This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis of [POCOP]-Pincer Iron and Cobalt Complexes via Csp3-H Activation and Catalytic Application of Iron Hydride in Hydrosilylation Reactions†

Shaofeng Huang,‡a Hua Zhao,a Xiaoyan Li, Lin Wang, Hongjian Sun*

School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, PR China
E-mail: hjsun@sdu.edu.cn; Fax: +86 531 88361350

Csp3-H bond activation in diphosphinito pincer ligand (Ph2PO(o-C6H4(4,6-′Bu2))2CH2 (1) (POCH2OP) was achieved by Fe(PMe3)4 and CoMe(PMe3)4 to afford complexes (POCHOP)Fe(H)(PMe3)2 (2) and (POCHOP)Co(PMe3)2 (4) under mild conditions. Hydrido iron complex 2 reacted with iodomethane via the elimination of methane to deliver complex (POCHOP)FeI(PMe3) (3). The ligand replacement in Ni(PMe3)4 by 1 gave rise to nickel(0) complex (POCH2OP)Ni(PMe3)2 (5) without Csp3-H bond activation of the pincer ligand (1). It was confirmed that the hydrosilylation of aldehydes and ketones could be effectively catalyzed by hydrido iron complex 2. Complexes 2 – 5 were characterized by spectroscopic methods and X-ray single crystal diffraction analysis.

Keywords: Diphosphinito pincer ligand / C-H activation / Iron Hydride / Cobalt /Hydrosilylation / Trimethylphosphine

† Electronic Supplementary Information (ESI) available: characterization of all compounds; crystallographic information files CCDC 977103 (2), 980722 (4), 980723 (3) and 980724 (5) See DOI:

‡ The first two authors contributed to this paper equally.
Introduction

Owing to high efficiency and atom economy for organic synthesis, C-H bond activation and functionalization has become one of the most attractive areas in organic chemistry. Compared with C\textsubscript{sp2}-H bond activation, C\textsubscript{sp3}-H activation is much more difficult due to the high bond energy and weakly coordinating nature. In this field, most of the work has focused on precious metals, such as Pd1, Ru2, Rh3, Ir4 etc. Because of low cost and toxicity, C-H bond functionalization by iron5, cobalt6 and nickel7 complexes attracted more and more researchers’ attention. Pincer ligands have a double chelation structure. This induces C\textsubscript{sp3}-H bond activation much easier via double cyclometalation8. Therefore, pincer complexes of transition metals can be prepared via C\textsubscript{sp3}-H bond activation.

Hydrido iron complexes as catalysts or key intermediates play important roles in a wide variety of catalytic processes. Nevertheless, these hydrido iron complexes are usually so reactive that they cannot be isolated or even identified9. To date, few stable hydrido iron complexes have been synthesized and employed as catalysts for a number of reactions, such as hydrogenation10-13, hydrosilylation14,15, hydrogen-transfer reaction16, the oxidation of alcohols17. The hydrosilylation reaction of aldehydes and ketones generates silyl ethers with Si-H bond addition to carbonyl compounds. The hydrolysis of the silyl ether gives rise to the corresponding alcohol. This process can be used as a convenient alternative to the reduction of unsaturated compounds under mild reaction condition.

In 2009, we reported the C\textsubscript{sp3}-H bond activation of a [POCOP]-pincer ligand
with an aliphatic backbone (Figure 1. a) by low-valent iron and cobalt complexes under mild conditions. A hydrido [PNCNP]-pincer iron complex was also isolated through C_{sp3}-H bond activation of N,N'-bis(diphenylphosphino)dipyrrromethane (Figure 1. b). When the diphosphine PCP ligand (Ph₂P-(C₆H₄))₂CH₂ was treated with Fe(PMe₃)₄, the C_{sp3}-H activation product [(Ph₂P-(C₆H₄))₂CH]Fe(H)(PMe₃)₂ was obtained at room temperature (Figure 1. c). Recently, Wendt reported a series of new POC_{sp3}OP-supported nickel(II) complexes (Figure 1, d). On the basis of our early work, we synthesized another (POCH₂OP)-pincer ligand having a relatively rigid backbone with two phenyl rings (Figure 1. 1). An iron hydride was obtained by oxidative addition of the C_{sp3}-H bond of the methylene group to the iron(0) center and its catalytic property in hydrosilylation of aldehydes and ketones was also explored.

