ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

ht

http://rsc.li/frontiers-organic

5 6 7

13

14

15

16

17 18

19

20

21 22

23 24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name

ARTICLE

Received 00th January 20xx,

Copper-Catalyzed Oxidative Coupling Reaction of α , β -Unsaturated Aldehydes with Amidines: Synthesis of 1, 2, 4-Trisubstituted-1*H*-Imidazole-5-Carbaldehydes

Yaxuan Li,^{ab} Yajie Fu,^{ab} Chaojie Ren,^{ab} Dong Tang,^{ab} Ping Wu,^{ab} Xu Meng^c and Baohua Chen*^{ab}

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x A practical and highly functional group-compatible synthesis of 1, 2, 4-trisubstituted-1*H*-imidazole-5-carbaldehydes has been developed via copper-catalyzed oxidative coupling of amidines and α , β -unsaturated aldehydes, which features aldehyde reserved, cheap catalysts, as well as high atom economy and mild conditions.

www.rsc.org/

Introduction

The imidazole core is an important scaffold that could be found in a large number of natural products (Figure 1 a),¹ pharmaceuticals (Figure 1 b and c),² and advanced materials³. Thus, the development of synthetic protocols for imidazole derivatives has always been an active area of research.⁴ The Bredereck synthesis,⁵ Van Leusen reaction,⁶ Debus-Radziszewski reaction,⁷ and the reaction of *R*-haloketones with amidines⁸ are well documented as traditional methods to build imidazole rings. However, these procedures generally involve a strong base or relatively high temperature.

With the rapid development of transition metal-catalysis in the past decades, using simple *N*-arylated substrates as precursors for the synthesis of various imidazole derivatives has stimulated great research efforts.⁹ Among these, Cucatalyzed oxidative synthesis of imidazole derivatives has become increasingly popular for their high efficiency.¹⁰ Typically, the group of Chiba has developed a series of strategies to afford various azaheterocycles under Cucatalyzed oxidative conditions in the past few years.^{10b-g}

Aldehyde is one of the most important groups in functional group transformation, such as Aldol reaction and Mannich reaction. As a potentially versatile synthetic intermediate, the aldehyde-substituted imidazoles contain an important reactive center for facile derivatization.¹¹ For example, Qiao's group

synthesized novel functional materials, Schiff-base linked polymeric imidazoles (SLPI),¹¹ⁱ which are developed by aldehydesubstituted imidazoles. Based on previous studies on other and our groups,^{9j,9t,10j,12} we report a copper-catalyzed oxidative coupling of α , β -unsaturated aldehydes with amidines to construct 1, 2, 4-trisubstituted-1*H*-imidazole-5-carbaldehydes under mild conditions with H₂O as the sole byproduct.

Results and discussion

We initiated the investigation by using Nphenylbenzamidine (1a) and cinnamaldehyde (2a) as model substrates for optimization of this process, and the effects of all reaction parameters were systematically examined (Table 1). When the reaction was carried out in the presence of Cul (10 mol%), DABCO (1, 4-diazabicyclo-[2.2.2]octane) (20 mol%) and PhCl (chlorobenzene) (2 mL) at 100 °C for 36 h under air atmosphere, the desired product **3aa** was isolated in 26% yield (entry 1). It was found that two equivalents of MnO₂ under N₂ atmosphere increased the reactivity, producing the corresponding product 3aa in 75% yield (entry 3). Other oxidants were inefficient in the presence of N_2 (entries 4-6). Among various copper catalysts that we screened, Cul gave the highest yield (entries 7-9). The replacement of DABCO with other ligands did not promote the efficiency of the reaction (entries 10–12). An evaluation of solvents revealed that PhCl

^a. State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.

