RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Journal Name

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Lithium metatitanate enhanced solid-solid reaction in a lithium-nitrogen-hydrogen system

Tengfei Zhang^{*a**}, Shigehito Isobe^{*a*, *b**}, Yongming Wang^{*a*}, Naoyuki Hashimoto^{*a*}, Somei Ohnuki^{*a*}

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

It is first time to decrease the end temperature under 260 °C and the lowest peak temperature was occurred at 223 °C, since Li-N-H system was investigated as hydrogen storage material in 2002. -*+

Lithium metatitanate (Li₂TiO₃) is a technologically important material with many practical applications. For example, it has been used as a double layer cathode material in molten carbonate fuel cells¹, and as an electrode material in lithium-ion batteries^{2, 3}. In the area of lithium-ion batteries, Li₂TiO₃ usually combines with LiMO₂ (M=Fe, Mn, Cr, Ni) to create a solid-solution, with formulas xLiMO₂-(1-x)Li₂TiO₃. This has been reported to be able to stabilize the structure of high-capacity cathode materials.⁴⁻⁷ As a solid breeder material in the blanket of fusion reactors⁸, Li₂TiO₃ is the most preferred material for test blanket module for its attractive characteristics, such as high thermal stability, high lithium density, and tritium recovery at low temperature compared to lithium zirconates (Li₂ZrO₃) and lithium-silicate (Li₂SiO₃).⁹⁻¹¹ Because of its many important applications, the mechanical and thermal properties of Li₂TiO₃ have been well investigated.

Recently, the detailed diffusion pathways of lithium in the bulk and the occupancy of lithium in the lattice as well as the effects of the defects have been investigated by Vijayakumar et al.¹² The detailed lithium diffusion properties of Li_2TiO_3 has been measured by nuclear magnetic resonance (NMR) and simulated by the method of potential-based molecular dynamics. It is reported that lithium conduction in monoclinic Li_2TiO_3 is three-dimensional which can provide suitable nearby vacancies. Li_2TiO_3 has been extensively investigated due to its many important applications. Herein, we want to introduce Li_2TiO_3 in another area as catalyst because of its structural characteristics.

Titanium compounds have been doped as catalyst in hydrogen storage materials in 1997. Bogdanović and Schwickardi¹³ have reported that NaAlH₄ can be used as a solid reversible hydrogen storage material after doping Ti(Obutyl)₄. Interest in using complex metal hydrides as hydrogen storage materials is dramatically reawakened after that.¹⁴ One of the most frequently used catalysts is TiCl₃. The active catalytic species is produced during high-energy

ball-milling¹⁴⁻¹⁷, which is highly dispersed within the materials. This is indicated that Ti worked effectively for the solid-state hydrogen materials. Meanwhile, since the first time report by Chen et al.¹⁸ in 2002, Li-N-H systems have been investigated in terms of their reversibility and relatively high H₂ storage capacity. Theoretically, a large amount (6.5 wt%, this value is on the basis of materials' reaction during experimental condition, not base on tank system.) of hydrogen is accessible in this reaction. Hydrogen can be desorbed through the following solid-solid reaction [Eq.(1)]: LiNH₂ + LiH \leftrightarrow Li₂NH + H₂ (1)

However, the system is still limited for practical applications because a high desorption temperature is required and the reaction suffers from slow kinetics. Furthermore, NH₃ is a subsidiary product in the dehydrogenation process according to Equation (2). The main reason is due to LiNH₂ decompose at higher temperature. $2\text{LiNH}_2 \rightarrow \text{Li}_2\text{NH} + \text{NH}_3$ (2)

Considering of previous study¹⁹⁻²¹, lithium diffusion plays an important role in this solid-solid reaction. The kinetics of this reaction is therefore greatly dependent on the crystal structure and its defects. The mobility of lithium ions can be enhanced during temperature increasing.²² In this study, we want to introduce the structural characteristics of Li_2TiO_3 into the lithium-nitrogen - hydrogen system, which could help improve the kinetics of reaction. We present results from X-ray diffraction (XRD) and thermogravimetry differential-thermal-analysis thermal gas desorption mass spectrometry (TD-DTA-TDMS) by using Li_2TiO_3 as a catalyst in Li-N-H system.

