ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

ht

http://rsc.li/frontiers-organic

5 6 7

8 9

10 11

12

13 14

15

16

17

18

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Direct Radical Trifluoromethylthiolation and Thiocyanation of Aryl Alkynoate Esters: Mild and Facile Synthesis of 3-Trifluoromethylthiolated and 3-Thiocyanated Coumarins

Yao-Fu Zeng, Dong-Hang Tan, Yunyun Chen, Wen-Xin Lv, Xu-Ge Liu, Qingjiang Li, Honggen Wang*

A mild and convenient oxidative radical cyclization of aryl alkynoate esters for the synthesis of 3-trifluoromethylthiolated and 3-thiocyanated coumarins has been developed using AgSCF₃ and AgSCN as the corresponding radical sources, respectively. This protocol is characterized by readily available starting materials, excellent functional group tolerance and good yields.

Introduction

Coumarins represent a privileged class of structural scaffolds in medicinal chemistry due to their wide spectrum biological activities, such as anti-HIV,¹ antibacterial,² anti-inflammatory,³ antitumor,⁴ and antimalarial⁵. As such, the development of efficient methods to construction of structurally diverse coumarins bearing valuable functional group from easily accessible starting materials is highly demanding. Recently, the tandem functionalization/cyclization of aryl alkynoate ester has emerged as powerful strategies to synthesize 3-functionalized coumarins.⁶ For instance, it was reported that 3trifluoromethylated coumarins could be prepared by the reaction of aryl alkynoate esters with Togni's reagent following a radical addition/cyclization mechanism.^{6a} Similarly, various 3substituted coumarins have been accessed via radical alkyne sulfonation,^{6b} phosphorylation,^{6c} acylation,6d-f difluoroacetylation^{6f}/cyclization pathways under oxidative or redox-neutral reaction conditions. Herein, we report our realization of a mild and facile synthesis of 3trifluoromethylthiolated and thiocyanted coumarins by using AgSCF₃ and AgSCN as the radical sources, respectively. Broad substrate scope, good functional group tolerance were observed.

Due to the typically desirable strong electron-withdrawing effect and high lipophilicity properties, trifluoromethylthio

Email: wanghg3@mail.sysu.edu.cn.

Therefore, numerous trifluoromethylthiolation approaches have been developed by using either nucleophilic⁸ or electrophilic SCF₃ reagents.⁹ Nevertheless, the introduction of SCF₃ group through a radical pathway has been relatively less explored.¹⁰⁻¹⁵ Recently, Wang disclosed the synthesis of SCF₃containing oxindoles through a .SCF₃ addition/cyclization pathway.¹¹ Wang and Xu reported an intramolecular oxytrifluoromethylthiolation of alkenes is feasible under the copper.¹² catalysis of Silver-meditated direct trifluoromethylthiolation of C(sp³)-H bonds have been developed by Tang¹³ and Chen¹⁴, respectively. Very recently, Liang disclosed a AgSCF₃-mediated radical cascade cyclization/trifluoromethylthiolation of 1,6-enynes.¹⁵

group is frequently incorporated into bioactive compounds.⁷

On the other hand, thiocyano group is a versatile synthon which could be readily converted to other functional groups, such as sulfide,¹⁶ thiocarbamate,¹⁷ trifluoromethylthio¹⁸ and thiotetrazole¹⁹. A variety of thiocyanation methods with the involvement of 'SCN were known.²⁰ However, the tandem thiocyanation/cycliaztion reactions of unsaturated C-C bonds remain less explored.²¹ In particular, no precedent exists for thiocyanation/cycliaztion reaction of alkynes.