^{b.} Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou, 730000, P. R. China. E-mail: <u>chbh@lzu.edu.cn</u> Fax: + 86(931)8912582

^c State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China. Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Ph NH + Ph CHO		Cu, ligand, oxidant			
Ph 1a	2a	solvent, 100	с :	Ph 3aa	
Entry	Catalyst	Ligand	Oxidant	Solvent	Yield [%] ^t
1	Cul	DABCO	air	PhCl	26%
2 ^c	Cul	DABCO	MnO ₂	PhCl	48%
3	Cul	DABCO	MnO₂	PhCl	75%
4	Cul	DABCO	$K_2S_2O_8$	PhCl	27%
5	Cul	DABCO	TBHP	PhCl	20%
6	Cul	DABCO	AgCO ₃	PhCl	15%
7	CuBr	DABCO	MnO ₂	PhCl	20%
8	CuBr ₂	DABCO	MnO ₂	PhCl	32%
9	CuCl₂	DABCO	MnO ₂	PhCl	54%
10	Cul	Віру	MnO ₂	PhCl	53%
11	Cul	TMEDA	MnO ₂	PhCl	25%
12	Cul	PPh₃	MnO ₂	PhCl	21%
13	Cul	DABCO	MnO ₂	DCE	24%
14	Cul	DABCO	MnO ₂	DMF	trace
15	Cul	DABCO	MnO ₂	dioxane	36%
16 ^d	Cul	DABCO	MnO ₂	PhCl	30%
17 ^e	Cul	DABCO	MnO ₂	PhCl	68%
18 ^f	Cul	DABCO	MnO ₂	PhCl	55%
19 ^g	Cul	DABCO	MnO ₂	PhCl	45%
20 ^h	Cul	DABCO	MnO ₂	PhCl	59%
21 ⁱ	Cul	DABCO	MnO ₂	PhCl	63%

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), catalyst (10 mol%), ligand (20 mol%), oxidant (2 equiv.), N₂, solvent (2 mL), 100 °C, 36 h. ^bIsolated yield. ^cUnder air atmosphere. ^dThe ratio of **1a/2a** = 1.5:1. ^eCul (20 mol%), DABCO (40 mol%). ^f140 °C. ⁸70 °C. ^hMnO₂ (1 equiv.). ⁱMnO₂ (3 equiv.).

was the optimal choice, while other solvents such as DCE (1, 2dichloroethane), DMF (N, N-dimethylformamide) and 1, 4dioxane showed inferior results (entries 13–15). In addition, lower yields of **3aa** were obtained when we attempted to change the ratio of **1a/2a**, catalyst loading and temperature (entries 16–19). When varying the amounts of MnO_2 , we found that the reaction with two equivalents of MnO_2 offered the best yield (entry 4 vs. entries 20 and 21). The structure of **3aa** was confirmed by X-ray crystallography (Figure 2).¹³

With the optimized conditions in hand, we proceeded to examine the substrate scope (Scheme 1). First, we studied the R^1 -substituted arylamidines. Electron-rich-substituted arylamidines such as *p*-Me and *p*-OMe gave reaction products in excellent yields (**3ba**, 80%; **3ca**, 82%). When both aromatic rings were substituted with electron-rich groups, the product was isolated in optimal yield (**3na**, 88%). Electron-deficient arylamidines bearing halide (F-, Cl-, Br-) and trifluoromethyl groups reacted under the standard conditions to afford the desired products in moderate yields (**3da-3ha**, 38%-62%).

We next examined the substrate scope of this reaction using R^2 -substituted arylamidines. The *p*-Me-substituted arylamidine delivered **3ja** in good yield (81%), while the *p*-Cl-substituted arylamidine afforded **3ia** in lower yield (50%). *O*-substituted arylamidines showed slightly lower reactivity than *p*-substituted arylamidine (**3ja**, 81%; **3ka**, 62%), indicating that

Figure 2. X-ray structure of 3aa.