LiNH₂ (95 %), LiH (95 %), LiCO₃ (99.997 %), and TiO₂ (99 %) were purchased from Sigma-Aldrich. Single phase Li₂TiO₃ was synthesized by a solid-state reaction.²³ See Equations (3):

 $Li_2CO_3 + TiO_2 \rightarrow Li_2TiO_3 + CO_2 (3)$

Typically, to ensure homogeneous mixing between the starting materials and the additive, LiNH_2 and LiH powders (300mg, 1: 1.1 molar ratio) and Li_2TiO_3 (1 mol %) were ball-milled for 2 h (Fritsch P7). Moreover, different molar ratios of Li_2TiO_3 (1 mol%, 2 mol% and 5 mol %) were doped into the mixtures. During high-energy ball-milling process, samples were milled at 400 rpm for 2 h under a hydrogen gas (99.9999 % purity) pressure of 1 MPa at room

temperature. The milling was interrupted every 30 min for 15 min to prevent frictional heat during the milling process.

After that, the samples were measured by TG-DTA (Hitachi Bruker TAPS3000S) combined with TDMS upon heating to 400 °C with a heating rate of 5 °Cmin⁻¹. TG-DTA equipment was installed in glovebox to avoid exposing the sample to air during the measurements. Furthermore, the structure properties were characterized by XRD measurements.

Figure 1. XRD patterns for the single phase of Li_2TiO_3 and $LiNH_2 + LiH$ with 1mol % Li_2TiO_3 ball-milled for 2 h after TG measurement up to 400 °C.

Li₂TiO₃ was synthesized by sintering a mixture of Li₂CO₃ and TiO₂ at 700 °C. The powder XRD profile is shown in Figure 1. XRD pattern presented no apparent impurities in the product of single phase of Li₂TiO₃. The color of this single phase was off-white, which is consistent with previous report.²⁴ The stability of Li₂TiO₃ is also reflected by the XRD patterns in Figure 1. After high-energy ball-milling and dehydrogenation, the structure of Li₂TiO₃ was the same as that of the single phase of raw Li₂TiO₃. This indicates that the Li₂TiO₃ in the cycled sample essentially remains in the same state.

Figure 2. TDMS and corresponding TG results for the $LiNH_2 + LiH$ mixture ball milled for 2 h with 1 mol % Li_2TiO_3 during dehydrogenation.

In order to clarify the thermal desorption properties of the mixture with additive, the desorption gas and weight loss was studied by TG-DTA-TDMS equipment. The TDMS result from sample with catalyst is shown in Figure 2. The LiH + LiNH₂ composite with additive showed only a sharp H₂ peak. The peak temperature was at 223 °C. No NH₃ was detected by TDMS. Comparing to the sample without catalyst which released H₂ and NH₃ at higher temperature²⁰, it clearly demonstrates that doping Li₂TiO₃ had an effect on the whole system (The results of sample without catalyst is shown in ref 20). Furthermore, the doping of Li₂TiO₃ led to full desorption within the temperature range from 150 to 260 °C.

famous catalyst, such as TiCl₃, LiTi₂O₄ (as shown in Figure 3), Ti^{Nano}, TiO₂ (as shown in ref 25), BN and TiN (as shown in ref 26), the peak temperature of DTA is the lowest (223 °C) among these catalysts. Accordingly, the lower dehydrogenation temperature implied that the properties of desorption could be enhanced greatly by doping Li₂TiO₃ as catalyst. The temperature of reaction range is also the shortest (150~260 °C), compared with TiCl₃ (150~300 °C) and LiTi₂O₄ (150~310 °C). From the above results, it can be concluded that Li₂TiO₃ has the highest catalytic efficiency in Li-N-H system. It is first time to decrease the end temperature to 260 °C since the system is first reported by Chen et al.¹⁸

Figure 3. DTA results for the dehydrogenation of samples: $LiNH_2 + LiH + 1 \mod \% \ Li_2TiO_3$; $LiNH_2 + LiH + 1 \mod \% \ TiCl_3$; $LiNH_2 + LiH + 0.5 \mod \% \ LiTi_2O_4$ (left figure). Detail parts of peak temperature (right figure).

Different amounts of Li2TiO3 were doped into the mixtures to illustrate the appropriate amount of Li₂TiO₃ in the system (Figure 4). According to the TG-DTA data, the peak temperature for H₂ desorption of a 1 mol % doped Li2TiO3 sample was the same as that of a 2 mol % doped Li2TiO3 sample and a 5 mol % doped Li2TiO3 sample, that is, 223 °C. The DTA curves of both samples were similar to each other. The experiment weight loss for the 1, 2 and 5 mol% doped Li2TiO3 samples was 5.8 wt%, 5.1 wt% and 4.4 wt % (these values were based on reaction of materials during experimental condition), respectively. A minor impurity of the starting material, such as Li₂O, could explain the lower experimental hydrogen-storage-capacity than theoretical value. In accordance with these results, it indicates that there is no simple linear correlation between the catalytic effect and the amount of catalyst. The appropriate amount of Li2TiO3 should be 1 mol % considering of the higher storage capacity.