Results and discussion

Initially, we investigated the reaction of phenyl 3phenylpropiolate (1a) with AgSCF₃ using K₂S₂O₈ as the oxidant in the presence of HMPA at 75 °C under argon (Table 1, entry **1)**.¹¹ То our delight, the desired cyclized 3trifluoromethylthiolated coumarin 2a was obtained in 25% yield. Further screening of solvent showed that DMSO was superior to others, increasing the yield to 42% (entries 1-5). When HMPA was removed from the reaction mixture, the yield was improved to 57% (entry 6). The increasing of reaction temperature to 100 °C gave a similar yield (entry 7). However, a lower temperature of 30 °C gave an increased yield of 71% (entry 8). Next, the effects of various oxidants such as Oxone, PhI(OAc)₂, and

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

COMMUNICATION

product (entry 14).

1 2 3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

affording the products in moderate to good yields. The heterocyclic 2-thienyl group was also compatible (2x). Delightedly, phenyl 2-octynoate (2y) and phenyl 3-cyclohexylpropiolate (2z) bearing an alkyl substituent were also suitable substrates, thus greatly extending the scope of this transformation.

Table 2 Scope of the Trifluoromethylthiolation Reaction of Aryl Alkynoate Esters with $\mathsf{AgSCF}_{3^{\mathcal{O}}}$

2b. R = Me. 72%

2c. R = ^tBu. 63%

2e. R = F. 51%

2f, R = Cl, 58%

Ρ'n

2m

20, R = Me, 72%

2q, R = F, 78%

2r, R = OMe, 66%

2s, R = CN, 61%^b

SCF₃ **2p**, R = Ph, 72%

2d. R = OMe. 59%

SCF

76%)1.4:1)

AgSCF₃

 R^2

Ρ'n

ÓMe

2I, 79%

K₂S₂O₈)4.0 equiv)

DMSO)1.0 mL)

30 °C, 15 h, Ar

R

2a, R = Br. 60%

2i, R = OCF3, 56%

2k, R = Ac, 36%

SCF₃

SCF₃

SCE

Ρh

2m'

2t, R = Cl, 74%

2u, R = Br, 71%

2j, R = COOMe, 53%

2h, R = I, 55%

Ŕ2

Ph

2n, 0%

Ċ

2v. 80%

Cu(OAc)₂·H₂O were investigated (entries 9-11). Disappointedly,

none of them were effective for the reaction. By increasing the

loading of K₂S₂O₈ (4.0 equiv) and AgSCF₃ (2.0 equiv), the yield

was further improved to 78% (entry 12). A slightly lower yield of

74% was observed when the reaction was performed under air

(entry 13). Additional control experiments demonstrated K₂S₂O₈

was essential for the reaction as its omission gave no desired

^a Unless otherwise noted, all reactions were conducted with **1a** (0.1 mmol), AgSCF₃ (1.5 equiv), and oxidant (3.0 euqiv) in solvent (1.0 mL) at 30 °C for 15 h under Ar. ^b
 ¹H NMR yield based on **1a** using methyl 4-bromobenzoate as internal standard. ^c
 Isolated yield. ^d Oxidant (4.0 equiv), AgSCF₃ (2.0 equiv). ^e The reaction was performed under air.

With the optimized conditions in hand, various substituted aryl alkynoates 1a-z were synthesized and subjected to evaluate the scope and limitation of this transformation. As depicted in Table 2, alkynoates with different substituents on the phenoxy ring, regardless of electron-withdrawing or -donating properties, could be converted to the corresponding products in moderate to good yields (2a-m). A variety of functional groups, such as methoxyl (2d), halogen (2e-h), trifluoromethoxyl (2i), ester (2j), acetyl (2k) were well tolerated under the reaction conditions. Interestingly, the di-meta-substituted substrate did not hamper the reactivity, giving a good yield of 79% (21). Two regioisomers 2m and 2m' were obtained in a ratio of 1.4:1 when meta-methyl substituted phenoxy ring was employed. No desired product was detected with a methyl group substituted at the orthoposition of the phenoxy (2n). Next, the compatibility of the substituents on the alkynyl moiety were also investigated (2ow). Arylpropilates with substituents at ortho, meta, or paraposition of the phenyl ring were all well tolerated in the reaction, Encouraged by the above results, we then turned our attention to investigate of the feasibility of thiocyanation of alkynoates using a similar protocol (Table 3). To our disappointment, the desired 3-thiocyanated coumarin products were not produced under the above standard conditions using AgSCN as the thiocyano source. It was reported that the thiocyanate radical could be formed by the oxidation of thiocyanate anion with various oxidants, such as CAN (ammonium nitrate), hypervalent iodine reagents, oxone, and so on.²⁰ Therefore, screening of different oxidants and thiocyanate salts turned out that the combination of CAN (Ce(NH₄)₂(NO₃)₆, 2.0 equiv) and silver thiocyanate (2.0 equiv) in DMSO (2.0 mL) at 60 °C was effective for the reaction, affording the product in 48% yield (3a). Similar to the trifluoromethylthiolation reaction, aryl alkynoates with various substituents were also compatible with the reaction conditions to give the corresponding products in moderate yields. Phenyl 2-octynoate could also be converted to the cyclization product with CH₃CN as solvent, albeit in a low yield of 22% (3y).

