microbial populations and void volume. Our aim was to develop a high efficient Fenton-BFB joint process.

2 2. Materials and methods

3 2.1 BFB operation

4 The experiment was performed in a lab-scale upward-flow BFB. The experiment took place in a greenhouse on SYSU campus in Guangzhou, China. The temperature 5 6 was in the range of 18-30 °C. The BFB was constructed using a polypropylene 7 cylindrical container with a diameter of 19 cm and a height of 100 cm, as shown in Fig. 1. The fillers were divided into three layers from the bottom to the top: (i) a 8 9 20-cm high pavestone layer with a diameter range of 15 mm-25 mm, (ii) a 50-cm high 10 red brick layer with a diameter of about10 mm and (iii) a 20-cm high river sand layer. 11 All of the containers equipped with valves for sampling in stratified at different 12 substrates. A certain amount of MnO₂ was evenly added to the first layer of the reactor 13 to facilitate H₂O₂ decomposition.

14 The feed wastewater of the BFB was prepared with glucose ($C_6H_{12}O_6$), 15 ammonium sulfate $\{(NH_4)_2SO_4\}$, monopotassium phosphate (KH_2PO_4) and water. 16 The COD concentration was 250±20 mg/L. The ammonia concentration was 25±3 17 mg/L. The total phosphorus concentration was 5.1 ± 0.4 mg/L. The experiment was 18 divided into six stages with different dosages of H₂O₂ (20 mg/L, 40 mg/L, 60 mg/L, 19 80 mg/L, 120 mg/L and 160 mg/L) under a fixed hydraulic retention time (HRT) of 8 h, flow of 23.6 ml/min, organic loading of 0.3 kg/m³.d. The experiment was 20 21 conducted from Mar. 2012 to Oct. 2013.

22 2.2 Catalytic decomposition of H_2O_2 with MnO_2

RSC Advances Accepted Manuscript

1 The catalytic decomposition of H₂O₂ with various amounts of MnO₂ was 2 conducted in beakers with magnetic stirring at a speed of 100 r/min. In each 3 experiment, a 100-mL solution containing 160 mg/L H₂O₂ was employed. 4 2.3 Sample analysis 5 Samples were taken at the A1 (Inlet), A2, A3 and A4 (Outlet) location every two 6 days. The samples were analyzed after filtration. COD was analyzed by the oxidation 7 method using potassium dichromate [22]. The DO in the different layers was 8 measured using a DO (YSI 550A, USA) meter. H₂O₂ concentration was determined 9 by colorimetric methods using titanium oxalate [23]. Microbial populations were 10 observed using a microscope (NMM-820TRF, China). 11 12 3. Results and discussion 13 3.1 Catalytic decomposition of H₂O₂ by MnO₂ 14 Fig. 2 shows the decomposition of hydrogen peroxide with different dosages of 15 MnO₂ at different times. The decomposition efficiency of H₂O₂ was only 3.1% after 16 60 min when no MnO_2 was added. The decomposition efficiency reached 98% after 17 60 min when the dosage of MnO_2 was 0.2 g/L. This result confirms that MnO_2 can 18 efficiently decompose H_2O_2 . The inset of Fig. 1 presents the change in the 19 decomposition efficiency of 160 mg/L H₂O₂ over 10 min with the addition of MnO₂.

The decomposition efficiency of H_2O_2 increased with increasing MnO₂ dosage, reaching a plateau at a dosage of 0.5 g/L. The decomposition efficiency was close to 100%, i.e., the H_2O_2 was completely decomposed. Consequently, the HRT of the wastewater in the MnO₂ catalytic layer was designed to last approximately 10 minutes

2 mg/L H_2O_2 .