Results and Discussion

1. Reaction of Fe(PMe₃)₄ with (POCH₂OP) (1)

In most cases, C_{sp3}-H bond activation in a pincer ligand was realized by precious metals, such as Ru^{8a}, Rh^{8b}, Ir^{8c,8d}, Pd^{8e}, etc. It is confirmed that even PdCl₂(PhCN)₂ failed to realize the C_{sp3}-H bond activation in a similar ligand. Until now, there have been only a few examples of hydrido iron complexes formed through the activation of
the C\textsubscript{sp3}-H bond of a [PCP]-pincer ligand18-20.

Mixing a diethyl ether solution of (POCH\textsubscript{2}OP) (1) with Fe(PMe\textsubscript{3})\textsubscript{4} under an atmosphere of nitrogen afforded hydrido iron complex 2 as yellow crystals in 56% yield after stirring (eq. (1)). Complex 2 is stable more than 48 h when exposed to the air at room temperature.

The reaction starts with double replacement of the two trimethylphosphine ligands by two phosphorus atoms of ligand 1. This ligand substitution shortens the distance of the iron(0) atom to the central C\textsubscript{sp3}-H bonds of the methylene group in 1 and enables the Fe(0) center to activate the C\textsubscript{sp3}-H bond via oxidative addition by cyclometalation. Hydrido iron(II) complex 2 is formed through double chelation.
Figure 2. Characteristic resonance of the hydrido hydrogen of 2 in 1H NMR

A typical $\nu(\text{Fe-H})$ stretching band at 1959 cm$^{-1}$ was found in the IR spectrum of 1. In the 31P NMR spectrum of complex 2, one doublet of doublets (two -PPh$_2$) at 15.1 ppm and two triplets (two PMe$_3$) at 6.7 and 6.4 ppm are consistent with the molecular structure. The resonance of the hydrido hydrogen as a dddd peak in the 1H NMR spectrum is registered at -15.13 ppm with the coupling constants of $^2J_{\text{PH}}$ of 69, 48, 38 and 14 Hz (Figure 2). It is not clear why this coupling is incompatible with those of the 31P NMR. This coupling pattern is also different from our early reports.19,20

The configuration of 2 was confirmed by X-ray structure analysis (Figure 3). Two six-membered metallacycles with a considerable ring bending are formed through two phosphorous atoms of the PPh$_2$ groups and a metalated C$_{sp3}$ atom. The iron atom is centered in a slightly distorted octahedral geometry. H100 atom was located with the diffraction data of the experiments. Bond angle P3-Fe1-P4 of 142.88(4)$^\circ$ bends towards to the hydrido ligand due to the smaller space requirement of the hydrido hydrogen. The Fe1-C31 distance (2.165(3) Å) is within the range of Fe-C$_{sp3}$ bonds.23 Both Fe–P1 distance (2.231(1) Å) and Fe–P2 distance (2.269(1) Å) are longer than Fe1–P3 distance (2.142(1) Å) and Fe1–P2 distance (2.141(1) Å), presumably due to the strong trans-influence of the hydrido H and C(sp3) atoms being greater than that of the phosphorus atoms. This result is similar to that of our early report.19 Complex 2 has a low-spin Fe(II) center.
Figure 3. ORTEP plot of complex 2 at the 50% probability level (hydrogen atoms except for Fe–H are omitted for clarity). Selected bond lengths (Å) and angles (deg):

Fe1-P4 2.141(1), Fe1-P3 2.142(1), Fe1-C31 2.165(3), Fe1-P1 2.231(1), Fe1-P2 2.269(1), Fe1-H100 1.50(3); C31-Fe1-P1 177.67(9), P2-Fe1-H100 170(1), P4-Fe1-C31 81.74(9), P3-Fe1-C31 81.99(9).

The reaction of 2 with iodomethane afforded an unsaturated coordinated complex 3 as red crystals with the release of a methane molecule (eq. (2)) in the yield of 87%.
Figure 4. ORTEP plot of complex 3 at the 50% probability level (hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (deg): Fe1-P1 2.194(2), Fe1-P2 2.239(2), Fe1-P3 2.422(3), Fe1-I1 2.699(2), C25-Fe1 2.095(8); C25-Fe1-I1 143.6(2), C25-Fe1-P3 115.2(2), P3-Fe1-I1 101.25(8), P1-Fe1-I1 91.89(8), P2-Fe1-I1 91.73(8), C25-Fe1-P1 85.8(2), C25-Fe1-P2 80.0(2).