Journal Name

Journal Name

^{*o*} Reaction conditions: **1** (0.2 mmol), AgSCN (2.0 equiv), CAN (2.0 equiv), DMSO (2.0 mL), 60 °C, 15 h, under air. ^{*b*} Solvent: CH₃CN (2.0 mL)

To demonstrate the scalability of our protocol, the reaction of **1ag** in a 5 mmol scale was conducted under the standard conditions, giving 1.1 gram of the product in 57% yield (Scheme 1).

To probe the possible reaction mechanism, a series of control experiments were carried out (Scheme 2). Firstly, radical trapping experiments were conducted. When 4.0 equiv of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) was added, only 9% yield was detected (eq 1). Additionally, BHT (butylhydroxytoluene) also inhibited the transformation significantly and the BHT-SCF₃ (MS = 320) adduct was detected by GC-MS analysis (eq 2), indicating a radical pathway involved and that •SCF₃ radical might be generated in the reaction. An intermolecular kinetic isotope effect (KIE) value of 1.4 suggested the C-H bond cleavage step was not rate-determining (eq 3). To determine the possible intermediate of this transformation, coumarin 4a was subjected the standard conditions. The trifluoromethylthiolation coumarin 2a could not be obtained (eq 4). Finally, the role of silver in the reaction system was studied. No product was formed when AgSCF3 was replaced by CuSCF₃, which indicated that silver was essential for the reactivity (eq 5). It was reported that F₃CSSCF₃ might act as •SCF₃ source in some reactions.¹¹ Therefore, F₃CSSCF₃ was prepared according to a known procedure²² and used for our the presence of reaction. In AgNO₃, the trifluoromethylthiolation product was obtained in 20% yield (eq 7), while no desired product was observed without silver (eq 6).

COMMUNICATION

Based on the above observations and previous reports, $^{6,11-15,23}$ a plausible mechanism was outlined in Scheme 3. Initially, AgSCF₃ is oxidized by K₂S₂O₈ to generate a [Ag^{II}SCF₃] species **A**, which could produce the ·SCF₃ radical through single electron transfer. Alternatively, F₃CSSCF₃, generated from [Ag^{II}SCF₃], might be a possible source of ·SCF₃. Regio-selective addition of the ·SCF₃ to **1a** affords a vinyl radical **B**. Thereafter, an intramolecular cyclization gives a radical intermediate **C**, which is further oxidized by Ag^{II} to deliver the F-C reaction Wheland intermediate **D**. The deprotonation/rearomatization yields the final product **2a**.

Conclusions

In conclusion, we have developed a novel oxidative radical cyclization of aryl alkynoate esters. This method provides a

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

47

synthesis of various simple and efficient 3trifluoromethylthiolated or 3-thiocyanated coumarins from readily accessible starting materials. Mild reaction conditions, excellent functional group tolerance, and generally good yields were observed. Preliminary mechanistic studies suggested a radical reaction pathway was involved.

Acknowledgements

We are grateful for the support of this work by "1000-Youth Talents Plan", a Start-up Grant from Sun Yat-sen University and National Natural Science Foundation of China (81402794 and 21472250).

