Polymer Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/polymers

Polymer Chemistry

Journal Name

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th march 2015, Accepted 00th march 2015

DOI: 10.1039/x0xx00000x

www.rsc.org/polymers

Synthesis and characterization of innovative welldefined difluorophosphonylated-(co)polymers by RAFT polymerization

Hien The Ho,^a Justine Coupris,^a Sagrario Pascual,^b Laurent Fontaine,^b Thierry Lequeux^a and Thi Nhàn Pham^{*a}

Reversible addition-fragmentation chain-transfer (RAFT) polymerization of a methacrylate derivative bearing a difluorophosphonylated moiety, namely diisopropyl 1,1-difluoro-5-methacryloyloxy-pentylphosphonate, was successfully achieved for the first time in the presence of 4-cyano-4- (thiobenzoylthio)pentanoic acid as chain transfer agent. Polymers with various molecular weights and low dispersities were obtained in a controlled way. Additionally, a new chain transfer agent containing a difluorophosphonated moiety (pCF_2 -CTA) was successfully prepared to control the polymerization of methyl methacrylate and to create pCF_2 functionality at the poly(methyl methacrylate) chain-end by RAFT polymerization. The dealkylation of phosphonate esters polymers was performed with excellent yields using bromotrimethylsilane.

Introduction

Phosphorus-based polymers have found diversified applications such as proton exchange membrane^{1,2} (PEM), anticorrosion³⁻⁵ and nanomaterials⁶⁻⁹. Over the last decade, they have been widely studied as biomaterials¹⁰⁻¹³ in tissue-engineering and dental applications^{10, 14-17} due to their specific properties such as strong binding onto oxide metal surfaces and biocompatibility. Most of the phosphorous synthetic materials have been obtained by the incorporation of phosphate or phosphonate groups.^{10, 18-22} Phosphates are easily hydrolyzed and the low pKa₂ value of phosphonates can be a major drawback for various applications. To improve the resistance against hydrolysis and enzymatic degradation as well as the pKa values, the difluoromethylene phosphonate (pCF_2) group is considered the best candidate to mimic the phosphonate function in medicinal chemistry.²³⁻²⁵ The introduction of two highly electronegative fluorine atoms adjacent to the phosphonate group could dramatically change the physical and biological properties of these compounds.²⁴⁻²⁶ Therefore, we are particularly interested in the difluoromethylene phosphonate (pCF₂) group due to its aqueous stability. Moreover, the conversion of phosphonate esters into their phosphonic acid analogues can be easily performed by dealkylation. It is clearly established that difluorophosphonic acids are more acidic (pKa₂ = 5.4) than the corresponding phosphonic ($pKa_2 = 7.6$) or phosphoric ($pKa_2 = 6.4$) acids.²³ It is therefore expected that difluorophosphonic acids would be mainly diionic at physiological pH (pH = 7.4). They would be capable of forming

stronger bindings with calcium ions, the main inorganic component of the dental hard tissue hydroxyapatite (HAp) and oxide surfaces than phosphate group.²⁷ Thanks to their good adhesive and biocompatible properties, we have successfully demonstrated pCF₂-functionalized (meth)acrylate that monomers can be used as etching adhesive-primer for dental applications.²⁷⁻²⁹ Besides, polymers bearing difluorophosphonic groups show a high proton conductivity for replacing perfluorosulfonic acid based polymer such as Nafion.^{30, 31} However, up to now, only a few examples of pCF₂ group introduction in materials science were reported in the literature. Although thermal-initiated and photo-initiated free-radical polymerization of pCF₂-monomers have been previously reported,^{29, 31} the synthesis of well-defined polymers containing the pCF₂ moiety with controlled architectures have not been previously investigated. Canniccioni et al.32 reported the reversible addition-fragmentation chain-transfer (RAFT) polymerization of dimethyl(methacryloyloxy)methyl phosphonate (MAPC1) using dithioester-based chain transfer agent and trithiocarbonate-based chain transfer agent to afford well-defined phosphorous polymers with low dispersities ($D_{\rm M}$ = 1.23-1.35). Well-defined phosphorous block copolymers having a thermo-responsive poly[N-(n-propyl)acrylamide] block have been prepared with potential value for drug delivery.³³ In the medical field, phosphorous based poly(oligoethyl glycol acrylate)s (POEGA) block copolymers stabilizing magnetic iron oxide nanoparticles could be employed as contrast agents in magnetic resonance imaging (MRI) technique.³⁴ The versatility of the RAFT polymerization technique leading to polymers containing phosphorous groups either as side groups by direct RAFT polymerization of a phosphorous monomer or either at the chain end of polymer using a phosphorous chain transfer agent was studied by Boyer *et al.* for stabilization of magnetic iron oxide nanoparticles.³⁵

