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A concise formal synthesis of platencin has been realized, 

featuring an organocatalytic approach to the [2.2.2] bicycli 

core, a radical reductive elimination, a Au-catalyzed Meyer-

Schuster rearrangement and a Rh-catalyzed chemo- and 

diastereoselective hydrosilylation. 
1
 10 

Platencin (1) and platensimycin (2) have been among the most 

prominent natural products in recent years. Identified by a team 

of Merck scientists from the strains of Streptomyces platensis, 

these two natural products exhibit broad-spectrum antibacterial 

activity against Gram-positive pathogens that show resistance to 15 

current antibiotics, including methycillin-, macrolide-, and 

linezolid-resistant S. aureus, vancomycin-resistant enterococci, 

and Streptococcus pneumoniae.1,2 Platencin shows slightly 

stronger bioactivities than platensimycin, and blocks both FabF 

and FabH whereas platensimycin only inhibits the former.2 In 20 

addition, platencin even as a racemic form exhibits potent 

bacteriostatic activities towards Mycobacterium tuberculosis.3 

Notably, the poor in vivo efficacy has precluded platencin itself 

from being a clinical drug.4 

 25 

Fig. 1 Platencin (1), platensimycin (2). 

Tremendous efforts have been exerted from the synthetic 

community resulting in numerous syntheses of platencin5a-t and 

its analogues.5u-x From a perspective of target oriented synthesis, 

Mulzer and Tiefenbacher’s work stands out as the most efficient 30 

synthesis of platencin so far.5c Nevertheless, synthetic endeavors 

                                                 

 
a CAS Key Laboratory of Synthetic Chemistry of Natural Substances, 

Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 

200032, China. E-mail: bfsun@sioc.ac.cn 
b Key Laboratory of Organic Synthesis of Jiangsu Province, College of 

Chemistry and Chemical Engineering, Soochow University, Suzhou, 

Jiangsu 215123, China 

†Electronic Supplementary Information (ESI) available: Experimental 

procedures, spectroscopic data, copies of 1H, 13C and 2D NMR spectra. 

See DOI: 10.1039/b000000x/ 

based on new strategies are still highly desirable. Recently, we 

successfully developed a convenient approach to 

bicyclo[2.2.2]octane-1-carboxylates.6 In this paper, we report a 

formal synthesis of platencin by virtue of this new method.  35 

 Our retrosynthesis is depicted in Scheme 1. Nicolaou’s 

intermediate enone 3 was chosen as the direct synthetic target.5a 

Enone 3 could be reduced to dicarbonyl 4, which in turn could be 

traced back to 5. Eventually, in light of our methodology, a 

formal [4+2] cycloaddition reaction of nitroethylene (6) with ’-40 

ethoxycarbonyl cyclohexenone (7) was envisaged to access 5.      

 

Scheme 1 Retrosynthetic analysis of platencin (1).  

Our synthesis commenced with the critical [4+2] reaction of 6 

and 7 (Scheme 2). Surprisingly, by employing the original 45 

conditions involving CAT-1 as the catalyst and dichloromethane 

as the solvent,6 only trace amount of 8 could be isolated, probably 

as a result of the high propensity of 6 undergoing polymerization 

under the reaction conditions. To our delight, when toluene was 

used as the solvent and 6 was slowly introduced to the reaction 50 

mixture, the polymerization of 6 could be significantly 

suppressed, with 8 being isolated in 74% yield, albeit with an 

enantioselectivity of only 15% ee which could be ascribed to the 

absence of any substituent at the -carbon of 6.  

A tandem Michael-Henry reaction was then realized with 55 

DBU and formaldehyde, providing 9 as a 1/1 diastereomeric 

mixture, which without chromatographic purification was 

brominated with PPh3/CBr4 to furnish 10 in 89% overall yield 

spanning three steps from 8. The subsequent unprecedented 

conversion of 10 to 5 was examined with various reducing agents 60 

(Table 1). The optimal set of conditions involving n-

Bu3SnH/AIBN in heated toluene provided 5 in 91% yield. 
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With a robust protocol established for the synthesis of 5, we 