The 1H NMR spectrum of 3 indicates that complex 3 is paramagnetic. From the results of the magnetization measurements for complex 3 it can be calculated that there are two unpaired electrons in complex 3. This result is in accordance with a paramagnetic iron(II) complex (d6) having a trigonal bipyramidal configuration (see Supporting Information). This result was confirmed by X-ray crystallography. Figure 4 shows the molecular structure of complex 3. It has a trigonal bipyramidal coordination geometry with P1-Fe1-P2 = 160.6(1)$^\circ$ in the axial direction. The sum of the bond angles (C25-Fe1-I1 = 143.6(2)$^\circ$, C25-Fe1-P3 = 115.2(2)$^\circ$ and P3-Fe1-I1 = 101.25(8)$^\circ$) centered at the Fe atom in the equatorial plane is 360.1$^\circ$. This indicates
that the four atoms [Fe1C25I1P3] are almost in one plane.

2. **Reaction of CoMe(PMe$_3$)$_4$ with (POCH$_2$OP) (1)**

CoMe(PMe$_3$)$_4$ reacted with pincer ligand 1 to form the C$_{sp3}$-H bond activation product 4 with the elimination of a methane molecule (eq. (3)).

![Chemical structure](image)

The 1H NMR spectrum of complex 4 in C$_6$D$_6$ at 10°C indicated that the proton resonance of the CH group appear at 6.12 ppm. In comparison with the related resonance at 3.88 ppm in the similar [PNC(H)NP]Co(PMe$_3$)$_2$ complex this is a significant downfield shift.19 The proton resonances of two types of PMe$_3$ groups were recorded as one doublet at 0.78 and a triplet at 0.96 ppm with the coupling constants of 3.0 and 6.0 Hz respectively. The 31P NMR spectrum shows a triplets for two PMe$_3$ at -4.5 ppm with the coupling constants 2J(PP) = 78 Hz and a singlet for the two diphenylphosphanyl groups at 17.7 ppm.

The molecular structure of complex 4 was determined by X-ray single crystal diffraction (Figure 5). Two six-membered cobaltocycles with a considerable ring bending are formed through two phosphorous atoms of the PPh$_2$ groups and a metalated C$_{sp3}$ atom. The central cobalt atom is situated in a disordered trigonal
bipyramid with $C1-\text{Co1-P4} = 175.9(1)^\circ$ in the axial direction. The Co1-C1 distance (2.133(4) Å) is within the range of Co-C_{sp3} bonds (2.03 - 2.15 Å24). The structure of complex 4 is comparable with that of $[\text{PNC(H)NP}]\text{Co(PMe}_3)_2$.19

![Figure 5. ORTEP plot of complex 4 at the 50% probability level (hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (deg): Co1-P3 2.118(1), Co1-C1 2.133(4), Co1-P1 2.144(1), Co1-P4 2.213(1), Co1-P2 2.254(1); P3-C01-C1 82.1(1), P3-Co1-P1 130.80(4), C1-Co1-P1 81.5(1), P3-Co1-P4 94.73(5), C1-Co1-P4 175.9(1), P1-Co1-P4 98.83(5), P3-Co1-P2 117.80(4), C1-Co1-P2 89.5(1), P1-Co1-P2 108.08(4), P4-Co1-P2 94.24(5).]