In this contribution, we investigated the RAFT polymerization of a methacrylate bearing a difluorophosphonylated group. Homopolymers bearing a pCF₂ group directly incorporated in the polymer backbone were synthesized via RAFT polymerization diisopropyl-1,1-difluoro-5using methacryloyloxy-pentylphosphonate monomer with 4-cyano-4-(thiobenzoylthio)pentanoic acid as the chain transfer agent (CTA) and azobisisobutyronitrile (AIBN) as the initiator. Additionally, difluorophosphonylated end-functionalized polymers based on methyl methacrylate (MMA) were successfully obtained by RAFT polymerization using a new difluorophosphonated-CTA (pCF₂-CTA) to control the polymerization of MMA. The difluorophosphonate ester polymers were converted to their phosphonic acid analogues for potential applications in metal oxides functionalization and (bio)materials. To the best of our knowledge, the present study represents the first example of the RAFT polymerization of difluorophosphonylated monomers.

Experimental

Materials

Unless otherwise stated, all reagents were purchased from Sigma-Aldrich (Sigma-Aldrich SARL, Lyon, France) and were used without further purification. Sodium bicarbonate (NaHCO₃), magnesium sulfate (MgSO₄), sodium chloride (NaCl), aluminum oxide (neutral), acetone (99.5%), dichloromethane (DCM, 99.9%), chloroform (CHCl₃, 99.9%), ethyl acetate (99.9%), diethyl ether (Et_2O , 99.5%), N,N-dimethylformamide (DMF, 99.8%), methanol (CH₃OH, 99.6%), n-pentane (95.0%), bromotrimethylsilane (TMSBr, 97%), 4-cyano-4-(thiobenzoylthio)pentanoic acid (CTP, 97%), 4-(N.N-dimethylamino)pyridine (DMAP, 97%), triethylamine (TEA, 99%) and methacryloyl chloride (97%) were used as received. Methyl methacrylate (MMA, 99%). bromotrimethylsilane, and triethylamine were distilled prior to use. Azobisisobutyronitrile (AIBN, 98%) was recrystallized in ethanol. Dichloromethane was purified with a PuresolvTM apparatus (Innovative Technology, Newburyport, MA, USA). Diisopropyl(1,1-difluoro-5-hydroxypentyl) phosphonate (pCF₂OH) was synthesized following the previously described procedure³⁶ (see ESI).

Column chromatography was performed on silica gel Si 60 (40–63 μ m). Thin layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ plates (Merck Chemicals, Darmstadt, Germany). All reactions were carried out under a dry argon atmosphere in oven-dried glassware.

Characterization

New products were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, ³¹P NMR and by high resolution mass spectroscopy (HRMS).

The ¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectra were recorded on a 400 MHz AC 400 spectrometer (Brucker Optics GmbH, Ettlingen, Germany), with TMS as internal reference for ¹H-NMR and ¹³C-NMR chemical shifts, and with H_3PO_4 (85%) as external reference for ³¹P-NMR chemical shifts.

High-resolution mass spectra (HRMS) were obtained with a Q-TOF Micro instrument (Waters Corporation, Milford, MA, USA) in electrospray ionization positive (ES+) or negative (ES-) mode and lockspray with orthophosphoric acid. These analyses were performed with an infusion introduction of 10 μ L.min⁻¹, a source temperature of 80 °C, a desolvation temperature of 120 °C and an external calibration with NaI. Size Exclusion Chromatography (SEC): Polymers were characterized on a SEC system operating in DMF eluent at 60 oC fitted with a guard column (PL Gel 5 $\mu m)$ and two Polymer Laboratories PL Mixed D columns, a Waters 410 differential refractometer and a Waters 481 UV detector operating at 309 nm. The instrument operated at a flow rate of 1.0 mL.min⁻¹ and was calibrated with narrow linear poly(methyl methacrylate) (PMMA) standards ranging in molecular weight from 4100 g.mol⁻¹ to 160800 g.mol⁻¹. Molecular weights and dispersity (D_M) were calculated using Waters EMPOWER software.

