

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Synthesis of Some Novel Steroidal 1,2,4,5-Tetraoxanes
2 3	Archana M. Das*and Manash P. Hazarika
4 5 6 7 8 9	Natural Products Chemistry Division CSIR-North East Institute of Science & Technology Jorhat – 785 006, Assam, India.
0	ABSTRACT
1	
2	A facile synthesis of A-ring manipulated C-20 methyl carboxylate steroid
3	derivative with unsymmetrical dispiro 1,2,4,5 tetraoxanes has been focused herein via
4	acid catalyzed cyclocondensation of bis-epidioxy ketone. To develop the novel stable
5	unsymmetrical steroidal based spirocycloalkane 1,2,4,5 tetraoxane 8 starting from 3β -
5	acetoxy - pregn -5(6), 16(17) - diene -20 -one (16-dehydropregnenolone acetate, ie. 16-
7	DPA) 1 via metal-mediated halogenation as a key reaction.
3	
)	
)	Keywords : 16-dehydropregnenolone acetate, C-20 methyl carboxylate steroid,
L	bis-epidioxy, spiroalkane, tetraoxane.
2	
Ļ	
5	
5	* Corresponding author :
7	Email : <u>archanads2@gmail.com</u>
3	

29 **1.** Introduction

30

31 Tetroxanes are cyclic peroxides having considerable attention towards the clinical 32 practice as an antimalarial and antimicrobial drug. Many literatures reported that 33 tetroxanes have similar antimalarial mode of action compared to the naturally occurring peroxides such as artemisinin and its derivatives ¹⁻³. In the past few decades, chemists and 34 35 researchers put their attention to develop the organic peroxides in the field of drug design due to certain representatives of these compounds exhibit antimalarial ⁴⁻⁹ and antitumor 36 ¹⁰⁻¹⁴ activities. This has stimulated the development of several molecules of these types as 37 38 depicted in various literatures. It is pertinent to note that, cyclic compounds like 39 tetraoxanes and trioxanes are considered as the most promising synthetic peroxides 40 having activities like antimalarial and antimicrobial. Some of which exhibit high antimalarial activity ¹⁵⁻¹⁸ comparae to the natural peroxide artemisinin, a potent 41 antimalarial drug and antibacterial activity¹⁹. Based on the design of explosives of cyclic 42 43 peroxides has been particular interest nowadays. Besides these, synthesis of 44 unsymmetrical tetroxane has become one of the promising areas towards the development of antimalarial drugs ²⁰. Synthesis of peroxides (tetroxanes) are mainly based on the 45 cyclocondensation reaction of ketones / aldehydes with steroids and its intermediates ^{13,20} 46 or alicyclic gem-bishydroperoxides²¹, aliphatic / alicyclic gembishydroperoxides^{15,22} etc. 47 48 Malaria has been considered as a serious threat to the health and economic 49 prosperity of the human race in recent year. It is estimated that approximately 300 million 50 clinical cases were observed and more than 2.5 million people die from this disease each 51 year. Due to resistance of the vector (Anopheles mosquito) to insecticides and ongoing 52 spread of the drug-resistant strains of *Plasmodium falciparum* against chloroquine and

other clinically used drugs, exploration is going considerable interest worldwide for new
effective anti-malarial drug development ²³⁻²⁵.

55 Symmetric tetraoxanes are limited in number and non-symmetric tetraoxanes 56 would offer more opportunity for selective incorporation of various functional groups on 57 the tetraoxanes scaffold. Several factors have been depends on the synthesis of 1,2,4,5 58 tetroxanes, like the structure of ketones, temperature, solvent, pH and the catalyst 59 concentration of the substrate of the bis peroxides etc.

In continuation of our work on steroid transformations ²⁶, we developed a potential method of metal mediated halogenation of 16-DPA and its relatives using the reagents like MnO₂-TMSCI-AcOH etc. This reaction has been utilized to introduce C-20 methyl carboxylate group in a steroid molecule [Scheme 1].