3. Reaction of Ni(PMe$_3$)$_4$ or NiMe$_2$(PMe$_3$)$_4$ with (POCH$_2$OP) (1)

Mixing a THF solution of (POCH$_2$OP) (1) with Ni(PMe$_3$)$_4$ afforded nickel(0) complex 5 via ligand substitution (eq. (4)). After all solvents were removed under vacuum, the residual powder was extracted with pentane and diethyl ether. Complex 5 crystallized from diethyl ether at 0°C in the yield of 87%. No C_{sp3}-H bond activation product could be observed.
In the 1H NMR spectrum of complex 5, the resonance of the two hydrogens of the methylene group was shifted to 6.49 ppm from 4.09 ppm in the free ligand (1). This downfield shift can be explained in terms of an increased deshielding of the methylene protons because the formation of a metallacycle results in an additional ring current, which opposes the external field.25 In the 31P NMR spectrum two types of signals with the integral intensity of 1 : 1 demonstrate two kinds of phosphorus atoms. Both the 1H and 31P NMR indicate that C$_{sp3}$-H bond activation did not occur. The molecular structure of complex 5 was confirmed by X-ray single crystal diffraction. A ten-membered metallacycle is formed in 5 and every bond angle of the ring is approximately in 120°. The central nickel atom has a distorted tetrahedron coordination geometry. The bond angles P1–Ni1–P2 (119.50(3)°), P1–Ni1–P3 (106.47(3)°), P1–Ni1–P4 (109.63(3)°), P2–Ni1–P3 (107.91(3)°), P2–Ni1–P4 (101.93(3)°) and P3–Ni1–P4 (111.39(3)°) are approximately close to 109.5°. The four Ni–P bond distances are within the region of literature values.15,19 The distance (3.62 Å) between the Ni and the methylene C$_{sp3}$ atom indicates that there is no chemical interaction between them. The reaction of ligand 1 with NiMe$_2$(PMe$_3$)$_4$ gave the same product with the elimination of C$_2$H$_6$ (eq. (5)).
Figure 6. ORTEP plot of complex 5 at the 50% probability level (hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (deg): Ni1-P1 2.1572(8), Ni1-P2 2.1595(8), Ni1-P4 2.1955(8), Ni1-P3 2.1960(9); P1-Ni1-P2 119.50(3), O1-P1-Ni1 125.69(7), O2-P2-Ni1 117.24(8), C13-O1-P1 127.6(2), C21-O2-P2 129.1(2), P4-Ni1-P3 111.39(3).

4. Catalytic application of hydrido iron complex 2

Hydrido iron complexes bearing pincer ligands have been utilized in hydrosilylation reactions of aldehydes and ketones.14-15 We found that complex 2 could be used as catalyst in the hydrosilylation of aldehydes (eq. (6)). In the presence of 1 mol % of 2 with (EtO)\textsubscript{3}SiH as the hydrogen source in THF at 65°C, aldehydes
could be completely converted into the corresponding silyl ether. The related alcohols were obtained by following basic hydrolysis of the silyl ether. Nine aldehydes were investigated (Table 1). Electron-donating group appeared to make the hydrosilylation reactions sluggish (entry 5). On the contrary, electron-withdrawing group at the para-position turned out to accelerate the reduction (entry 6). ortho-Positoned groups hindered the process (entries 2-4).

$$
\text{RCHO} + (\text{EtO})_3\text{SiH} \xrightarrow{1 \text{ mol\% 2 \text{ THF}}} \xrightarrow{\text{10\% NaOH MeOH}} \text{RCH}_2\text{Si(OEt)}_3 \xrightarrow{\text{MeOH}} \text{RCH}_2\text{OH} (6)
$$

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Time (h)</th>
<th>Isolated yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHO</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>CHO-F</td>
<td>16</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>CHO-Cl</td>
<td>26</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>CHO-Br</td>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>CHO-MeO</td>
<td>16</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>CHO-F</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>CHO</td>
<td>16</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>CHO</td>
<td>2.5</td>
<td>86</td>
</tr>
</tbody>
</table>

Table 1. Catalytic Hydrosilylation of Aldehydes with 2a
Reaction conditions: RCHO (1.0 mmol), (EtO)$_3$SiH (1.2 mmol), complex 2 (0.010 mmol), 1.0 mL THF, 65 °C. Under the given conditions, all the aldehydes were completely converted to the corresponding silyl ethers (monitored by TLC and GC).

Besides aldehydes, different ketones were also tested under these catalytic hydrosilylation conditions (eq. (7)). It was confirmed that acetophenone could be entirely converted into the product even within 5h with a catalyst loading of 2 mol % of complex 2 (Table 1, entry 1). In some cases, reasonable yields could be obtained with a catalyst loading of 2 mol % (Table 2). In most cases, the ketones are less reactive than the aldehydes. Additionally, several ketones could not be completely converted even after 48h. Substituents at the para- or ortho-positions reduced the rate of the reaction for both electron-withdrawing and electron-donating groups (entries 2 - 4). These results are consistent with Guan’s work. It is proposed that this catalytic system has a similar mechanism with those of the early reports.