FTIR absorption spectra were recorded on a Perkin Elmer Spectrum One FTIR Spectrometer with an ATR accessory. The IR absorptions were observed as strong bands and are given in cm⁻¹.

Synthesis	of	diisopropyl	(1,1-difluoro-5-
methacryloyl	oxypenty	l)phosphonate (pCl	F_2MA)

Under an inert argon atmosphere, diisopropyl(1,1-difluoro-5hydroxypentyl)phosphonate (pCF₂OH, 1.20 g, 4.17x10⁻³ mol), triethylamine (0.70 mL, 5.20x10⁻³ mol) and dichloromethane (DCM, 6.00 mL) were added to a round bottom flask. The mixture was then stirred and cooled at 0 °C for 10 min. Methacryloyl chloride $(0.42 \text{ mL}, 4.30 \times 10^{-3} \text{ mol})$ was subsequently added dropwise under stirring at 0 °C. The reaction mixture was then stirred at 0 °C for 2 h and at room temperature for 24 h. The reaction mixture was quenched by adding diethyl ether (10.0 mL) and NaHCO₃ (saturated solution, 5.0 mL). After stirring for 15 min, the mixture was extracted with Et₂O/CH₂Cl₂ (50/50: v/v) and the combined organic layers were washed with a NaCl saturated solution, dried over MgSO4 and filtered. After evaporation of the volatiles under reduced pressure, the crude product was purified by column chromatography with a mixture of ethyl acetate/pentane (20/80: v/v) to give pCF₂MA monomer (0.89 g) as a colorless oil. Yield = 60%.

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.35 (dd, J = 6.2 Hz, J = 5.3 Hz, -CH(CH₃)₂), 1.54-1.75 (m, -CF₂CH₂(CH₂)₂CH₂-), 1.93 (s, CH₂=C(CH₃)-), 1.99-2.15 (m, -CF₂CH₂-), 4.15 (t, J = 6.2 Hz, -COOCH₂-), 4.80-4.88 (m, -OCH(CH₃)₂), 5.49 and 6.03

 $(CH_2=C(CH_3))$. ¹³C NMR (100.62 MHz, CDCl₃. δ ppm): 18.30 (-COOCH₂CH₂CH₂-), 23.70-24.10 [-OCH(CH₃)₂], 28.30 (-COOCH₂CH₂-), 33.30-33.50 (-CH₂-CF₂-), 64.10 (-COOCH₂-), 73.50-73.50 [-OCH(CH₃)₂], 118.90-124.00 (-CF₂-), 125.40 [CH₂=C(CH₃)-], 136.30 [CH₂=C(CH₃)-], 167.40 (-COO-). ¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -113.07 (dt, *J* = 108.8 Hz, *J*= 19.7 Hz). ³¹P NMR (162 MHz, CDCl₃, δ ppm): 5.48 (t, *J* = 108.8 Hz). HR-MS : [M]⁺_{cal} = 356.1608 g.mol⁻¹, [M]⁺_{found} = 356.1601 g.mol⁻¹.

Synthesis of 5-(diisopropoxyphosphoryl)-5,5-difluoropentyl-4-cyano-4-(thiobenzoylthio)pentanoate (pCF₂-CTA)

atmosphere, a solution Under argon of N.N'dicyclohexyldicarbodiimide (DCC, 0.17 g, 8.25x10⁻⁴ mol) in dry DCM (2.0 mL) was added dropwise to a stirred solution of 4-cyano-4-(thiobenzoylthio)pentanoic acid (CTP, 0.18 g, 6.45x10⁻⁴ mol), pCF₂OH (0.23 g, 7.99x10⁻⁴ mol) and 4-(N,Ndimethylamino)pyridine (DMAP, 8 mg, 6.55x10⁻⁵ mol) in dry DCM (5.0 mL) and cooled at 0 °C. After complete addition, the solution was stirred under argon at 0 °C for 4 h then at room temperature for 2 days. The mixture was filtered and the white solid was washed with DCM. The filtrate was then washed with HCl (2M), saturated NaHCO₃ solution and brine. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography with a mixture of ethyl acetate/n-pentane (40/60: v/v) to give pCF₂-CTA (0.31 g) as a rose oil. Yield: 89%.