 $\label{eq:scheme 1.} Scheme 1. The scope of amidines. Isolated yields are given. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), CuI (10 mol%), DABCO (20 mol%), MnO_2 (2 equiv.), N_2 , PhCI (2 mL), 100 <math display="inline">^\circ$ C, 36 h.

steric factors had a negative influence on this conversion. Furthermore, *N*-(naphthalen-2-yl)benzimidamide, *N*-(tertbutyl)benzimidamide and *N*-butylbenzimidamide were tolerated, affording the corresponding products in low yields (**3pa**, 50%; **3qa**, 31%; **3ra**, 28%).

Journal Name

Journal Name

Scheme 2. The scope of α , β -unsaturated aldehydes. Isolated yields are given. Reaction conditions: **1a** (0.2 mmol), **2** (0.4 mmol), Cul (10 mol%), DABCO (20 mol%), MnO₂ (2 equiv.), N₂, PhCl (2 mL), 100 °C, 36 h.

The scope of α , β -unsaturated aldehydes was also examined (Scheme 2). Substrates bearing electron-donating groups (methyl and methoxyl) at the aromatic ring produced the corresponding products in good yields (**3ab-3ad**, 75–87%). The presence of electron-withdrawing substituents (F-, Cl-, Br-) at para position reduce the efficiency of the reaction, as the corresponding products could be isolated in slightly lower yields (**3ae-3ag**, 57–65%). Additionally, substrates bearing a furan and an *n*-propyl were also compatible, albeit providing lower yields (**3ai**, 36%; **3aj**, 34%). Unfortunately, the reaction with *p*-nitro-substituted α , β - unsaturated aldehyde did not afford the desired product **3ah** under the standard reaction conditions. Futhermore, we also tried chalcone with **1a** under

the standard reaction conditions, which afforded the corresponding product (**3ak**) in 70% yield.

To understand the possible mechanism of this reaction, several control experiments were investigated (Scheme 3). Firstly, the reaction between **1a** and **2a** without using catalyst or oxidant was carried out, but no desired product was detected (Scheme 3 Eq. 1 and 2). Moreover, when 2 equiv. 2, 2, 6, 6-tetramethyl-1-piperidinyloxl (TEMPO) was added into the standard reaction, the isolated yield of **3aa** reduced from 75% to 51% (Scheme 3 Eq. 3 A), in which it may be the weak oxidizing effect of TEMPO affected the reaction. We also tried other radical traps such as BHT (2, 6-di-tert-butyl-4-methylphenol) (Scheme 3 Eq. 3 B) and PBN (*N*-benzylidene-tert-butylamine *N*-oxid) (Scheme 3 Eq. 3 C), which produced **3aa** in 60% and 63% respectively, indicating that this transformation might not proceed via a radical pathway.

Based on previous studies and control experiments, a plausible reaction mechanism is proposed as shown in Scheme 4.¹⁴ Initially, a Michael addition of *N*-arylbenzamidines (**1a**) to the cinnamaldehyde (**2a**) took place to form the corresponding Michael adduct **A**.^{14a-d} Subsequently, the nitrogen atom that connected to the benzene ring bound with Cu(II) salts to produce the intermediate **B** which simultaneously reacted with the enol to form the cyclic Cu(II) intermediate **C**.^{14e} Then intermediate **D** in which copper was in the +III oxidation state.^{14f} Finally, the intermediate **D** through reductive elimination to afford intermediate **E**, which on rapid oxidative aromatization under oxidizing conditions leads to the tandem product **3aa**.Reoxidation of the Cu^{II} to the Cu^{III} by MnO₂ completed the catalytic cycle.

Conclusions

In summary, an efficient copper-catalyzed oxidative coupling of α , β -unsaturated aldehydes with amidines for the synthesis of 1, 2, 4-trisubstituted-1*H*-imidazole-5-carbaldehydes was developed, which shows a high atom economy, cheap catalysts

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

60

and mild conditions. Further studies on the application of this transformation are underway.