Notes and references

- 1 (a) T. Pengsuparp, M. Serit, S. H. Hughes, D. D. Soejarto and J. M. Pezzuto, J. Nat. Prod., 1996, 59, 839; (b) E. B. B. Ong, N. Watanabe, A. Saito, Y. Futamura, K. H. Abd El Galil, A. Koito, N. Najimudin and H. Osada, J. Biol. Chem., 2011, 286, 14049.
- 2 T. Taechowisan, C. Lu, Y. Shen and S. Lumyong, Microbiology, 2005. 151. 1691.
- 3 T. Taechowisan, C. Lu, Y. Shen and S. Lumyong, Food Agr. Immunol., 2007, **18**, 203.
- (a) M. Itoigawa, C. Ito, H. T.-W. Tan, M. Kuchide, H. Tokuda, H. Nishino and H. Furukawa, Cancer Lett., 2001, 169, 15; (b) C. Rappl, P. Barbier, V. Bourgarel-Rey, C. Gregoire, R. Gilli, M. Carre, S. Combes, J. Finet and V. Peyrot, Biochemistry, 2006, 45, 9210; (c) C. Bailly, C. Bal, P. Barbier, S. Combes, J. Finet, M. Hildebrand, V. Peyrot and N. Wattez, J. Med. Chem., 2003, 46, 5437.
- 5 R. Argotte-Ramos, G. Ramírez-Avila, M. C. Rodríguez-Gutiérrez, M. Ovilla-Muñoz, H. Lanz-Mendoza and M. H. Rodríguez, M. González-Cortazar and L. Alvarez, J. Nat. Prod., 2006, 69, 1442.
- (a) Y. Li, Y. Lu, G. Qiu and Q. Ding, Org. Lett., 2014, 16, 4240; (b) W. Wei, J. Wen, D. Yang, M. Guo, Y. Wang, J. You and H. Wang, Chem. Commun., 2015, 51, 768; (c) X. Mi, C. Wang, M. Huang, J. Zhang, Y. Wu and Y. Wu, Org. Lett., 2014, 16, 3356; (d) X. Mi, C. Wang, M. Huang, Y. Wu and Y. Wu, J. Org. Chem., 2015, 80, 148; (e) K. Yan, D. Yang, W. Wei, F. Wang, Y. Shuai, Q. Li and H. Wang, J. Org. Chem., 2015, 80, 1550; (f) T. Liu, Q. Ding, Q. Zong and G. Qiu, Org. Chem. Front., 2015, 2, 670; (g) W. Fu, M. Zhu, G. Zou, C. Xu, Z. Wang and B. Ji, J. Org. Chem., 2015, 80, 4766.
- 7 44 (a) B. Manteau, S. Pazenok, J.-P. Vors and F. R. Leroux, J. Fluorine Chem., 2010, 131, 140; (b) F. Leroux, P. Jeschke and M. Schlosser, Chem. Rev., 2005, 105, 827; (c) A. Leo, C. Hansch 46 and D. Elkins, Chem. Rev. 1971, 71, 525; (d) X.-H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev. 2015, 115, 731.
- 48 (a) C. Chen, Y. Xie, L. Chu, R.-W. Wang, X. Zhang and F.-L. Qing, 49 Angew. Chem. Int. Ed., 2012, 51, 2492; (b) Q. Xiao, J. Sheng, Q. 50 Ding and J. Wu, Eur. J. Org. Chem. 2014, 217; (c) M. Jiang, F. Zhu, H. Xiang, X. Xu, L. Deng and C. Yang, Org. Biomol. Chem., 51 2015, 13, 6935; (d) C. Chen, X.-H. Xu, B. Yang and F.-L. Qing, 52 Org. Lett., 2014, 16, 3327; (e) M. Hu, J. Rong, W. Miao, Y. Ni, 53 Y. Han and J. Hu, Org. Lett., 2014, 16, 2030; (f) D. Kong, Z. Jiang, 54 S. Xin, Z. Bai, Y. Yuan and Z. Weng, Tetrahedron, 2013, 69, 55 6046; (g) C. Chen, L. Chu and F.-L. Qing, J. Am. Chem. Soc., 56 2012, 134, 12454; (h) L. D. Tran, I. Popov and O. Daugulis, J. Am. Chem. Soc., 2012, 134, 18237; (i) G. Danoun, B. 57 Bayarmagnai, M. F. Gruenberg and L. J. Goossen, Chem. Sci., 58 2014, 5, 1312; (j) Z. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. 59 Lai, D. Kong, Y. Yuan and K.-W. Huang, Angew. Chem. Int. Ed., 60 2013, 52, 1548; (k) C.-P. Zhang and D. A. Vicic, J. Am. Chem.