3 3.2 Changes in H_2O_2 and DO concentration in the BFB

4 The top section of Fig. 3 shows the concentrations of H_2O_2 at various heights of 5 the upward-flow BFB. The H₂O₂ concentrations in the wastewater rapidly decreased 6 with increasing bed height. At a bed height of 20 cm, when the inlet concentration of 7 H_2O_2 was less than 40 mg/L, the residual H_2O_2 was close to zero, i.e., almost all of the 8 H₂O₂ was decomposed in the MnO₂-containing substrate layer at the bottom. 9 Although the inlet concentration of H₂O₂ reached as high as 120 mg/L, the residual 10 H_2O_2 was only 16 mg/L at a height of 20 cm, i.e., the decomposition efficiency was 11 86.7%. This result indicates that H₂O₂ decomposition is focused at the bottom layer of 12 the upward-flow BFB. As predicted, the H₂O₂ in the wastewater had no negative 13 effect on the growth of the microorganism in the upper parts of the BFB. The vast 14 majority of the H₂O₂ added in the experiment decomposed into H₂O and O₂ as 15 reaction 1, and there was extremely small amounts of H_2O_2 generated HO_2 ., O_2 ., and

16 - OH∙.

17 The DO concentration in the BFB also increased, as shown in the bottom section 18 of Fig. 3. Without additional H_2O_2 , the DO concentration at the inlet was 8.3 mg/L; 19 however, the DO rapidly decreased with an increase in the height inside the BFB, 20 reaching only 0.4 mg/L at a bed height of 20 cm. This result indicates an anoxic state 21 inside of the BFB. When H₂O₂ was added to the wastewater, the DO concentration 22 inside of the BFB was obviously higher than that without additional H_2O_2 , especially 23 when the additional H_2O_2 was above 120 mg/L. At these higher H_2O_2 concentrations, 24 the DO concentration at a bed height of 20 cm reached 15.5 mg/L, indicating a 25 favorable state for aerobic microorganism growth.

concentration if all of the H₂O₂ is decomposed. Consequently, the oxygenation

efficiency (OE) of H₂O₂ decomposition can be calculated with the actual DO data

According to reaction (1), the oxygen yield should be 0.47 times the H_2O_2

1

2

3

RSC Advances Accepted Manuscript

4 using equation (2). OE (%) = Increased DO/0.47(addtional H_2O_2 – residual H_2O_2) × 100 5 (2)6 As shown in the inset of Fig. 3, the oxygenation efficiencies were 20.9% to 43.8% 7 for feed H₂O₂ concentrations of 20 mg/L to 160 mg/L. The oxygenation efficiency of H₂O₂ was significantly higher than the reaeration rate of atmosphere in the traditional 8 9 BFB, which generally contains less than 10% oxygen [24], [25]. The high 10 oxygenation efficiency of H₂O₂ is dependent on the characteristics of the liquid 11 oxygen resource. H_2O_2 can be completely mixed with wastewater, homogeneously 12 spread between fillers and is capable of producing pure oxygen. The low oxygenation 13 efficiency of air may be due to the association of oxygen with other gases, such as 14 nitrogen. Thus, H₂O₂ possesses a few advantages as an oxygen resource the 15 Fenton-biological coupling reactor, especially for environments such as wetlands, 16 where aeration is inconvenient. 17 3.3 Effect of H₂O₂ on COD removal 18 Fig. 4 shows the changes in COD removal efficiency with H₂O₂ concentration 19 over the course of a stable 60-day run. Without additional H₂O₂, the COD removal 20 efficiency of the BFB was only $40\pm11\%$ with small fluctuations. The addition of H₂O₂ 21 increased the COD removal efficiency of the BFB. For example, when the wastewater 22 containing 120 mg/L H_2O_2 was fed into the BFB, the mean COD removal efficiency 23 reached 79±8%. This increase was directly proportional to the DO concentration 24 when the concentration of the feed H_2O_2 was below 120 mg/L, as shown in Fig. 5.