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.37 [dd, J = 6.2 Hz, J = 3.6 Hz, -OCH(CH₃)₂], 1.56-1.80 (m, -(CH₂)₂CH₂CF₂-), 1.94 (s, -C(CN)CH₃), 2.01-2.15 (m, -CF₂CH₂-), 2.39-2.72 [-C(CN)CH₃-CH₂CH₂COO-], 4.12 (t, J = 6.2 Hz, -COOCH₂-), 4.80-4.89 [m, -OCH(CH₃)₂], 7.38-7.92 (C₆H₅-). ¹³C NMR (100.62 MHz, CDCl₃, δ ppm): 17.40 (-CH₂CH₂CF₂-), 24.10 (-OCH(CH₃)₂), 28.20 (-COOCH₂CH₂-), 29.80 (-CH₂CH₂COO-), 33.50 (-CH₂COO-), 45.80 [-C(CN)CH₃], 64.60 (-COOCH₂-), 73.50 and 73.60 [-OCH(CH₃)₂], 118.50-144.60 (-CF₂- and C₆H₅-), 171.50 (C=O), 222.30 (C=S). ¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -113.02 (dt, J = 108.6 Hz, J = 19.7 Hz). ³¹P NMR (162 MHz, CDCl₃, δ ppm): 5.39 (t, J = 108.6 Hz). FT-IR (v cm⁻¹): 2936-2982 (CH), 1733 (C=O), 1265 (P=O), 984 (P-O). HR-MS: [M+H]⁺_{cal} = 550.1662 g.mol⁻¹, [M+H]⁺_{found} = 550.1671 g.mol⁻¹.

RAFT polymerization of diisopropyl (1,1-difluoro-5methacryloyloxypentyl)phosphonate (pCF₂MA)

pCF₂MA monomer (0.920 g, 2.58×10^{-3} mol), 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid (CTP, 0.018 g, 6.45×10^{-5} mol), AIBN (2.0 mg, 1.21×10^{-5} mol) and DMF (2.50 mL) were charged to a round bottom flask equipped with a magnetic stir bar. The mixture was deoxygenated by bubbling argon for 40 min then immersed in an oil bath thermostated at 70 °C. Samples were removed periodically by using a degassed syringe to perform size exclusion chromatography (SEC) analysis and to monitor monomer conversion by ¹H NMR spectroscopy. After 8 h, the polymerization was quenched by rapid cooling and exposure to air. DMF was removed under reduced pressure. The residue was then dissolved in DCM and precipitated in cold *n*-pentane, filtered and dried under vacuum. The polymer was obtained as a pink viscous gel with $M_{n,NMR} =$ 6687 g.mol⁻¹ (DP_{n,NMR} = 18), $M_{n,SEC} = 10600$ g.mol⁻¹; $D_M =$ 1.19.

¹H NMR (400 MHz, acetone D_6 , δ ppm): 0.94-1.14 [-CH₂- $C(CH_3)$ -]_n, 1.40 [-OCH(CH_3)₂], 1.50-2.25 [(-CH₂-C(CH₃)-]_n and $[-COOCH_2(CH_2)_3-]$ 4.04 (-COOCH₂-), 4.86 [-OCH(CH₃)₂], 7.47-7.91 (C₆H₅-). ¹³C NMR (100.62 MHz, acetone D₆, δ ppm): 17.60, 23.20-23.50 [-OCH(CH₃)₂], 33.40-44.60, 64.30 [-COOCH₂(CH₂)₃CF₂-], 72.90-73.00 [-OCH(CH₃)₂], 116.70-128.50 (-CF₂-), 176.90 (-COO-). ¹⁹F NMR (376 MHz, acetone D₆, δ ppm): -113.16 (d, J =107.5 Hz). ³¹P NMR (162 MHz, acetone D6, δ ppm): 5.14 (t, J=107.5 Hz). FT-IR (v cm⁻¹): 2936-2982 (CH), 1727 (C=O), 1265 (P=O), 984 (P-O)_{ester}.