proceeded to the next synthetic stage. The Grignard addition of 

propargylmagnesium bromide to ketone 5 afforded 11 in 87% 

yield as a 1.5/1 mixture. The subsequent Au-catalyzed Meyer-

Schuster rearrangement of 11 proved highly efficient.7 With 2 5 

mol % catalyst in dichloromethane, enone 12 could be obtained 

in a quantitative yield as a 1.7/1 mixture favouring the (Z)-isomer 

12a.8 The chemo- as well as diastereoselective hydrogenation of 

12a was investigated (Table 2). A nearly quantitative yield of 4a 

and its epimer 4b in 1.3/1 ratio could be obtained by rhodium 10 

catalyzed hydrosilylation (entry 3).8 Compared to the result 

obtained with t-BuCu/DIBAL-H (entry 2), the interaction 

between the exocyclic terminal double bond and the rhodium 

catalyst probably overrode the adverse inherent steric facial bias, 

leading to 4a as the major product. Eventually, ketoester 4a was 15 

subjected to the reduction-oxidation sequence to provide 

ketoaldehyde before undergoing the intramolecular aldol 

condensation to give enone 3 in 51% yield over three steps. 

 

Scheme 2 Synthesis of 3. 20 

Table 1 Conditions screening for the conversion of 10 to 5. 

Entry Conditions Yield% 

1 Mg, THF, 40 oC 21 

2 Zn, NaI, MeOH, 50 oC 25 
3 Zn, NH4Cl, MeOH, r.t. - 

4 SmI2, r.t. - 

5 t-BuLi, -78 oC - 
6 AIBN, n-Bu3SnH, toluene, 90 oC 93 

Table 2 Conditions screening for the chemo- and diastereo-

selective reduction of 12a to 4a/4b. 

Entry Conditions Yield% dr 

1 Raney Ni, H2O, r.t. -a - 
2 t-BuCu, DIBAL-H, -78 oC - 1/4 

3 PhMe2SiH, Rh(PPh3)3Cl, 60 oC 98 1.3/1 

[a] The terminal olefin was saturated first giving a complex mixture. 

In view of the fact that the enantioselectivity of the initial key 25 

reaction delivering 8 was poor, we continued to improve the 

reaction by screening more catalysts and conditions, as 

summarized in Table 3. When 6 was dissolved in toluene and 

introduced slowly in excess, dichloromethane could be employed 

as the solvent which resulted in a slightly higher ee of 38% with 30 

reversed sense of enantioselectivity as compared to that obtained 

with toluene (entries 1 and 2). Lower temperature resulted in 

significantly decreased reactivity (entry 3). Further investigation 

of the catalysts revealed CAT-5 to be the optimal one (entries 

4~10). The best result was obtained with CAT-5 in nitrobenzene, 35 

which furnished 8 in 84% yield and 74% ee (entry 12).      

Table 3 Conditions screening for the production of 8. 

 

Entry Catalyst Conditions a Conv.% b ee% c 

1 CAT-1 Toluene, r.t. 95 15 

2 CAT-1 DCM, r.t. 72 -38 
3 CAT-1 DCM, -20 oC 33 -42 

4 CAT-2 DCM, r.t. 55 -42 

5 CAT-3 DCM, r.t. 56 -41 
6 CAT-4 DCM, r.t. 45 -52 

7 CAT-5 DCM, r.t. 88 -72 

8 CAT-6 DCM, r.t. 71 -63 
9 CAT-7 DCM, r.t. 32 -68 

10 CAT-8 DCM, r.t. 50 -65 

11 CAT-5 PhCN, r.t. 94 -73 
12 CAT-5 PhNO2, r.t. 98 d -74 

  [a] A solution of nitroethylene (6) in toluene (2.0 M) was always 

employed in excess. [b] Determined by analysis of the 1H NMR of crude 40 

samples. [c] Determined by chiral HPLC analysis. [d] 84% isolated yield. 

Conclusions 

In conclusion, we have accomplished a concise formal 

synthesis of platencin, featuring an organocatalytic approach to 

the bicyclo[2.2.2]octane core, a radical reductive elimination, an 45 

efficient Au-catalyzed Meyer-Schuster rearrangement, and a Rh-

catalyzed chemo- and diastereoselective hydrosilylation. The 

formal synthesis covers ten steps from simple starting materials 

with a good overall yield. Importantly, this synthesis 

demonstrates a new synthetic strategy that may readily lend itself 50 

to access to novel platencin analogues valuable for relevant drug 

discovery. Synthetic endeavours along this line are currently 

underway in our laboratory and will be reported in due course. 
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