64 Our effort has been given to introduce spirocycloalkane 1,2,4,5 tetroxanes that 65 possess significantly higher stability than that of their 1,2,4-trioxane or 1,2,4-trioxolane counterparts ²⁷⁻²⁸. It is pertinent to note that, so far no reports on the tetroxane in 66 pregnane-like structure are available except some of in cholestane like structure ¹⁴ only. 67 In the synthetic route, we have utilized our metal mediated halogenation technique 26 to 68 69 construct the C-20 methyl carboxylate side chain in D-ring and its derivatives and also 70 minimize the side effect associated with this class of compounds, to make it soft drug like 71 structure.

72 73

74

2. **Results and Discussion**

As depict in Scheme 1, 16-DPA was hydrogenated in presence of Pd-C to furnish
 the product 2 which was subjected to metal mediated helogenation reaction using MnO₂ TMSCI-AcOH system to furnish 17α, 21-dichloro 20-oxopregnane 3 in high yield. The

product was characterized by direct comparison with the authentic materials ^{26, 28-29}. This 78 79 compound **3** on the treatment with alkaline methanolic solution to gave the 3β -hydroxy Favorskii rearrangement product 4³⁰⁻³¹. Catalytic hydrogenation of 4 in the presence of 80 81 Pd/C provided the hydrogenated compound 5 in high yield. PCC oxidation of 5 in 82 methylene chloride gave the corresponding 3-oxosteroid 6. Conversion of the compound 83 3-oxoandrostan 6 to bishydroperoxy androstan 7 was carried out by using 30% H₂O₂ in acetonitrile at 0 °C ¹⁴ and the reaction 7 was carried out with cyclohexanone/substituted 84 85 cyclohexanone in the presence of conc.H₂SO₄ in CH₃CN afforded the target compounds 86 8a-8i.

88

- 8a : R = H 8b : R = 4-Me 8c : R = 4-MeO 8d R = 4-Cl 8e : R = 4-Br 8f : R = 4-NO₂ 8g : R = -COCH₃
- $8h : R = -C_6H_{11}$
- 89 8i : R = -C₄H₉

91

90 Scheme 1 : Synthetic route for the synthesis of 1,2,4,5-tetraoxane derivatives

- 92 Reagent and conditions used : (a) H₂, Pd/C (b)TMSCL, MnO₂, Acetic acid, r.t (c)
- 93 Favorskii rearrangement (3% KOH, r.t) (d) H₂, Pd/C (e) PCC, CH₂Cl₂, r.t (f) 30% H₂O₂,
- 94 CH₃CN, 0°C (g) Cyclohexanone, CH₃CN, H₂SO₄, 0°C.

Page 6 of 18

RSC Advances

Sl.No.	R	Products	Yield (%)
8a	R = H		67%
8b	R = 4-Me		59%
8c	R = 4-MeO		63%
			61%
8d	R = 4-Cl		56%
8e	R = 4-Br		
8f	R = 4-NO ₂		62%
8g	R = -COCH ₃	CH ₃ OC	66%
8h			53%
	κ – -0 ₆ Π ₁₁		64%
8i	$R = -C_4H_9$	H ₉ C ₄	

95

96 **3.** Conclusion

A facile and novel route towards the synthesis of 1,2,4,5 tetroxane 8a-8i from 16dehydropregenolone acetate ie., 16-DPA **1** using acid catalyzed cyclocondation of bisepidioxy tetraoxanes also with a C-20 methyl carboxylate side chain in ring D was developed. The method affords the target compounds with good yield, 53-67%. Here also, the acid acts both as catalyst as well as cosolvent, which influence both the formation of tetraoxanes and the stability of the peroxides during the experiment.

103 4. Experimental

104 4.1. General remarks

105 All the chemicals used were of reagent grade of E. Merck and were used without 106 further purification. The progress of each of the reaction was monitored on Merck thin 107 layer chromatography silica gel 60 F254. Melting points were measured with a Buchi B-108 540 melting point apparatus and are uncorrected. IR spectra were recorded with a Perkin-109 Elmer model 2000 series FT-IR spectrometer for solutions in chloroform. Infrared absorbance is reported in reciprocal centimeters (cm⁻¹). ¹H and ¹³C NMR spectra were 110 recorded on a Bruker DPX (300 MHz) spectrometer using CDCl₃ or DMSO-d₆ as solvent 111 112 with tetramethylsilane (TMS) as internal standard on ppm scale (d). Multiplicity of the 113 resonance peaks are indicated as singlet (s), broad singlet (bs), doublet (d), triplet (t), 114 quartet (q) and multiplet (m). Mass spectrometric analysis was performed by positive 115 mode electro spray ionization with Bruker Esquire 3000 LC-MS instrument. Elemental 116 analysis was carried out in Varian CHN analyzer (Perkin-Elmer 2400 II)

117

RSC Advances Accepted Manuscript

119 **4.2**.