Typical procedure for the RAFT polymerization of methyl methacrylate using 5-(diisopropoxyphosphoryl)-5,5difluoropentyl-4-cyano-4-(thiobenzoylthio)pentanoate (pCF₂-CTA) as the chain transfer agent

Methyl methacrylate (MMA, 0.704 g, 7.04x10⁻³ mol), pCF₂-CTA (0.0372 g, 6.78x10⁻⁵ mol), AIBN (2.0 mg, 1.19x10⁻⁵ mol) and DMF (2.0 mL) were charged to a round bottom flask equipped with a magnetic stir bar. The mixture was deoxygenated by bubbling argon for 30 min. The solution was then immersed in an oil bath thermostated at 60 °C. The mixture was quenched after 16 h by rapid cooling and exposure to air. DMF was removed under reduced pressure. The residue was then dissolved in DCM and precipitated in cold diethyl ether, filtered and dried under vacuum. The polymer was obtained as a pink powder with $M_{n,NMR} = 7749$ g.mol⁻¹ (DP_n ._{NMR} = 72), $M_{n,SEC} = 9500$ g.mol⁻¹; $\mathcal{D}_M = 1.18$.

¹H NMR (400 MHz, CDCl₃, δ ppm): 0.83-1.14 (-CH₂-C(CH₃)-)_n, 1.37 [-OCH(CH₃)₂], 1.50-2.53 [-CH₂-C(CH₃)-]_n, 2.39-2.72 [-C(CN)CH₃-CH₂CH₂COO-], 3.59 (-COOCH₃), 4.86 [-OCH(CH₃)₂], 4.11 [-COOCH₂(CH₂)₃CF₂-], 7.38-7.92 (C₆H₅-).¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -113.08 (dt, J = 108.6 Hz, J = 19.7 Hz). ³¹P NMR (162 MHz, CDCl₃, δ ppm): 5.40 (t, J = 108.6 Hz).

Typical procedure for the dealkylation of poly(pCF₂MA)

In a round bottom flask the poly(pCF₂MA)₁₆ (DP_{n,NMR} = 16, $M_{n,MNR} = 5975$ g.mol⁻¹, 60 mg, 1.00x10⁻⁵ mol) was dissolved in chloroform (1.0 mL). Bromotrimethylsilane (TMSBr, 0.25 mL, 1.89x10⁻³ mol) was then added at 0 °C. After completed addition, the reaction mixture was stirred for 48 h at room temperature. The excess of TMSBr and the solvent were then removed under reduced pressure. The crude polymer was dissolved in methanol (1.0 mL) and the mixture was stirred for 2 h at room temperature. The solution was then concentrated under vacuum to obtain a pink sticky polymer.

¹H NMR (400 MHz, CD₃OD, δ ppm): 0.89-1.29 [-CH₂-C(CH₃)-]_n, 1.50-2.43 [(-CH₂-C(CH₃)-]_n and [-COOCH₂(CH₂)₃CF₂-)], 4.01 [-COOCH₂(CH₂)₃CF₂-], 7.46-8.02

(C₆H₅-). ¹⁹F NMR (376 MHz, CD₃OD, δ ppm): -114.80 (d, J = 107.5 Hz). ³¹P NMR (162 MHz, CD₃OD, δ ppm): 5.97 (t, J = 107.5 Hz).

Typical procedure for dealkylation of pCF₂-poly(methyl methacrylate) (pCF₂-PMMA)

In a round bottom flask, pCF₂-PMMA₇₂ (DP_{n,NMR} = 72, $M_{n,NMR}$ = 7749 g.mol⁻¹, 20 mg, 2.58x10⁻⁶ mol) was dissolved in CHCl₃ (0.50 mL) and TMSBr (0.02 mL, 1.52x10⁻⁴ mol) was then added at 0 °C. After completed addition, the reaction mixture was stirred for 48 h at room temperature. The excess of TMSBr and the solvent were then removed under reduced pressure. The crude polymer was dissolved in CHCl₃/methanol (v/v 1/1; 1.0 mL) and stirred for 2 h at room temperature. After removing the volatiles and drying the residue under vacuum, the polymer was isolated.