Figure 4. Corresponding TG and DTA results for the mixtures milled for 2 h with different amounts of Li_2TiO_3 as an additive.

Journal Name

In order to clarify the catalytic effect on hydrogenation process, the reversibility, recyclability, and the hydrogenation rate have been investigated. The addition effect of Li_2TiO_3 on hydrogen absorption has been examined by a series of experiments. The dehydrogenated samples were hydrogenated at the same temperature (200 °C) and hydrogen pressure (1 MPa) for 10 min, 100 min, 200 min, and 500 min, respectively. Figure 5 shows the corresponding hydrogen-uptake amount for samples from the extent of reaction. The hydrogenation rate of the samples with/without Li_2TiO_3 addition was shown in Table 1(The result of sample without catalyst is shown in ref 27). The hydrogenation rate of the sample with Li_2TiO_3 addition is obviously higher than that of the reference sample by 4.8 times for 10 min, 2.5 times for 100 min, and 2.0 times for 200 min

Figure 5. Extent of reaction after the samples with Li_2TiO_3 addition rehydrogenated at 200 °C, 1MPa H₂ for 10 min, 100 min, 200 min, and 500 min, respectively.

Temperature and pressure		200 °C, 1 MPa H ₂		
Hydrogenation Time (min)		10	100	200
Hydrogenation	w/o catalyst	9	23	34
Rate (%)	w/ catalyst	44	59	70

Table 1. The catalytic effect of hydrogenation is showed from the hydrogenation ratio.

Furthermore, the recyclability and durability of the catalytic effect of Li_2TiO_3 was examined by 10-cycle test (Figure 6). The weight loss (5.8 %) and peak temperature (223 °C) are the same as the 1st cycle. From these results, it is evident that the catalyst not only had effect on dehydrogenation process, but also on the hydrogenation process.

Figure 6. Corresponding weight loss of $LiNH_2 + LiH + 1 \mod\%$ Li_2TiO_3 mixture de/hydrogenated for 10-cycle (solid line) and differential thermal analysis (dash line).

On the basis of the above results, it can be concluded that Li₂TiO₃ can effectively catalyze the solid-solid reaction between LiH and LiNH₂ upon de/hydrogenation. In order to understand the catalytic mechanism of Li₂TiO₃ in the Li-N-H system, some investigations were performed. During temperature increasing in dehydrogenation, the thermal vibration of ion become more active, and the density of vacancy become higher. In this case, the lithium-ion mobility could be increased. Some of the authors have proposed in their reports that the solid-solid reaction between LiH and LiNH₂ based on Li⁺ migration across reactive interfaces between the LiH particles and the LiNH₂ particles in high temperature dehydrogenation.^{19, 20, 28} In the present study, Li2TiO3 was experimentally doping into Li-N-H system. According to the structural characteristics of Li₂TiO₂ (Figure 7), a nonstoichiometric Li₂TiO₃ can cause lithium vacancies in both the LiTi₂ layers and the pure Li, lithium diffusion should happen in the xy plane and along the z axis. Lithium mobility in monoclinic Li₂TiO₃ is three-dimensional which could provide suitable nearby vacancies during temperature increasing in dehydrogenation. ¹² The doping Li₂TiO₃ with vacancies was around by solid particles, such as LiNH₂ and LiH. These vacancies help destabilize the stability of lithium-ions in the crystal-lattice of LiNH₂ and LiH which could increase the mobility of lithium-ions and make the reaction happen at lower temperature. Furthermore, the improvement in the kinetics could lead to consume LiNH₂, and therefore, the emission of ammonia at high temperatures could be restricted.

Figure 7. The crystal structure of monoclinic LiTi_2O_3 (as reported in ref 29). Lithium atoms are shown in green, oxygen atoms in red, and titanium atoms in yellow.

Conclusions

In summary, we have reported the discovery of Li₂TiO₃ as a catalyst in a solid-solid reaction for hydrogen storage materials for the first time. The catalytic effect, appropriate amount and stability of Li₂TiO₃ in the system were confirmed by the results of TG-DTA-MASS and XRD. Since the Li-N-H system was investigated as hydrogen storage material in 2002, it is first time to decrease the end temperature under 260 °C and the lowest peak temperature was occurred at 223 °C. A storage capacity of 5.8 wt % H₂ was obtained during dehydrogenation. Meanwhile, the catalytic effect on hydrogenation process has also been investigated. The catalytic effect of Li2TiO3 probably results from an increase in the mobility of the lithium-ions between the LiNH₂ and LiH solid phases. The results presented here are the first to appear in the literature. It is hoped that they will be helpful in achieving deeper insight into metal oxide nanoparticles catalyzed solid-solid reaction for hydrogen storage.