RSC Advances Accepted Manuscript

1 Thus, it can be inferred that the increase in COD removal efficiency is due to an 2 enhancement in microbial metabolism due to an increase in the DO rather than from 3 direct oxidation by H₂O₂ and oxygen radicals. It can also be observed from Fig. 5 that 4 the DO in the BFB rapidly increases but that the COD removal does not 5 correspondingly increase when the concentration of the feed H_2O_2 is over 120 mg/L. 6 This result indicates that the DO concentration from the decomposition of 120 mg/L 7 H_2O_2 is sufficient for COD loading. Consequently, the concentration of feed H_2O_2 8 was controlled below 120 mg/L in the subsequent experiments.

9 3.4 Changes in void volume

10 Clogging is a common problem for fixed bed-type reactions. Fig. 6 gives the 11 changes in BFB void volume over 16 months of operation. The void volume 12 decreased from 40.1% to 36.1% after 16 months. This slight decrease suggests that 13 there is no serous clogging. In combination with the results for COD removal, we can 14 infer that the decomposition of H_2O_2 does not cause excessively fast growth of 15 aerobic microorganisms. The microorganisms were observed to exist in aerobic 16 biofilms even with increases in DO in the BFB

17 3.5 Changes in the microbial populations

18 Fig. 7 shows images of the microorganism populations for various dosages of 19 H₂O₂ at a bed height of 20 cm during stable operation of the BFB. It can be observed 20 from Fig. 7a that no metazoans were present when the feed wastewater did not 21 contain H₂O₂, which showed that anaerobic and facultative anaerobic bacteria were 22 the dominant populations. However, when the feed wastewater contained 40 mg/L 23 H₂O₂, a larger number of nematodes were observed (Fig. 7b), indicating that the water 24 was in a hypoxic state and that the dominant microbial species were facultative 25 aerobes. When the dosage increased to 80 mg/L, rotifers begin to appear (Fig. 7c),

suggesting that the dominant microbial species were aerobic microorganisms.
 Microscopic analysis showed that H₂O₂ did not have adverse impacts on the growth
 of microorganisms. This result is because H₂O₂ primarily decomposed at the paving
 stone layer.

5 Additionally, as H_2O_2 decomposed and reaeration, the microorganisms at the 6 pavestone layer gradually changed from anaerobic and facultative anaerobic 7 populations to aerobic populations. These observations were consistent with the 8 change in the DO concentration shown in Fig. 2.

9 3.6 Analysis of economic and application

In China, the cost of conventional BFB for sewage treatment is around 0.5
yuan/m³. And the cost of industrial H₂O₂ (35% mass fraction) is around 0.8 yuan/kg.
The cost of H₂O₂ was 0.27 yuan/m³, when the feed concentration of H₂O₂ was
120mg/L. The proportion of expense increased by 54%. However, the COD removal
efficiency improved from 40% to 79%, the proportion of COD removal efficiency
increased to 97.5%. Compared to the increased removal efficiency, the additional cost
is acceptable, within a reasonable range. This process has a high economic value.

17 The improved BFB progress could be widely used in municipal sewage 18 treatment, rural domestic sewage treatment and industrial wastewater deep treatment, 19 due to its remarkable treatment effect, easy operation, on and simple installation. 20 Especially, this progress could combine with Fenton or Fenton-like advanced 21 oxidation technologies, which can not only use the residual H_2O_2 to improve the 22 removal efficiency but also can reduce the cost of H_2O_2 .

23 4. Conclusion

A lab-scale upward flow BFB containing MnO_2 particles was constructed to efficiently decompose H_2O_2 in feed wastewater. The decomposition process not only