¹H NMR (400 MHz, CDCl₃, δ ppm): 0.82-1.14 [-CH₂-C(CH₃)-]_n, 1.50-2.22 [-CH₂-C(CH₃)-]_n, 2.39-2.72 [-C(CN)CH₃-(CH₂)₂COO-], 3.59 (-COOCH₃), 4.12 [t, -COOCH₂(CH₂)₃CF₂-], 7.44-8.05 (C₆H₅-). ¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -113.50 (d, J = 107.5 Hz). ³¹P NMR (162 MHz, CDCl₃, δ ppm): 8.67.

Results and discussion

In order to introduce the pCF_2 groups within the polymer backbone, the RAFT polymerization of pCF_2MA was first considered.

RAFT polymerization of pCF₂MA

The synthesis of well-defined poly(pCF₂MA) was first reported by using the RAFT polymerization of the pCF₂MA monomer. 4-Cyano-4-(thiobenzoylthio)pentanoic acid (CTP) was chosen due to its high efficiency to control the polymerization of methacrylates.^{37, 38}

Scheme 1: RAFT polymerization of pCF₂MA.

The homopolymerization of pCF₂MA was carried out in DMF at 70 °C using CTP as the chain transfer agent and AIBN as the initiator **(Scheme 1).** The samples were periodically taken to monitor monomer conversion, number average molecular weight and dispersity. The monomer conversion was determined by ¹H NMR spectroscopy of samples in deutered chloroform by comparing the integration area value of the vinyl proton signals (5.49-6.03 ppm) with the integration area value of the -OCH(CH₃)₂ signals of the phosphonate ester (4.80-4.88 ppm). Number-average molecular weights ($M_{n,SEC}$) and dispersities (D_M) were determined by size exclusion chromatography (SEC) in DMF. First experiments using a molar ratio pCF₂MA/CTP/AIBN : 40/1/0.18 gave the results shown in *Entry 1*, **Table 1**.

Figure 1a shows a linear first order kinetic plot consistent with a constant concentration of propagating radicals. Furthermore, the linear evolution of $M_{n,SEC}$ with monomer conversion was also observed in Figure 1b. This result demonstrates that no significant irreversible termination reaction and transfer reaction occurred during the polymerization. The different value between $M_{n,SEC}$ and the theoretical number-average molecular weight $(M_{n,th})$ was attributed to the difference in hydrodynamic volumes between poly(pCF₂MA)s and poly(methyl methacrylate) standards used for calibration. Finally, the dispersities of poly(pCF₂MA) containing 18 monomers units [named poly(pCF₂MA)₁₈)] remained low (D_M = 1.14) suggesting that all chains grew simultaneously. In conclusion, the RAFT polymerization of pCF₂MA in DMF at 70 °C using CTP as a chain transfer agent was well-controlled. This result was confirmed by RAFT polymerization pCF₂MA performed under the same conditions (DMF at 70 °C) but with the molar ratio of pCF₂MA/CTP/AIBN equal to 31/1/0.18 (Entry 2, Table 1). Once again, a low dispersity of $poly(pCF_2MA)_{16}$ ($D_M = 1.13$) was obtained. Furthermore, the formation of the resulting poly(pCF₂MA) was confirmed by spectroscopy.

Table 1: RAFT polymerization of pCF ₂ MA using CTP and AIBN in DMF at 7	70 °
--	------

Entry	Sample ^{<i>a</i>}	[pCF ₂ MA] ₀ :[CTP] ₀ :[AIBN] ₀	Time	Conv. ^b	$M_{\rm n,th}^{c}$	$M_{n,NMR}^{a}$	$M_{n,SEC}^{d}$	${\mathcal{D}_{\mathrm{M}}}^d$
			(min)	(%)	$(g.mol^{-1})$	$(g.mol^{-1})$	$(g.mol^{-1})$	
1	poly(pCF ₂ MA) ₁₈	40: 1: 0.18	480	47	6972	6687	6140	1.14
2	poly(pCF2MA) ₁₆	31: 1: 0.18	480	44	5135	5975	4460	1.13