\[
\begin{align*}
\text{RR'C}=\text{O} + (\text{EtO})_3\text{SiH} & \xrightarrow{1\text{ mol % 2}} \text{THF} & \text{RR'CHOSi(OEt)}_3 & \xrightarrow{10\% \text{ NaOH}} \text{MeOH} & \text{RR'HCOH} (7)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Table 2. Catalytic Hydrosilylation of Ketones with 2a</th>
<th>Entry</th>
<th>Substrate</th>
<th>Time (h)</th>
<th>Conversation by GC (%)</th>
<th>Isolated Yield (%)</th>
</tr>
</thead>
</table>

a Reaction conditions: RCHO (1.0 mmol), (EtO)$_3$SiH (1.2 mmol), complex 2 (0.010 mmol), 1.0 mL THF, 65 °C. Under the given conditions, all the aldehydes were completely converted to the corresponding silyl ethers (monitored by TLC and GC).
1

\[
\begin{array}{c}
1 \quad \text{Me} \\
2 \quad \text{Me} \\
3 \quad \text{Me} \\
4 \quad \text{Me} \\
5 \quad \text{Me} \\
6 \quad \text{Me} \\
7 \quad \text{Me} \\
8 \quad \text{Me} \\
9 \quad \text{Me} \\
\end{array}
\]

\text{1} \quad 5 \quad 99 \quad 88
\text{2} \quad 48 \quad 92 \quad 71
\text{3} \quad 10 \quad 99 \quad 81
\text{4} \quad 48 \quad 57 \quad 43
\text{5} \quad 48 \quad 74 \quad 63
\text{6} \quad 18 \quad 99 \quad 79
\text{7} \quad 48 \quad 43 \quad 37
\text{8} \quad 18 \quad 99 \quad 86
\text{9} \quad 48 \quad 49 \quad 39

\text{a} \quad \text{Reaction conditions: RCOR'} (1.0 \text{ mmol}), \ (\text{EtO})_3\text{SiH} (1.2 \text{ mmol}), \ \text{complex 2} (0.020 \text{ mmol}), \ 2.0 \text{ mL THF, 65 }^\circ\text{C.}

\text{Conclusion}

We investigated the reactions of the diphosphinito pincer ligand \((\text{Ph}_2\text{PO}(\sigma-\text{C}_6\text{H}_2-(4,6-^\text{Bu}_2)))_2\text{CH}_2 \ (1) \ \text{(POCH}_2\text{OP)}\) with the electron-rich low-valent iron, cobalt, and nickel complexes supported by trimethylphosphine. The C\text{sp3}-H bond
activation of 1 was achieved by iron(0) complex Fe(PMe$_3$)$_4$ and cobalt(I) complex CoMe(PMe$_3$)$_4$. The hydrido iron complex (POCHOP)Fe(H)(PMe$_3$)$_2$ (2) reacted with iodomethane to give rise to an iodo iron(II) complex. The catalytic property of the hydrido iron(II) complex 2 was explored in hydrosilylation of aldehydes and ketones.

Experimental Section

General procedures and materials. Standard vacuum techniques were used in the manipulations of volatile and air-sensitive materials. Solvents were dried by known procedures and distilled under nitrogen before use. Infrared spectra (4000 – 400 cm$^{-1}$), as obtained from Nujol mulls between KBr disks, were recorded on a Bruker ALPHA FT-IR instrument. NMR spectra were recorded using Bruker Avance 300 and 400 MHz spectrometers. GC-MS was recorded on a TRACE-DSQ instrument, and GC was recorded on a Fuli 9790 instrument. A 2900 Series AGM Magnetometer was used to measure the magnetic susceptibility. X-ray crystallography was performed with a Bruker Smart 1000 diffractometer. Melting points were measured in capillaries sealed under N$_2$ and were uncorrected. Elemental analyses were carried out on an Elementar Vario ELIII instrument. The compounds (Ph$_2$PO(o-C$_6$H$_2$-(4,6-4Bu$_2$)))$_2$CH$_2$ (1)19, Fe(PMe$_3$)$_4$, CoMe(PMe$_3$)$_4$, Ni(PMe$_3$)$_4$, NiMe$_2$(PMe$_3$)$_3$, were prepared according to literature procedures.