Experimental methodology and Chemistry

120 4.2.1. 3β-Acetoxy-5α-pregnan-20-one (2)

121 1 gm of 16 –DPA (1) was dissolved in 50 mL of ethanol and hydrogenated at 45 122 psi using 200 mg of 5% Pd/C for a period of 12 hr. The reaction mixture was filtered and 123 alcohol was distilled under reduced pressure to get the crude hydrogenated product. The 124 product was purified by column chromatography over silica gel using 1:10 ethyl acetate 125 and hexane as eluent. The product obtained was pregnenolone acetate **2**.

126Yield: 950 mg (95%); Melting point (mp.) 172° C. The observed ¹H and ¹³C NMR127data (300 MHz, CDCl₃) agree well with the literature values ²⁶. IR (CHCl₃) : 1735, 1700,1281450, 1200 cm⁻¹; MS (ESI) m/z : 360 (M)⁺; Anal. Calcd. for C₂₃H₃₆O₃ : C, 77.66; H,12910.00. Found : C, 77.49; H 9.65.

130 *4.2.2. 3β-Acetoxy-17α, 21- dichloro-5α-pregnan-20-one (3)*

131 To a solution of 500 mg (1.4 mmol) of compound (2) was dissolved in 10 mL of 132 glacial acetic acid, added 450 mg of activated MnO₂ (5 mmol) and 4 mL of TMSCl 133 (trimethyl chlorosilane). The reaction mixture was kept at room temperature for 24 hours 134 and then poured into 500 ml of water and extracted with chloroform (5 X 100 mL). The 135 organic layer was dried over anhydrous sodium sulfate and evaporated under reduced 136 pressure to get the solid crude product. The product was purified by column 137 chromatography to get the desired pure product 3 over silica gel using 1: 40:: ethyl 138 acetate and hexane as eluent.

139 Yield: 405 mg (81%); mp. 160°C. The observed ¹H and ¹³C NMR data (300 MHz, 140 CDCl₃) agree well with the literature values ²⁶. IR (CHCl₃) : 1730, 1710, 1445, 1200 cm⁻

- 141 ¹; MS (ESI) m/z : 428 (M)⁺; Anal. Calcd. for $C_{23}H_{34}O_3Cl_2$: C, 64.49; H, 7.94. Found : C,
- 142 64.46; H, 7.8; $\alpha D = +35^{\circ}$ (CHCl₃, 22^oC and 0.1).
- 143 4.2.3. Methyl (E)– 3β –Hydroxy- 5α -pregn-17-ylideneacetate (4)

144 500 mg of substrate, 3β -Acetoxy-17 α , 21- dichloro-5 α -pregnan-20-one (3) was 145 allowed to stir with 3% KOH in MeOH –H₂O (85:15) at room temperature for a period 146 of 6 hours. The reaction was monitored on TLC. Then the reaction mixture was poured 147 into cold water (300 mL), acidified with 30 % citric acid solution and extracted with 148 chloroform (5 X 100 mL). The organic layer was dried over anhydrous sodium sulfate 149 and evaporated under reduced pressure to get the solid crude product. The product was 150 purified by column chromatography to get the desired pure product 4 over silica gel using 151 1: 2:: ethyl acetate and hexane as eluent.

152 Yield: 375 mg (75%); mp. 165°C; IR (cm⁻¹): 3400, 1730, 1250. The observed ¹H 153 and ¹³C NMR data (300 MHz, CDCl₃) agree well with the literature values ²⁶. MS (ESI) 154 m/z : 346 [M]⁺; Anal. Calcd. for $C_{22}H_{34}O_3$: C, 76.30; H, 9.83; found: C, 76.21; H, 9.76.