^{*a*} The sample name of poly(pCF₂MA) is followed by a number corresponding to the number of monomer units and $M_{n,NMR}$ determined by comparing the integration area values of the signal at 4.86 ppm [-OCH(CH₃)₂] and of the signal at 7.47-7.91 ppm (C₆H₅-) on the ¹H NMR spectra. ^{*b*} pCF₂MA conversion rate determined by ¹H NMR spectroscopy by comparing the integration area value of the signal at 5.49 ppm and 6.03 ppm. [CH₂=C(CH₃)-] and of the signal at 4.86 ppm [-OCH(CH₃)₂]. ^{*c*} $M_{n,th}$ = [([pCF₂MA]₀/[CTP]₀)xconv./100]x356 + 279. ^{*d*} Determined by SEC in DMF using poly(methyl methacrylate) standards.

Figure 1: RAFT polymerization of pCF₂MA using CTP as chain transfer agent with (a) Ln([M]₀/[M]_t) versus time and (b) evolution of the number average molecular weights and dispersities versus monomer conversion with [pCF₂MA]₀:[CTP]₀:[AIBN]₀ = 40 : 1 : 0.18, at 70 °C in DMF.

The ¹H NMR spectroscopy in deutero acetone (Figure 2) shows a signals at 1.40 ppm corresponding to $-OCH(CH_3)_2$ (labeled a) and a signal at 4.86 ppm corresponding to -OCH(CH₃)₂ (labeled b) showing the presence of phosphonated ester groups of the polymer. The signals characteristics of the ester group of poly(pCF₂MA)₁₆ were observed at 4.04 ppm (-COOCH₂-, labeled c) and those of the aromatic protons of CTP at 7.47-7.91 ppm (C_6H_5 -, labeled e). Moreover, the presence of the dithioester group at the poly(pCF₂MA)₁₆ chainend was confirmed by the SEC trace of poly(pCF₂MA) using UV detection (absorbance at 309 nm characteristic of dithioester function) (Figure 3). In addition, the formation of polymer containing difluoromethylene phosphonate group was also checked by ³¹P NMR spectroscopy with the signal of the phosphonate at 5.14 ppm, as well as ¹⁹F NMR spectroscopy with the signal at -113.08 ppm (Figures S9 and S10 in ESI).

Figure 2: ¹H NMR spectrum of $poly(pCF_2MA)_{16}$ in acetone D₆.

Figure 3: Extracted UV trace of poly(pCF₂MA)₁₆ at 309 nm.

Synthesis of pCF₂-terminated poly(methyl methacrylate)

In order to introduce a pCF_2 group at the chain-end polymer, a novel pCF_2 -derivated dithioester (pCF_2 -CTA) was first synthesized and subsequently used as chain transfer agent to mediate the RAFT polymerization of methyl methacrylate (MMA).

pCF₂-CTA was prepared by the reaction of CTP with the hydroxyl difluorophosphonate precursor pCF₂OH in the presence of DCC/DMAP in DCM (**Scheme 2**).

Scheme 2: Synthesis of pCF₂-CTA.

pCF₂-CTA was formed in 89% yield and its structure was checked by ¹H NMR spectroscopy (**Figure 4**). The signals at 4.12 ppm (labeled f) and those at 7.38-7.92 ppm (labeled j) assigned to the protons of the -COOCH₂- and phenyl groups respectively confirmed the formation of pCF₂-CTA.

 Table 2: RAFT polymerization of MMA using pCF2-CTA and AIBN in DMF at 60 °C

Entry	Sample ^{<i>a</i>}	[MMA] ₀ :	Time	Conv. ^b	$M_{n,th}^{c}$	$M_{n, NMR}^{a}$	$M_{n,SEC}^{d}$	${\mathcal{D}_{M}}^d$
		[pCF ₂ -CTA] ₀ :[AIBN] ₀	(h)	(%)	$(g.mol^{-1})$	$(g.mol^{-1})$	$(g.mol^{-1})$	
1	pCF ₂ -PMMA ₇₂	100:1:0.2	16	68	7349	7749	6340	1.08
2	pCF ₂ -PMMA ₄₅	98:1:0.1	23	45	4949	5049	4890	1.09