Caution! (EtO)$_3$SiH is flammable and highly toxic by inhalation and may cause skin irritation and blindness.
Synthesis of (POCHOP)Fe(H)(PMe$_3$)$_2$ (2). (POCH$_2$OP) (1) (0.82 g, 1.03 mmol) in 25 mL of diethyl ether was mixed with Fe(PMe$_3$)$_4$ (0.42 g, 1.15 mmol) in 30 mL of diethyl ether at 0°C. After 6 h at 0°C the reaction solution turned brown yellow from tan. After 20 h a small amount of yellow powder precipitated. After 3 days, the volatiles were removed under reduced pressure and the residue was extracted with pentane and diethyl ether. Compound 2 (0.56 g, 0.56 mmol) was isolated as yellow crystals in 56% yield from diethyl ether at 0°C. Dec. >179°C. Anal. Calcd for C$_{59}$H$_{80}$FeO$_2$P$_4$ (1000.96 g/mol): C, 70.79; H, 8.06. Found: C, 70.68; H, 8.09. IR (Nujol, cm$^{-1}$): 3046 ν(ArH), 1959 ν(Fe–H), 1573 ν(ArC=C), 938 ρ(PMe$_3$). 1H NMR (C$_6$D$_6$, 300 K, ppm): m 15.13 (dddd, J_{PmH} = 69, 48, 38 and 14 Hz, 1H, FeH), 0.62 (s, 9H, PMe$_3$), 0.81 (d, J_{PH} = 6 Hz, PMe$_3$), 0.99 (s, 9H, p-(CH$_3$)$_3$C), 1.25 (s, 9H, p-(CH$_3$)$_3$C), 1.42 (s, 9H, o-(CH$_3$)$_3$C), 1.85 (s, 9H, o-(CH$_3$)$_3$C), 5.74 (s broad, 1H, CH), 7.07 - 7.53 (m, Ar, 18H), 8.08 - 8.33 (m, Ar, 6H); 31P NMR (C$_6$D$_6$, 300 K, ppm): 15.1 (dd, J_{PP} = 37.5 Hz, J_{PP} = 12.1 Hz, 2P, PPh$_2$), 6.7 (t, J_{PP} = 22.0 Hz, 1P, PCH$_3$), 6.4 (t, J_{PP} = 22.0 Hz, 1P, PCH$_3$); 13C NMR (C$_6$D$_6$, 300K, ppm): 21.5 (d, J_{PC} = 9.7 Hz, PCH$_3$), 24.4 (d, J_{PC} = 8.2 Hz, PCH$_3$), 31.6 (s, p-(CH$_3$)$_3$C) 31.7 (s, p-(CH$_3$)$_3$C), 31.8 (s, o-(CH$_3$)$_3$C), 32.6 (s, o-(CH$_3$)$_3$C), 34.1 (s, p-(CH$_3$)$_3$C), 34.2 (s, p-(CH$_3$)$_3$C), 34.9 (s, o-(CH$_3$)$_3$C), 35.8 (s, o-(CH$_3$)$_3$C), 118.5 - 152.9 (m, aromatic-C).

Synthesis of (POCHOP)FeI(PMe$_3$) (3) CH$_3$I (0.05 g, 0.35 mmol) was injected into the solution of 2 (0.30 g, 0.30 mmol) in 20 mL THF and stirred at 30°C. After 4d the yellow color disappeared and the solution turned red. After 5d at 30°C, the volatiles
were removed under reduced pressure and the residue was dissolved in pentane. Compound 3 (0.27 g, 0.26 mmol) was isolated as red crystals in 87% yield from pentane at 0°C. Dec. >114°C. Anal. Calcd for C_{56}H_{70}FeO_2P_3 (1050.78 g/mol): C, 64.01; H, 6.71. Found: C, 64.13; H, 6.78. IR (Nujol, cm\(^{-1}\)): 3030 \(\nu\)(ArH), 1584 \(\nu\)(C=C), 940 \(\rho\)(PMe\(_3\)); \(\chi\) (20°C) = 5.108 x 10\(^{-6}\) emu/(g Oe).

Synthesis of (POCHOP)Co(PMe\(_3\))\(_2\) (4). At \(-78°C\), (POCH\(_2\)OP) (I) (0.67 g, 0.84 mmol) in 25 mL of diethyl ether was treated with CoMe(PMe\(_3\))\(_4\) (0.35 g, 0.92 mmol) in 30 mL of diethyl ether at 0°C. After 30 h, the reaction mixture turned dark red. After 3d, the volatiles were removed under reduced pressure and the residue was dissolved with pentane. All manipulations were finished under 10°C. Compound 4 (0.35 g, 0.35 mmol) was isolated as red crystals in 42% yield from pentane at 0°C. Dec. >152°C. Anal. Calcd for C\(_{59}\)H\(_{79}\)CoO\(_2\)P\(_4\) (1003.03 g/mol): C, 70.65; H, 7.94. Found: C, 70.58; H, 7.99. IR (Nujol, cm\(^{-1}\)): 3034 \(\nu\)(ArH), 1580 \(\nu\)(C=C), 942 \(\rho\)(PMe\(_3\)).