eliminated the detrimental strong oxidant effect of H_2O_2 but also converted it into DO
to boost the aerobic microbial populations, leading to an increase in COD removal
efficiency in the BFB. These findings will aid in the development of an efficient
Fenton-biological combination process
Acknowledgments
This research was supported by the Nature Science Foundations of China
(21107146), Nature Foundations of Guangdong Province (92510027501000005),
Science and Technology Research Programs of Guangzhou City (2012J4300118), the
Project of Education Bureau of Guangdong Province (cgzhzd1001), and the
Fundamental Research Funds for the Central Universities (121pgy20).
References:
[1] A. Aguinaco, F.J. Beltrán, J.J.P. Sagasti, O. Gimeno, In situ generation of
hydrogen peroxide from pharmaceuticals single ozonation: A comparative study of its
application on Fenton like systems, Chemical Engineering Journal, 235 (2014) 46-51.
[2] A. Gupta, R. Zhao, J.T. Novak, C. Douglas Goldsmith, Application of Fenton's
reagent as a polishing step for removal of UV quenching organic constituents in

19 biologically treated landfill leachates, Chemosphere, 105 (2014) 82-86.

[3] M. Munoz, G. Pliego, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Application of
intensified Fenton oxidation to the treatment of sawmill wastewater, Chemosphere,
109 (2014) 34-41.

[4] N.A. Zubir, C. Yacou, X. Zhang, J.C. Diniz da Costa, Optimisation of graphene
oxide–iron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid
Orange 7, Journal of Environmental Chemical Engineering, 2 (2014) 1881-1888.

[5] W. Ben, Z. Qiang, X. Pan, M. Chen, Removal of veterinary antibiotics from
sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent,

- 1 Water research, 43 (2009) 4392-4402.
- 2 [6] E.S. Elmolla, M. Chaudhuri, Combined photo-Fenton-SBR process for antibiotic
- 3 wastewater treatment, Journal of hazardous materials, 192 (2011) 1418-1426.
- 4 [7] Q.Y. Liu, Y.X. Liu, X.J. Lu, Combined Photo-Fenton and Biological Oxidation
- for the Treatment of Aniline Wastewater, Procedia Environmental Sciences, 12 (2012)
 341-348.
- 7 [8] R. Nousheen, A. Batool, M.S.U. Rehman, M.A. Ghufran, M.T. Hayat, T.
 8 Mahmood, Fenton-biological coupled biochemical oxidation of mixed wastewater for
 9 color and COD reduction, Journal of the Taiwan Institute of Chemical Engineers, 45
 10 (2014) 1661-1665.
- [9] S. Sanchis, A.M. Polo, M. Tobajas, J.J. Rodriguez, A.F. Mohedano, Coupling
 Fenton and biological oxidation for the removal of nitrochlorinated herbicides from
 water, Water research, 49 (2014) 197-206.
- 14 [10] S. Sanchis, A.M. Polo, M. Tobajas, J.J. Rodriguez, A.F. Mohedano, Degradation 15 of chlorophenoxy herbicides by coupled Fenton and biological oxidation,
- 16 Chemosphere, 93 (2013) 115-122.
- [11] J.B. Arends, S. Van Denhouwe, W. Verstraete, N. Boon, K. Rabaey, Enhanced
 disinfection of wastewater by combining wetland treatment with bioelectrochemical
 H(2)O(2) production, Bioresource technology, 155 (2014) 352-358.
- [12] K.V. Padoley, S.N. Mudliar, S.K. Banerjee, S.C. Deshmukh, R.A. Pandey,
 Fenton oxidation: A pretreatment option for improved biological treatment of pyridine
 and 3-cyanopyridine plant wastewater, Chemical Engineering Journal, 166 (2011)
 1-9.
- [13] V.J. Vilar, E.M. Rocha, F.S. Mota, A. Fonseca, I. Saraiva, R.A. Boaventura,
 Treatment of a sanitary landfill leachate using combined solar photo-Fenton and
 biological immobilized biomass reactor at a pilot scale, Water research, 45 (2011)
 2647-2658.
- 28 [14] Q. Xu, A. Hamid, X. Wen, B. Zhang, N. Yang, Fenton-Anoxic-Oxic/MBR
- 29 process as a promising process for avermectin fermentation wastewater reclamation,
- 30 Separation and Purification Technology, 134 (2014) 82-89.