Page 4 of 5

Soc., 2012, 134, 183; (I) J. Xu, X. Mu, P.;Chen, J. Ye and G. Liu. Org. Lett., 2014, 16, 3942; (m) M. Rueping, N. Tolstoluzhsky and P. Nikolaienko, Chem. Eur. J., 2013, 19, 14043; (n) K.-P. Wang, S. Y. Yun, P. Mamidipalli and D. Lee, Chem. Sci., 2013, 4, 3205; (o) G. Teverovskiy, D. S. Surry and S. L. Buchwald, Angew. Chem. Int. Ed., 2011, 50, 7312; (p) K. Zhang, J.-B. Liu and F.-L. Qing, Chem. Commun., 2014, 50, 15999.

- q For review, see: (a) X. Shao, C. Xu, L. Lu, Q. Shen, Acc. Chem. Res. 2015, 48, 1227; for selected examples, see: (b) X. Wang, T. Yang, X. Cheng and Q. Shen, Angew. Chem. Int. Ed., 2013, 52, 12860; (b) K. Kang, C. Xu and Q. Shen, Org. Chem. Front., 2014, 1, 294; (b) S. Alazet, L. Zimmer and T. Billard, Chem. Eur. J., 2014, 20, 8589; (e) X. Shao, C. Xu, L. Lu and Q. Shen, J. Org. Chem., 2015, 80, 3021; (f) R. Pluta, P. Nikolaienko and M. Rueping, Angew. Chem. Int. Ed., 2014, 53, 1650; (g) B. Ma, X. Shao and Q. Shen, J. Fluor. Chem., 2015, 171, 73; (h) J. Sheng, C. Fan and J. Wu, Chem. Commun., 2014, 50, 5494; (i) M. Rueping, X. Liu, T. Bootwicha, R. Pluta and C. Merkens, *Chem.* Commun., 2014, 50, 2508; (j) Y. Li, G. Li and Q. Ding, Eur. J. Org. Chem., 2014, 5017;(k) X. Shao, X. Wang, T. Yang, L. Lu and Q. Shen, Angew. Chem. Int. Ed., 2013, 52, 3457; (I) E. V. Vinogradova, P. Müller and S. L. Buchwald, Angew. Chem. Int. Ed., 2014, 53, 3125; (m) C. Xu and Q. Shen, Org. Lett., 2014, 16, 2046; (n) C. Xu, B. Ma and Q. Shen, Angew. Chem. Int. Ed., 2014, 53, 9316; (o) Y.-D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro and N. Shibata, J. Am. Chem. Soc., 2013, 135, 8782; (p) F. Baert, J. Colomb and T. Billard, Angew. Chem. Int. Ed., 2012, 51, 10382; (q) S. Alazet, L. Zimmer and T. Billard, Angew. Chem. Int. Ed., 2013, 52, 10814; (r) Y. Yang, X. Jiang and F.-L. Qing, J. Org. Chem., 2012, 77, 7538; (s) J. Sheng, S. Li and J. Wu, Chem. Commun., 2014, **50**, 578; (t) J. Liu, L. Chu and F.-L. Qing, Org. Lett., 2013, 15, 894; (u) Q. Xiao, J. Sheng, Z. Chen and J. Wu, Chem. Commun., 2013, 49, 8647.
- 10 (a) J. F. Harris, J. Am. Chem. Soc., 1962, 84, 3148; (b) J. F. Harris and F. W. Stacey, J. Am. Chem. Soc., 1961, 83, 840; (c) S. Andreades, J. F. Harris and W. A. Sheppard, J. Org. Chem., 1964, 29, 898; (d) N. Fuentes, W. Kong, L. Fernández-Sánchez, E. Merino and C. Nevado, J. Am. Chem. Soc., 2015, 137, 964.