\(^1\)H NMR (C\(_6\)D\(_6\), 283K, ppm): 0.78 (d, \(^2\)J(PH) = 3 Hz, 9H, PMe\(_3\)), 0.96 (vt, 9H, \(^2\)J(PH) = 6 Hz, PMe\(_3\)), 1.08 (s, 9H, \(p\)-(CH\(_3\))\(_3\)C), 1.35 (s, 9H, \(p\)-(CH\(_3\))\(_3\)C), 1.46 (s, 9H, \(o\)-(CH\(_3\))\(_3\)C), 1.84 (s, 9H, \(o\)-(CH\(_3\))\(_3\)C), 6.12 (s, 1H, CH), 6.93 – 8.41 (m, Ar, 18H); \(^{31}\)P NMR (C\(_6\)D\(_6\), 283 K, ppm): 17.7 (bs, 2P, PPh\(_2\)), -4.5 (t, \(^2\)J(PP) = 78 Hz, 2P, PCH\(_3\)).

Synthesis of (POCH\(_2\)OP)Ni(PMe\(_3\))\(_2\) (5). (POCH\(_2\)OP) (I) (0.57 g, 0.72 mmol) in 25 mL of THF was mixed with Ni(PMe\(_3\))\(_4\) (0.27 g, 0.72 mmol) in 25 mL of THF with stirring at room temperature for 24 h. The reaction mixture turned orange from yellow.
After removal of the volatiles under reduced pressure, the residue was extracted with pentane and diethyl ether. Compound 5 (0.63 g, 0.62 mmol) was isolated as orange crystals in 87% yield from diethyl ether at 0°C. Dec. >121°C. Anal. Calcd for C_{59}H_{80}NiO_{2}P_{4} (1003.82 g/mol): C, 70.59; H, 8.03. Found: C, 70.51; H, 8.11. IR (Nujol, cm⁻¹): 3025 ν(ArH), 1580 ν(C=C), 938 ρ(PMe_3). ¹H NMR (C₆D₆, 300 K, ppm): 1.10 (d, 18H, J(PP) = 3.0 Hz, PMe_3), 1.28 (s, 18H, p-(CH₃)₃C), 1.45 (s, 18H, o-(CH₃)₃C), 6.49 (s, 2H, CH₂), 7.16-7.91 (m, Ar, 24H); ³¹P NMR (C₆D₆, 300 K, ppm): 144.2 (dd, J(PP) = 44.8Hz, 2P, PMe_3), -16.4 (dt, J(PP) = 44.8Hz, 2P, PPh₂); ¹³C NMR (C₆D₆, 300K, ppm): 23.8 (m, PMe_3), 31.2 (s, p-(CH₃)₃C), 31.6 (s, o-(CH₃)₃C), 34.3 (s, p-(CH₃)₃C), 35.4 (s, o-(CH₃)₃C), 122.5 – 152.5 (m, aromatic-C). The reaction of NiMe₂(PMe_3)_3 was carried out by a procedure similar to above in 89% yield.

General Procedure for the Catalytic Hydrosilylation of Aldehydes. To a 25-mL Schlenk tube containing a solution of 2 (10.0 mg, 0.01 mmol) in 1 mL of THF were added an aldehyde (1.0 mmol) and (EtO)_3SiH (0.20 g, 1.2 mmol). The reaction mixture was stirred at 65°C until there was no aldehyde left (monitored by TLC and GC-MS). The reaction was then quenched by MeOH (1 mL) and a 10% aqueous solution of NaOH (5 mL) with vigorous stirring at 50°C for about 2 d. The organic product was extracted with Et₂O, dried over anhydrous MgSO₄, and concentrated under vacuum. The alcohol product was further purified using flash column chromatography. The ¹H NMR and ¹³C{¹H} NMR spectra of the primary alcohol products are provided in the Supporting Information.
General Procedure for the Catalytic Hydrosilylation of Ketones. Ketones were reduced following a similar procedure to the one used for aldehydes except that 2 (20.0 mg, 2.0 mmol) in 2 mL of THF were added. The 1H NMR and 13C {1H} NMR spectra of the secondary alcohol products are provided in the Supporting Information.