155 4.2.4. Methyl 3β -Hydroxy- 5α -pregnan- 17β -acetate (5)

400 mg of compound (4) was dissolved in 20 mL of ethanol and hydrogenated at 45 psi using about 80 mg of 5% Pd/C for a period of 2 hr. The reaction mixture was filtered and alcohol was distilled under reduced pressure to get the crude hydrogenated product. The product was purified by column chromatography to get the desired pure product 5 over silica gel using 1: 3:: ethyl acetate and hexane as eluent.

Yield: 284 mg (71%); mp. 172°C; ¹H NMR (CDCl₃): 0.8 (s, 3H, Me), 1.2 (s, 3H,
Me), 0.9–2.1 (m, 23H, –CH and –CH₂), 2.2 (m, 1H, 3-OH), 3.4 (s, 3H, OMe), 3.5 (m, 1H,
H-3), 2.3 (s, 1H, H-20); ¹³C NMR: δ 15.2, 16.4, 21.4, 27.7, 29.7, 31.5, 32.0, 32.2, 36.6,

- 164 36.9, 37.8, 40.6, 46.3, 49.9, 56.8, 65.0, 73.8, 170.5; IR (cm^{-1}) : 3400 (b), 1735, 1450,
- 165 1250; MS (ESI) m/z : 348 $[M]^+$; Anal. Calcd. for C₂₂H₃₆O₃: C, 75.86; H, 10.34; found: C,

166 75.60; H, 10.18.

167 4.2.5. Methyl 3-Oxo- 5α - pregnan- 17β -acetate (6)

168 200 mg of PCC was suspended in methylene chloride and then 200 mg of 169 compound (5) was rapidly added to it at room temperature. The reaction mixture was 170 allowed to stir at room temperature. The progress of the reaction was monitored by TLC 171 using 1:5:: ethyl acetate: hexane. After completion of the reaction (2 hours), reaction 172 mixture was diluted with 5 volumes of anhydrous ether and allowed to pass through 173 neutral alumina. The ether was distilled under reduced pressure to get the crude product. 174 The product was purified by column chromatography to get the desired pure product 6175 over silica gel using 1: 5:: ethyl acetate and hexane as eluent.

- 176 Yield: 170 mg (85%); mp. 267°C; IR (cm⁻¹): 1735, 1715, 1450, 1250; ¹H NMR
- 177 (CDCl₃): δ 0.8 (s, 3H, Me), 1.0 (s, 3H, Me), 0.9–2.1 (m, 23H and –CH₂), 3.4 (s, 3H, Me),
- 178 2.3 (s, 1H, H-20); ¹³CNMR : δ 13.4, 16.4, 18.8,19.3, 20.6, 21.4, 27.7, 30.7, 31.5, 31.9,
- 179 32.1, 36.7, 36.9, 37.8, 38.0, 40.6, 46.3, 49.9, 56.9, 64.9, 170.6, 205.2; MS (ESI) m/z :
- 180 346 $[M]^+$; Anal. Calcd. for C₂₂H₃₄O₃: C, 76.3; H, 9.82; found: C, 76.01; H, 9.79.
- 181
- 182 4.2.6. Methyl (3,3-Bishydroperoxy)- 5α -pregnan- 17β -acetate (7)

183 100 mg of compound (6) was dissolved in acetonitrile, 30% H₂O₂ was added at 184 0°C. After completion of the reaction (4 hours), reaction mixture was poured into cold 185 water (300 mL) and extracted with chloroform. The organic layer was dried over 186 anhydrous sodium sulfate and evaporated under reduced pressure to get the crude