- 11 F. Yin and X. Wang, Org. Lett., 2014, 16, 1128.
- 12 L. Zhu, G. Wang, Q. Guo, Z. Xu, D. Zhang and R. Wang, Org. Lett., 2014, 16, 5390.
- 13 S. Guo, X. Zhang and P. Tang, Angew. Chem. Int. Ed., 2015, 54, 4065
- 14 H. Wu, Z. Xiao, J. Wu, Y. Guo, J.-C. Xiao, C. Liu and Q.-Y. Chen, Angew. Chem. Int. Ed., 2015, 54, 4070.
- 15 Y.-F. Qiu, X.-Y. Zhu, Y.-X. Li, Y.-T. He, F. Yang, J. Wang, H.-L. Hua, L. Zheng, L.-C. Wang, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2015, 17, 3694.
- 16 (a) T. Billard, B. R. Langlois and M. Médebieele, Tetrahedron Lett., 2001, 42, 3463; (b) P. A. Grieco, Y. Yokoyama and E. Williams, J. Org. Chem., 1978, 43, 1283; (c) B. Das, V. S. Reddy and M. Krishnaiah, Tetrahedron Lett., 2006, 47, 8471.
- 17 (a) R. Riemschneider, J. Am. Chem. Soc., 1956, 78, 3148; (b) R. Riemschneider, F. Wojahn and G. Orlick, J. Am. Chem. Soc., 1951, 73, 5905.
- 18 T. Billard, S. Large and B. R. Langlois, Tetrahedron Lett., 1997, **38**, 65.
- 19 S. Vorona, T. Artamonova, Y. Zevatskii and L. Myznikov, Synthesis, 2014, **46**, 781.
- 20 (a) A. D. Mico, R. Margarita, A. Mariani and G. Piancatelli, Tetrahedron Lett., 1996, 37, 1889; (b) V. Nair and L. G. Nair, Tetrahedron Lett., 1998, 39, 4583; (c) V. Nari, T. G. George, L. G. Nair and S. B. Panicker, Tetrahedron Lett., 1999, 40, 1195; (d) G. Wu, Q. Liu, Y. Shen, W. Wu and L. Wu, Tetrahedron Lett., 2005, 46, 5831; (e) X. Pan, M. Lei, J.-P. Zou and W. Zhang, Tetrahedron Lett., 2009, 50, 347;(f) W. Fan, Q. Yang, F. Xu and P. Li, J. Org. Chem., 2014, 79, 10588.

Jo	JUC	nal	Na	me
----	-----	-----	----	----

- 21 H. Yang, X.-H. Duan, J.-F. Zhao and L.-N. Guo, *Org. Lett.*, 2015, **17**, 1998.
 - (a) R. E. A. Dear and E. E. Gilbert, *J. Fluor. Chem.* 1974, 4, 107;
 (b) G. Haran and D. W. A. Sharp, *Chem. Soc., Perkin Trans.* 1, 1972, 34.
- 23 (a) A. Studer and D. P. Curran, Angew. Chem. Int. Ed., 2011, 50, 5018; (b) Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. D. Bel and P. S. Bara, J. Am. Chem. Soc., 2011, 133, 3292; (c) N. R. Patel and R. A. Flowers, II, J. Am. Chem. Soc., 2013, 135, 4672; (d) R. Wang and J. R. Falck, Org. Chem. Front., 2014, 1, 1029.