X-ray Crystal Structure Determinations. The single crystals of all complexes for X-ray single crystal diffraction were obtained from their n-pentane solutions at low temperature. Diffraction data were collected on a Bruker SMART Apex II CCD diffractometer equipped with graphite monochromated Mo K$_\alpha$ radiation ($\lambda = 0.71073$ Å). During collection of the intensity data, no significant decay was observed. The intensities were corrected for Lorentz polarization effects and empirical absorption with the SADABS program.28 The structures were resolved by direct or Patterson methods with the SHELXS-97 program and were refined on F^2 with SHELXTL.25 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions and were refined using a riding model. A summary of crystal data, data collection parameters, and structure refinement details is given in Table 1. CCDC 977103 (2), 980722 (4), 980723 (3) and 980724 (5) for complexes 2, 3, 4 and 5 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
Table 1. Crystallographic Data for Complexes 2, 3, 4 and 5.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C_{50}H_{80}FeO_2P_4</td>
<td>C_{58}H_{70}FeIO_2P_3</td>
<td>C_{58}H_{79}CoO_2P_4</td>
<td>C_{59}H_{80}NiO_2P_4</td>
</tr>
<tr>
<td>fw</td>
<td>1000.96</td>
<td>1050.78</td>
<td>1003.03</td>
<td>1003.82</td>
</tr>
<tr>
<td>cryst syst</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P 2(1)/n</td>
<td>P2(1)/n</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>a, Å</td>
<td>21.067(4)</td>
<td>16.196(3)</td>
<td>12.437(2)</td>
<td>14.2600(5)</td>
</tr>
<tr>
<td>b, Å</td>
<td>12.873(3)</td>
<td>12.997(3)</td>
<td>13.462(2)</td>
<td>14.5978(6)</td>
</tr>
<tr>
<td>c, Å</td>
<td>22.808(5)</td>
<td>30.608(6)</td>
<td>19.727(3)</td>
<td>15.3049(7)</td>
</tr>
<tr>
<td>R, deg</td>
<td>90.00</td>
<td>90.00</td>
<td>94.511(3)</td>
<td>96.364(3)</td>
</tr>
<tr>
<td>β, deg</td>
<td>115.18(3)</td>
<td>97.19(3)</td>
<td>104.832(2)</td>
<td>92.785(3)</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90.00</td>
<td>90.00</td>
<td>91.585(3)</td>
<td>118.212(3)</td>
</tr>
<tr>
<td>V, Å³</td>
<td>5598.0(19)</td>
<td>6392(2)</td>
<td>3178.7(8)</td>
<td>2771.5(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_x, g cm⁻³</td>
<td>1.188</td>
<td>1.092</td>
<td>1.048</td>
<td>1.203</td>
</tr>
<tr>
<td>no. of rflns collected</td>
<td>31954</td>
<td>31275</td>
<td>16636</td>
<td>23118</td>
</tr>
<tr>
<td>no. of unique data</td>
<td>12629</td>
<td>11240</td>
<td>11687</td>
<td>10325</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0793</td>
<td>0.0939</td>
<td>0.0694</td>
<td>0.0638</td>
</tr>
<tr>
<td>θ_{max}, deg</td>
<td>27.560</td>
<td>25.000</td>
<td>25.500</td>
<td>25.688</td>
</tr>
<tr>
<td>R_{1} (I > 2σ(I))</td>
<td>0.0569</td>
<td>0.0847</td>
<td>0.0535</td>
<td>0.0442</td>
</tr>
<tr>
<td>wR_{2} (all data)</td>
<td>0.1701</td>
<td>0.3013</td>
<td>0.1445</td>
<td>0.0845</td>
</tr>
</tbody>
</table>

Acknowledgements. We gratefully acknowledge the support by NSF China No. 21372143 and the Journal Grant for International Author of RSC. We also thank the kind assistance from Prof. Dieter Fenske and Dr. Olaf Fuhr (Karlsruhe Nano-Micro Facility (KNMF), KIT) for the X-ray diffraction analysis.

References

16 C. Bianchini, E. Farnetti, M. Graziani, M. Peruzzini and A. Polot, *Organometallics*
1993, 12, 3753-3761.

18 G. Xu, H. Sun and X. Li, Organometallics 2009, 28, 6090-6095.

20 H. Zhao, H. Sun and X. Li, Organometallics 2014, 33, 3535-3539.

TOC

Synthesis of [POCOP]-Pincer Iron and Cobalt Complexes via C_{sp3}-H Activation and Catalytic Application of Iron Hydride in Hydrosilylation Reactions

Shaofeng Huang, Hua Zhao, Xiaoyan Li, Lin Wang, Hongjian Sun*

School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China