[15] V.R. Choudhary, C. Samanta, T.V. Choudhary, Factors influencing
 decomposition of H2O2 over supported Pd catalyst in aqueous medium, Journal of
 Molecular Catalysis A: Chemical, 260 (2006) 115-120.
 [16] V.R. Choudhary, C. Samanta, P. Jana, Decomposition and/or hydrogenation of
 hydrogen peroxide over Pd/Al2O3 catalyst in aqueous medium: Factors affecting the

- 6 rate of H2O2 destruction in presence of hydrogen, Applied Catalysis A: General, 332
 7 (2007) 70-78.
- 8 [17] D. Gudarzi, W. Ratchananusorn, I. Turunen, M. Heinonen, T. salmi, Factors
 9 affecting catalytic destruction of H2O2 by hydrogenation and decomposition over Pd
 10 catalysts supported on activated carbon cloth (ACC), Catalysis Today, (2014).
- [18] L. Micoli, G. Bagnasco, M. Turco, M. Trifuoggi, A. Russo Sorge, E. Fanelli, P.
 Pernice, A. Aronne, Vapour phase H2O2 decomposition on Mn based monolithic
 catalysts synthesized by innovative procedures, Applied Catalysis B: Environmental,
 140-141 (2013) 516-522.
- [19] C.A. Páez, D.Y. Liquet, C. Calberg, S.D. Lambert, I. Willems, A. Germeau, J.-P.
 Pirard, B. Heinrichs, Study of photocatalytic decomposition of hydrogen peroxide
 over ramsdellite-MnO2 by O2-pressure monitoring, Catalysis Communications, 15
 (2011) 132-136.
- [20] C. Calberg, M. Deng, G. Ding, S. Chen, F. Xu, Manganese dioxide based ternary
 nanocomposite for catalytic reduction and nonenzymatic sensing of hydrogen
 peroxide, Electrochimica Acta, 114 (2013) 416-423.
- [21] Y. Li, J. Zhang, H. Zhu, F. Yang, X. Yang, Gold nanoparticles mediate the
 assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing,
 Electrochimica Acta, 55 (2010) 5123-5128.
- [22] SEPA, Monitoring and Analysis Method of Water and Wastewater, Beijing:
 China Environmental Science Press, (2002).
- [23] R.M. Sellers, Spectrophotometric Determination of Hydrogen Peroxide Using
 Potassium Titanium(IV) Oxalate, Analyst, 105 (1980) 950-954.
- 29 [24] G. Maltais-Landry, R. Maranger, J. Brisson, Effect of artificial aeration and30 macrophyte species on nitrogen cycling and gas flux in constructed wetlands,

- 1 Ecological Engineering, 35 (2009) 221-229.
- 2 [25] C. Ouellet-Plamondon, F. Chazarenc, Y. Comeau, J. Brisson, Artificial aeration
- 3 to increase pollutant removal efficiency of constructed wetlands in cold climate,
- 4 Ecological Engineering, 27 (2006) 258-264.
- 5

```
6 Figure Captions
```

- 7 **Fig. 1.** The BFB experimental system.
- 8 Fig. 2. Decomposition efficiency of H_2O_2 (160 mg/L) in the presence of MnO₂.
- 9 Fig. 3. Changes in DO and H_2O_2 concentrations at different heights. A1, A2, A3 and
- 10 A4 are the sampling positions.
- **Fig. 4.** COD removal efficiency at different H₂O₂ concentrations.
- 12 Fig. 5. Dependence of COD removal efficiency on H_2O_2 and DO concentrations.
- 13 **Fig. 6.** Changes in the BFB void volume.
- 14 Fig. 7. Images of microorganism populations for various dosages of H_2O_2 at a height
- 15 of 20 cm during the stable running of BFB.

14

15

2 Fig.6

- 4 -

- 1
- 2 Fig.7