Experimental

Typical Procedure for the Preparation of 3: 1 (0.20 mmol), 2 (0.40 mmol), Cul (3.8 mg, 10 mol%), DABCO (4.5 mg, 20 mol%), MnO₂ (34.8 mg, 2.0 equiv.), and PhCl (2 mL) were added to a flask with a magnetic stirring bar under N₂ atmosphere. The mixture was stirred at 100 °C for 36 h. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography to give product 3. The identity and purity of the products was confirmed by ¹H NMR and ¹³C NMR spectroscopic analysis.

Acknowledgements

We are grateful for sponsorship of this project by the National Natural Science Foundation of China (Nos. 21372102 and 21403256).

Notes and references

- (a) Z. Jin, Nat. Prod. Rep. 2006, 23, 464-496; (b) Z. Jin, Nat. Prod. Rep. 2009, 26, 382-445; (c) B. Forte, B. Malgesini, C. Piutti, F. Quartieri, A. Scolaro and G. Papeo, Mar. Drugs. 2009, 7, 705-753.
- (a) D. J. Carini, J. V. Duncia, A. L. Johnson, A. T. Chiu, W. A. Price, P. C. Wong and P. B. M. W. Timmermans, J. Med. Chem. 1990, 33, 1330-1336; (b) G. J. Atwell, J.-Y. Fan, K. Tan and W. A. Denny, J. Med. Chem. 1998, 41, 4744-4754; (c) H. Koga, Y. Nanjoh, K. Makimura and R. Tsuboi, Med. Mycol. 2009, 47, 640-647; (d) J. Dietrich, V. Gokhale, X. Wang, L. H. Hurley and G. A. Flynn, Bioorgan. Med. Chem. 2010, 18, 292-304; (e) S. J. Ono and K. Lane, Drug des. Dev. Ther. 2011, 5, 77-84.
- (a) R. H. Holm, P. Kennepohl and E. I. Solomon, Chem. Rev. 1996, 96, 2239-2314; (b) W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290-1309; (c) T. Yamamoto, T. Uemura, A. Tanimoto and S. Sasaki, Macromolecules 2003, 36, 1047-1053.
- 43 4 (a) H. Du, Y. He, R. Sivappa and C. J. Lovely, Synlett 2006, 44 2006, 0965-0992; (b) C. Kanazawa, S. Kamijo and Y. 45 Yamamoto, J. Am. Chem. Soc. 2006, 128, 10662-10663; (c) R. 46 A. Altman and S. L. Buchwald, Org. Lett. 2006, 8, 2779-2782; 47 (d) F. Bellina, S. Cauteruccio and R. Rossi, Tetrahedron 2007, 48 63, 4571-4624; (e) S. Kamijo and Y. Yamamoto, Chem. Asi. J. 49 2007, 2, 568-578; (f) F. Bellina and R. Rossi, Adv. Synth. Catal. 2010, 352, 1223-1276; (g) S. Ueda and S. L. Buchwald, Angew. 50 Chem. Int. Ed. 2012, 51, 10364-10367; (h) J. Huang, Y. He, Y. 51 Wang and Q. Zhu, Chem. Eur. J. 2012, 18, 13964-13967; (i) S. 52 K. Alla, R. K. Kumar, P. Sadhu and T. Punniyamurthy, Org. Lett. 53 2013, 15, 1334-1337; (j) Y. He, J. Huang, D. Liang, L. Liu and 54 Q. Zhu, Chem. Comm. 2013, 49, 7352-7354; (k) D. Liang, Y. 55 He, L. Liu and Q. Zhu, Org. Lett. 2013, 15, 3476-3479; (I) J.-P. Lin, F.-H. Zhang and Y.-Q. Long, Org. Lett. 2014, 16, 2822-56 2825; (m) H. Chen and S. Chiba, Org. Biomol. Chem. 2014, 12, 57 42-46; (n) H. Chen, A. Kaga and S. Chiba, Org. Lett. 2014, 16, 58 6136-6139. 59
 - H. Bredereck and G. Theilig, Chem. Ber. 1953, 86, 88-96.