187	product. The product was purified by column chromatography to get the desired pure
188	product 7 over silica gel using 1: 2:: ethyl acetate and hexane as eluent.
189	Yield: 75 mg (75%); mp. 287°C; IR (cm ⁻¹): 1727.3, 1446.3, 1263, 754.6; ¹ H
190	NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.1–2.1 (m, 23H and –CH ₂), 3.5
191	(s, 3H, Me), 3.7 (s, methyl ester), 9.6 (broad singlet, -OOH); 13 C NMR :
192	δ 12.5, 16.0, 24.4, 28.1, 12.5, 16.0, 24.4, 28.1, 28.8, 31.7, 32.1, 32.2, 35.8, 38.0, 42.1, 46.
193	6, 51.4, 56.6, 110, 174.6; MS (ESI) m/z : 396 $[M]^+$; Anal. Calcd. for $C_{22}H_{36}O_6$: C, 66.66;
194	H, 9.09; found: C, 66.45; H, 9.03.
195	4.2.7. Methyl 3,3-(bis-epidioxycyclohexane)-5 α -pregnan-17 β -acetate (8a)
196 197	300 mg of compound (7) was dissolved in 10 mL CH ₃ CN, then 7.5 mL
198	cyclohexanone/substituted cyclohexanone was added at 0°C. Conc.H $_2$ SO $_4$ (0.5 mL) was
199	then added dropwise to the reaction mixture and allowed to stir at 0°C. After 24 hours
200	TLC indicates the completion of the reaction and neutralized the reaction mixture using
201	base (1% NaOH) and after that acetonitrile was evaporated. The crude reaction mixture
202	was added to 200 mL water and worked up with dichloromethane (300 mL). The organic
203	layer was dried over anhydrous sodium sulphate, evaporated under reduced pressure to
204	get the product 8a .
205	Yield: 201 mg (67%); mp. 185°C; IR (cm ⁻¹): 2932, 1711, 1448.3, 1198, 773; ¹ H
206	NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.2 (s, 3H, Me-18), 0.9 – 2.0 (m, 23H and –CH ₂),
207	3.2 (s, 3H, Me), 3.6 (s, methyl ester); ¹³ C NMR: δ 22.1, 22.3, 22.5, 22.7, 23.3, 24.0, 25.1,

26.0, 26.6, 27.1, 27.5, 31.7, 33.7, 37.7, 41.9, 42.1, 58.2, 58.6, 85.0, 97.7, 109.1, 174.0; 208

MS (ESI) m/z : 476 [M]⁺; Anal. Calcd. for C₂₈H₄₄O₆: C, 70.59; H, 9.30; found: C, 70.32; 209 H, 9.11. 210

211

212	4.2.8. Methyl 3,3-(1,1-epidioxy-4-methylcyclohexane)-5 α -pregnan-17 β -acetate (8b)
213	Yield: 177 mg (59%); mp. 172°C; IR (cm ⁻¹) : 2932, 1727, 1448.3, 1250, 773; ¹ H
215	NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.02 (s, 4-methyl), 1.03 – 2.2
216	(m, 23H and -CH ₂), 3.2 (s, 3H, Me), 3.7 (s, methyl ester), 1.5-1.69 (m, CH ₂ -cyclic ring);
217	¹³ C NMR: δ 15.2, 15.7, 16.4, 19.3, 20.6, 27.7, 29.7, 31.5, 32.1, 36.7, 36.9, 39.3, 40.6,
218	49.9, 56.8, 65.0, 89.8, 97.4, 109.2, 170.6; MS (ESI) m/z : 490 [M] ⁺ ; Anal. Calcd. for
219	C ₂₉ H ₄₆ O ₆ : C, 71.02; H, 9.38; found: C, 70.99; H, 9.02.
220 221	4.2.9. Methyl 3,3-(1,1-epidioxy-4-methoxycyclohexane)-5 α -pregnan-17 β -acetate (8c)
222 223	Yield: 189 mg (63%); mp. 202°C; IR (cm ⁻¹): 2932, 2810, 1727, 1448.3, 1250,
224	773; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.1 – 2.1 (m, 23H and –
225	CH ₂), 3.4 (s, 3H, Me), 3.6 (s, methyl ester), 3.3 (s, 4-methyl extended), 1.5-1.6 (m, CH ₂ -
226	cyclic ring); ¹³ C NMR : δ 15.2, 15.7, 16.4, 20.6, 27.7, 29.7, 31.5, 32.0, 32.2, 36.6, 39.3,
227	40.6, 46.3, 49.9, 56.8, 65.0, 89.8, 97.4, 109.2, 170.5; MS (ESI) m/z : 506 $[M]^+$; Anal.
228	Calcd. for C ₂₉ H ₄₆ O ₇ : C, 68.77; H, 9.09; found: C, 68.51; H, 9.03.
229 230	4.2.10. Methyl 3,3-(1,1-epidioxy-4-chlorocyclohexane)-5 α -pregnan-17 β -acetate (8d)
231 232	Yield: 183 mg (61%); mp. 167°C; IR (cm ⁻¹): 2932, 1727, 1448.3, 1250, 773,
233	710; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.2 (s, 3H, Me-18), 1.25 – 2.1 (m, 23H and
234	–CH ₂), 3.4 (s, 3H, Me), 3.6 (s, methyl ester), 1.39-68 (m, CH ₂ -cyclic ring); 13 C NMR: δ
235	15.2, 15.7, 16.4, 20.6, 27.7, 29.7, 31.5, 32.0, 32.2, 36.6, 39.3, 40.6, 46.3, 49.9, 56.8, 65.0,
236	89.8, 97.4, 109.2, 170.5; MS (ESI) m/z : 510 $[M]^+$; Anal. Calcd. for $C_{28}H_{43}O_6Cl$: C,
237	65.89; H, 8.43; found: C, 65.52; H, 8.27.