Notes and references

^a Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan E-mail: <u>zhangtengfei@eng.hokudai.ac.jp</u> <u>isobe@eng.hokudai.ac.jp</u>

^b Creative Research Institution, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan

- 1 V. Chauvaut, M. Cassir, J. Electroanal. Chem. 1999, 474, 9.
- 2 L. Zhang, X. Wang, H. Noguchi, M. Yoshio, K. Takada, T. Sasaki, *Electrochim. Acta* 2004, 49, 3305.
- 3 C. S. Johnson, J. S. Kim, A. J. Kropf, A. J. Kahaian, J. T. Vaughey, M. M. Thackeray, J. Power Sources 2003, 119-121, 139.
- 4 H. Shigemura, M. Tabuchi, H. Sakaebe, H. Kobayashi, H. Kageyama, J. *Electrochem. Soc.* 2003, **150**, A638.
- 5 J. S. Kim, C. S. Johnson, M. M. Thackeray, *Electrochem. Commun.* 2002, 4, 205.
- 6 L. Zhang, T. Muta, H. Noguchi, X. Wang, M. Zhou, M. Yoshio. J. Power Sources 2003, 117, 137.
- 7 L. Zhang, H. Noguchi, J. Electrochem. Soc. 2003, 150, A601.
- 8 N. Roux, J. Avon, A. Floreancing, J. Mougin, B. Rasneur, S. Ravel, J. Nucl. Mater. 1996, 233-237, 1431.
- 9 C. E. Johnson, K. R. Kummerer, E. Roth, J. Nucl. Mater. 1988, 155-157, 188.
- 10 C. E. Johnson, G. W. Hollenberg, N. Roux, H. Watanabe, *Fusion Eng. Des.* 1989, 8, 145.
- 11 J. G. van der Laan, H. Kawamura, N. Roux, D. Yamaki, J. Nucl. Mater. 2000, 367-370, 1281.
- M.Vijayakumar, S. kerisit, Z. Yang, G. L. Graff, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso, J. Hu, *J. Phys. Chem. C* 2009, **113**, 20108.
- 13 B. Bogdanović, M. Schwickardi, J. Alloys Compd. 1997, 253-254, 1.
- 14 U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed., 2009, 48, 6608.
- L. Zaluski, A. Zaluska, J. O. Ström-Olsen, J. Alloys Compd., 1999, 290, 71.
- 16 J. Huot, G. Liang, R. Schultz, Appl. Phys. A, 2001, 72, 187.
- 17 C. M. Jensen, R. Zidan, N. Mariels, A. Hee, C. Hagen, Int. J. Hydrogen Energy, 1999, 24, 461.
- 18 P. Chen, Z. Xiong, J. Z. Luo, J. Y. Lin, K. L. Tan, *Nature* 2002, 420, 302.
- T. Zhang, S. Isobe, Y. Wang, N. Hashimoto, S. Ohnuki, *RSC Adv.* 2013, 3, 6311.
- 20 T. Zhang, S. Isobe, Y. Wang, N. Hashimoto, S. Ohnuki, *ChemCatChem* 2014, 6, 724.
- 21 T. Zhang, S. Isobe, Y. Wang, H. Oka, N. Hashimoto, S. Ohnuki, J. *Mater. Chem. A*, 2014, 2, 4361.
- 22 T. Zhang, S. Isobe, Y. Wang, N. Hashimoto, S. Ohnuki, M. Matsuo, S. Orimo, MH2014, 2014, pp 174.
- 23 D. Mandal, M. R. K. Shenoi, S. K. Ghosh, *Fusion Eng. Des.* 2010, **85**, 819.
- 24 <u>http://en.wikipedia.org/wiki/Lithium_titanate</u>
- 25 S. Isobe, T. Ichikawa, N. Hanada, H.Y. Leng, M. Fichtner, O. Fuhr, H. Fujii, J. Alloys Compd., 2005, 404-406, 439.
- 26 K. F. Aguey-Zinson, J. Yao, Z. Xiao Guo, J. Phys. Chem. B., 2007, 111, 12531.
- 27 T. Zhang, S. Isobe, M. Matsuo, S. Orimo, Y. Wang, N. Hashimoto, S. Ohnuki, *ACS Catalysis*, submitted.
- 28 W. I. F. David, M. O. Jones, D. H. Gregory, C. M. Jewell, S. R. Johnson, A. Walton, P. P. Edwards, J. Am. Chem. Soc. 2007, 129, 1594.
- 29 J. F. Dorrian, R. E. Newnham, Mat. Res. Bull. 1969, 4, 179.

Page 4 of 4