- 6 A. M. Van Leusen, J. Wildeman and O. H. Oldenziel, J. Org. Chem. 1977, 42, 1153-1159.
- 7 (a) Radziszewski, Berichte der deutschen chemischen Gesellschaft 1882, 15, 1493-1496; (b) F. R. Japp and H. H. Robinson, Berichte der deutschen chemischen Gesellschaft 1882, 15, 1268-1270.
- F. Kunckell, Berichte der deutschen chemischen Gesellschaft 1901, **34**, 637-642.
- (a) C. T. Brain and J. T. Steer, J. Org. Chem. 2003, 68, 6814-6816; (b) S. Zaman, K. Mitsuru and A. D. Abell, Org. Lett. 2005, 7, 609-611; (c) A. R. Siamaki and B. A. Arndtsen, J. Am. Chem. Soc. 2006, 128, 6050-6051; (d) G. Abbiati, A. Arcadi, V. Canevari and E. Rossi, Tetrahedron Lett. 2007, 48, 8491-8495; (e) N. Zheng, K. W. Anderson, X. Huang, H. N. Nguyen and S. L. Buchwald, Angew. Chem. Int. Ed. 2007, 46, 7509-7512; (f) Q. Xiao, W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang and Z.-J. Shi, Chem. Eur. J. 2009, 15, 7292-7296; (g) R. K. Kumar, M. A. Ali and T. Punniyamurthy, Org. Lett. 2011, 13, 2102-2105; (h) D. Zhao, J. Hu, N. Wu, X. Huang, X. Qin, J. Lan and J. You, Org. Lett. 2011, 13, 6516-6519; (i) S. Ueda, M. Su and S. L. Buchwald, J. Am. Chem. Soc. 2012, 134, 700-706; (j) X. Liu, D. Wang, Y. Chen, D. Tang and B. Chen, Adv. Synth. Catal. 2013, 355, 2798-2802; (k) N. Zheng and S. L. Buchwald, Org. Lett. 2007, 9, 4749-4751; (I) D. Yang, H. Fu, L. Hu, Y. Jiang and Y. Zhao, J. Org. Chem. 2008, 73, 7841-7844; (m) X. Deng, H. McAllister and N. S. Mani, J. Org. Chem. 2009, 74, 5742-5745; (n) X. Deng and N. S. Mani, Eur. J. Org. Chem. 2010, 2010, 680-686; (o) H. Wang, Y. Wang, C. Peng, J. Zhang and Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217-13219; (p) J. Peng, M. Ye, C. Zong, F. Hu, L. Feng, X. Wang, Y. Wang and C. Chen, J. Org. Chem. 2011, 76, 716-719; (q) J. Li, S. Bénard, L. Neuville and J. Zhu, Org. Lett. 2012, 14, 5980-5983; (r) H.-F. He, Z.-J. Wang and W. Bao, Adv. Synth. Catal. 2010, 352, 2905-2912; (s) K.-S. Masters, T. R. M. Rauws, A. K. Yadav, W. A. Herrebout, B. Van der Veken and B. U. W. Maes, Chem. Eur. J. 2011, 17, 6315-6320; (t) D. Tang, X.-L. Li, X. Guo, P. Wu, J.-H. Li, K. Wang, H.-W. Jing and B.-H. Chen, Tetrahedron 2014, 70, 4038-4042;
- 10 (a) G. Brasche and S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47, 1932-1934; (b) H. Chen, S. Sanjaya, Y.-F. Wang and S. Chiba, Org. Lett. 2013, 15, 212-215; (c) S. Sanjaya and S. Chiba, Org. Lett. 2012, 14, 5342-5345; (d) S. Sanjaya, S. H. Chua and S. Chiba, Synlett 2012, 23, 1657-1661; (e) K. K. Toh, S. Sanjaya, S. Sahnoun, S. Y. Chong and S. Chiba, Org. Lett. 2012, 14, 2290-2292; (f) Y.-F. Wang, X. Zhu and S. Chiba, J. Am. Chem. Soc. 2012, 134, 3679-3682; (g) Y.-F. Wang, H. Chen, X. Zhu and S. Chiba, J. Am. Chem. Soc. 2012, 134, 11980-11983; (h) H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem. Int. Ed. 2011, 50, 5678-5681; (i) J. Li and L. Neuville, Org. Lett. 2013, 15, 1752-1755; (j) D. Tang, P. Wu, X. Liu, Y.-X. Chen, S.-B. Guo, W.-L. Chen, J.-G. Li and B.-H. Chen, J. Org. Chem. 2013, 78, 2746-2750.
- 11 (a) L. Oresmaa, H. Kotikoski, M. Haukka, J. Salminen, O. Oksala, E. Pohjala, E. Moilanen, H. Vapaatalo, P. Vainiotalo and P. Aulaskari, J. Med. Chem. 2005, 48, 4231-4236; (b) Y. Sunatsuki, R. Kawamoto, K. Fujita, H. Maruyama, T. Suzuki, H. Ishida, M. Kojima, S. Iijima and N. Matsumoto, Inorg. Chem. 2009, 48, 8784-8795; (c) B. Shi, Z. Shen, H. Zhang, J. Bi and S. Dai, Biomacromolecules 2011, 13, 146-153; (d) Y. Wu, X.-P. Zhou, J.-R. Yang and D. Li, Chem. Comm. 2013, 49, 3413-3415; (e) X.-P. Zhou, Y. Wu and D. Li, J. Am. Chem. Soc. 2013, **135**, 16062-16065; (f) F. Reichel, J. K. Clegg, K. Gloe, K. Gloe, J. J. Weigand, J. K. Reynolds, C.-G. Li, J. R. Aldrich-Wright, C. J. Kepert and L. F. Lindoy, Inorg. Chem. 2014, 53, 688-690; (g) V. K. Outlaw, F. B. d'Andrea and C. A. Townsend, Org. Lett. 2015, 17, 1822-1825; (h) P. B. Pansuriya, G. E. Maguire and H. B. Friedrich, Spectrochim. Acta. A. 2015, 142, 311-319; (i)