239 240 241 242	4.2.11. <i>Methyl</i> 3,3-(1,1-epidioxy-4-bromocyclohexane)-5α-pregnan-17β-acetate (8e) Yield: 168 mg (56%); mp. 177°C; IR (cm ⁻¹): 2932, 1727, 1448.3, 1250, 773,
243	645; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.1 – 2.2 (m, 23H and –
244	CH ₂), 3.6 (s, 3H, Me), 3.7 (s, methyl ester), 1.5-1.6 (m, CH ₂ -cyclic ring) ; 13 C NMR: δ
245	15.2, 15.7, 16.4, 20.6, 27.7, 29.7, 31.5, 32.1, 36.7, 36.9, 39.3, 40.6, 49.9, 56.8, 65.0, 89.8,
246	97.4, 109.2, 170.6; MS (ESI) m/z : 554 $[M]^+$; Anal. Calcd. for $C_{28}H_{43}O_6Br$: C, 60.65; H,
247	7.76; found: C, 60.29; H, 7.38.
248 249	4.2.12. Methyl 3,3-(1,1-epidioxy-4-nitrocyclohexane)-5 α -pregnan-17 β -acetate (8f)
250 251	Yield: 186 mg (62%); mp. 205°C; IR (cm ⁻¹): 2932, 1727, 1448.3, 1250, 1190,
252	773; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.1 – 2.1 (m, 23H and –
253	CH ₂), 3.2 (s, 3H, Me), 3.4 (s, methyl ester), 3.1 (m, 1H-extended ring); 13 C NMR: δ 15.2,
254	15.7, 16.4, 20.6, 27.7, 29.7, 31.5, 32.1, 36.7, 36.9, 39.3, 40.6, 49.9, 56.8, 65.0, 89.8, 90.0,
255	109.7, 170.6; MS (ESI) m/z : 521 $[M]^+$; Anal. Calcd. for $C_{28}H_{43}O_8N$: C, 64.49; H, 8.25,
256	N, 2.69; found: C, 64.15; H, 7.98, N, 2.44.
257	4.2.13. Methyl 3,3-(1,1-epidioxy-4-acetylcyclohexane)-5 α -pregnan-17 β -acetate (8g)
258 259	Yield: 198 mg (66%); mp. 185°C; IR (cm ⁻¹): 2932, 1727, 1745, 1448.3, 1250,
260	773; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.1 – 2.1 (m, 23H, –
261	CH ₂ , -COCH ₃), 3.2 (s, 3H, Me), 3.6 (s, methyl ester); 13 C NMR: δ 15.2, 15.7, 16.4, 20.6,
262	29.7, 31.5, 32.1, 36.7, 36.9, 37.8, 38.0, 39.3, 40.6, 49.9, 56.8, 65.0, 89.8, 97.4, 109.6,
263	170.6, 209.6; MS (ESI) m/z : 518 $[M]^+$; Anal. Calcd. for C ₃₀ H ₄₆ O ₇ : C, 69.5; H, 8.88;
264	found: C, 69.35; H, 8.65.
265	

266 267 268	4.2.14. Methyl 3,3-(1,1-epidioxy-4-hexanecyclohexane)-5 α -pregnan-17 β -acetate (8h)
	Yield: 159 mg (53%); mp. 173°C; IR (cm ⁻¹): 2932, 1727, 1745, 1448.3, 1250,
269	773; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 1.0 (s, 3H, Me-18), 1.1 – 2.1 (m, 23H, –
270	CH ₂ , -COCH ₃), 3.4 (s, 3H, Me), 3.6 (s, methyl ester), 5.2 (m, -CH-); 13 C NMR: δ 13.8,
271	14.5, 16.2, 20.7, 27.7, 28.7, 30.2, 31.3, 31.8, 32.0, 36.7, 36.9, 39.7, 40.2, 41.5, 49.9, 56.4,
272	62.0, 80.8, 97.4, 109.2, 120.7, 170.5; MS (ESI) m/z : 558 $[M]^+$; Anal. Calcd. for
273	C ₃₄ H ₅₄ O ₆ : C, 73.10; H, 9.67; found: C, 72.87; H, 9.38.
274 275 276	4.2.15. Methyl 3,3-(1,1-epidioxy-4-butanecyclohexane)-5 α -pregnan-17 β -acetate (8i)
	Yield: 192 mg (64%); mp. 155°C; IR (cm ⁻¹): 2932, 1727, 1745, 1448.3, 1250,
277	773; ¹ H NMR (CDCl ₃): δ 0.8 (s, 3H, Me-19), 0.9 (s, 3H, Me-18), 1.2 – 2.1 (m, 23H, –
278	CH ₂ , -COCH ₃), 3.2 (s, 3H, Me), 3.4 (s, methyl ester), 5.5 (m, -CH-); 13 C NMR: δ 13.8,
279	14.5, 16.2, 20.7, 27.7, 28.7, 30.2, 31.3, 31.8, 32.0, 36.7, 36.9, 39.7, 40.2, 41.5, 49.9, 56.4,
280	62.0, 80.8, 97.4, 170.5; MS (ESI) m/z : 532 [M] $^+$; Anal. Calcd. for $C_{32}H_{52}O_6$: C, 72.18;

281 H, 9.77; found: C, 71.91; H, 9.45.

282

283 Acknowledgment

The authors thank the Director CSIR-North East Institute of Science & Technology, Jorhat, Assam for providing facilities and valuable advice and also gratefully acknowledge the financial assistance supported by DST, New Delhi for awarding Fast Track Young Scientist Award, EEOES and CSIR, New Delhi, INDIA.

289	Refer	ences
290 291	1.	Bhattacharjee, A. K.; Carvalho, K. A.; Opsenica, D.; Solaja, B. A. J. Serb. Chem.
292		<i>Soc.</i> 2005 , 70, 329–345.
293	2.	Tonmunphean, S.; Wijitkosoom, A.; Tantirungrotechai, Y. Bioorg. Med. Chem.
294		2004 , 12, 2005–2012
295	3.	Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.; Davies, J.;
296		Labat, G.; Vivas, L.; O'Neill, P. M. Org. Biomol. Chem. 2006, 4, 4431-4436.
297	4.	O'Neil, P. M.; Posner, G. H. J. Med. Chem. 2004, 47, 2945–2964.
298	5.	Gelb, M. H. Curr. Opin. Chem. Biol. 2007, 11, 440-445.
299	6.	Jin, HX.; Liu, HH.; Zhang, Q.; Wu, Y. Tetrahedron. Lett. 2005, 46, 5767-
300		5769.
301	7.	Jin, HX.; Zhang, Q.; Kim, HS.; Wataya, Y.; Liu, HH.; Wu, Y.
302		<i>Tetrahedron</i> 2006 , 62, 7699–7711.
303	8.	Najjar, F.; Gorrichon, L.; Baltas, M.; Andre'-Barre's, C.; Vial, H. Org. Biomol.
304		<i>Chem.</i> 2005 , 3, 1612–1614.
305	9.	Ellis, G. L.; Amewu, R.; Hall, C.; Rimmer, K.; Ward, S. A.; O'Neill, P. M.
306		Bioorg. Med. Chem.Lett. 2008, 18, 1720–1724.
307	10.	Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. Med.Chem. 2007, 7, 571-
308		589.
309	11.	Dembitsky, V. M. Eur. J. Med. Chem. 2008, 43, 223-251.
310	12.	Terzic,' N.; Opsenica, D.; Milic,' D.; Tinant, B.; Smith, K. S.; Milhous, W. K.;
311		S°olaja, B. A. J. Med. Chem. 2007, 50, 5118-5127.