Journal Name

B. Shi, H. Zhang, S. Dai, X. Du, J. Bi and S. Z. Qiao, *Small* 2014, **10**, 871-877.

- 12 a) J. Qu, P. Wu, D. Tang, X. Meng, Y. Chen, S. Guo and B. Chen, *New. J. Chem.* 2015, **39**, 4235-4239; b) S. B. Ferreira, M. S. Costa, N. Boechat, R. J. S. Bezerra, M. S. Genestra, M. M. Canto-Cavalheiro, W. B. Kover and V. F. Ferreira, Eur. J. Med. Chem. 2007, **42**, 1388-1395; c) B. Hu, Z. Wang, N. Ai, J. Zheng, X.-H. Liu, S. Shan and Z. Wang, *Org. Lett.* 2011, **13**, 6362-6365.
- 10 0302-0305.
 13 CCDC-1409382 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
 14
- 14 (a) J. B. Bharate, S. Abbat, P. V. Bharatam, R. A. Vishwakarma and S. B. Bharate, *Org. Biomol. Chem.* 2015, **13**, 7790-7794;
 (b) K. Monir, A. Kumar Bagdi, S. Mishra, A. Majee and A. Hajra, *Adv. Synth. Catal.* 2014, **356**, 1105-1112; (c) P. Kaswan, K. Pericherla, Rajnikant and A. Kumar, *Tetrahedron* 2014, **70**, 8539-8544; (d) Y. Zhu, C. Li, J. Zhang, M. She, W. Sun, K. Wan, Y. Wang, B. Yin, P. Liu and J. Li, *Org. Lett.* 2015,**17**, 3872-3875; (e) S. Ueda and H. Nagasawa, *J. Am. Chem. Soc.* 2009, **131**, 15080-15081; (f) A. E. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas and S. S. Stahl, *J. Am. Chem. Soc.* 2010, **132**, 12068-12073.