312	13.	Opsenica, D.; Kyle, D. E.; Milhous, W. K.; S'olaja, B. A. J. Serb. Chem. Soc.
313		2003 , 68, 291–302.
314	14.	Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.; Davies, J.;
315		Labat, G.; Vivas, L.; O'Neill, P. M. Org. Biomol. Chem. 2006, 4, 4431-4436.
316	15.	Dong, Y.; Tang, Y.; Chollet, J.; Matile, H.; Wittlin, S.; Charman, S. A.;
317		Charman, W. N.; Tomas, J. S.; Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai,
318		S.; Alexander, S. A.; Wang, X.; Padmanilayam, M.; Cheruku, S. R.; Brun, R.;
319		Vennerstrom, J. L. Bioorg. Med. Chem. 2006, 14, 6368-6382.
320	16.	Singh, C.; Malik, H.; Puri, S. K. Bioorg. Med. Chem. Lett. 2004, 14, 459-462.
321	17.	Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, F. C. K.;,
322		Chollet, J. Nature, 2004, 430, 900–904.
323	18.	O'Neill, P.M.; Barton, V. E.; Ward, S. A. Molecules 2010, 15, 1705–1721.
324	19.	Kumar, N.; Sharma, M.; Rawat, D. S. Curr. Med. Chem. 2011, 18(25), 3889-928.
325 326	20.	Solaja', B. A.; Terzic, N.; Pocsfalvi, G.; Genena, L.; Tinant, B.; Opsenica, D.;
327		Milhous, W. K. J. Med. Chem. 2002, 45, 3331-3336.
328	21.	Opsenica, D.; Pocsfalvi, G.; Juranic, Z.; Tinant, B.; Declercq, J-P.; Kyle, D. E.;
329		Milhous, W. K.; Solaja`, B. A. J. Med. Chem. 2000, 43, 3274-3282.
330	22.	Iskra, J.; Bonnet-Delpon, D.; Be'gue', J-P. Tetrahedron Lett. 2003, 44, 6309-
331		6312.
332	23.	Z'mitek, K.; Stavber, S.; Zupan, M.; Bonnet-Delpon, D.; Iskra, J. Tetrahedron
333		2006 , 62, 1479–1484.
334	24.	Opsenica, I.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; S'olaia, B. A. J. Med.

335 *Chem.* **2008**, 51, 2261–2266.

- 336 25. Terent'ev, A. O.; Kutkin, A. V.; Starikova, Z. A.; Antipin, M. Yu.; Ogibin, Yu.
 337 N.; Nikishin, G. I. *Synthesis* 2004, 65, 2356–2366.
 338 26. Chowdhury, P.; Borah, J. M.; Goswami, P.; Das, A. M. *Steroids* 2011, 76, 497–
- 339 501.
- 340 27. O'Neill, P. M.; Amewu, R. K.; Nixon, G. L.; Garah, E. L.; Mungthin, M.;
- 341 Chadwick, J.; Shone, A. E.; Vivas, L.; Lander, H.; Barton, V.; Muangnoicharoen,
- 342 S.; Bray, P. G.; Davies, J.; Park, B. K.; Wittlin, S.; Brun, R.; Preschel, M.; Zhang,
- 343 K.; Ward, S. A. Angew Chem Int Ed. 2010, 49, 5693-5697.
- 28. Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A. E.; Stanford, D.;
- 345 Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer,
- 346 K.; Maria Jesus, S. L.; Gargallo, D.; Ward, S. A.; O'Neill, P. M. *J Med Chem.*347 2008, 51, 2170-2177.
- 348 29. Borah, P.; Ahmed, M.; Chowdhury, P. K. J. Chem. Res. (S) 1998, 236–237.
- 349 30. Borah, P.; Ahmed, M.; Chowdhury, P. K. J Chem Res. (M) 1998, 1173-1180.
- 350 31. Goswami, P.; Hazarika, S.; Das, A. M.; Chowdhury, P. K. *Indian J Chem.* 2004,
 43B, 1275-1281.

352

- 354
- 355

358 Graphical Abstract