^{*a*} The sample name of pCF₂-PMMA is followed by a number corresponding to the number of monomer units and $M_{n,NMR}$ determined by comparing the integration area values of the signal at 4.86 ppm [-OCH(CH₃)₂] and of the signal at 3.59 ppm (-COOCH₃) on the ¹H NMR spectra. ^{*b*} MMA conversion rate determined by ¹H NMR spectroscopy by comparing the integration area value of the signal at 5.47 ppm and 6.01 ppm. [CH₂=C(CH₃)-] and of the signal at 3.59-3.67 ppm (-COOCH₃).^{*c*} $M_{n,th}$ = [([MMA]₀/[pCF₂-CTA]₀)xconv/100]x100 + 549. ^{*d*} Determined by SEC in DMF using poly(methyl methacrylate) standards.

50

Figure 4: ¹H NMR spectrum of pCF₂-CTA in CDCl₃.

Following the success of the synthesis of pCF_2 -CTA, the RAFT polymerization of MMA was carried out in the presence of pCF_2 -CTA used as the chain transfer agent and AIBN used as the initiator in DMF at 60 °C (Scheme 3).

Scheme 3: RAFT polymerization of MMA using pCF₂-CTA in DMF at 60 °C.

The results are summarized in **Table 2**. Well-defined poly(methyl methacrylate)s (pCF₂-PMMA) carrying a pCF₂ end group have been obtained with remained low dispersities ($D_M < 1.10$) (**Table 2**). The symmetrical SEC chromatograms of pCF₂-PMMA (**Figure 5**) confirmed the efficiency of pCF₂-CTA to target well-defined polymers.

Figure 5: Overlaid SEC traces of pCF₂-terminated PMMA samples containing different monomer units of PMMA chains carrying pCF₂ RAFT end groups.

Furthermore, the formation of the pCF₂-PMMA was confirmed by spectroscopic analyzes. The ¹H NMR spectrum showed the signals characteristics of PMMA at 3.59 ppm (-COOCH₃, labeled e) and at 4.86 ppm [-OCH(CH₃)₂, labeled b)] characteristics of the phosphate esters (**Figure 6**). Moreover, the appearance of the signals at 5.40 ppm in the ³¹P NMR and -113.08 ppm in the ¹⁹F NMR spectra confirms the presence of the functional pCF₂ group at the chain-end polymers (Figures S12 and S13 in ESI). All these results prove that the new pCF₂-CTA is successfully used to control the polymerization of MMA monomer.

Figure 6: ¹H NMR spectrum of pCF₂-PMMA₇₂ in CDCl₃.

Synthesis of polymethacrylates functionalized with a difluorophosphonic acid group

Polymers carrying difluorophosphonate functions were designed as potential new fire resistant materials. Therefore, the presence of difluorophosphonic acids groups into polymer chain could enhance the chemical and thermal properties of the materials. Well-defined polymethacrylates [poly(pCF₂MA) and pCF₂-PMMA], functionalized with difluorophosphonate groups were dealkylated to afford the corresponding difluorophosphonic acids in order to use them in (bio)materials. Poly(pCF₂MA)₁₆ containing 16 monomer units [named poly(pCF₂MA)₁₆)] and pCF₂-PMMA₇₂ containing 72 monomer units [named (pCF₂-PMMA₇₂)] were treated with bromotrimethylsilane (TMSBr) in chloroform at room temperature for 48 h following by methanolysis (Scheme 4).

Scheme 4: Synthesis of difluorophosphonic acid polymethacrylates.

The achievement of the dealkylation of $poly(pCF_2MA)_{16}$ was demonstrated by ¹H and ³¹P NMR spectroscopies. These difluorophosphonic acid polymethacrylates are soluble in water, however for a better interpretation, the NMR spectra were carried out in methanol D₄.

Figure 7 compares the ¹H NMR spectra of $poly(pCF_2MA)_{16}$ before and after dealkylation. The ¹H NMR spectra shows the disappearance of the signals at 1.40 ppm (labeled a) and 4.86 ppm (labeled b) corresponding to the protons of phosphonate ester groups. Moreover, the comparison of ³¹P NMR spectra before and after dealkylation, shows the complete disappearance of triplet at 5.14 ppm due to the phosphonate ester groups and the presence of a triplet at 5.97 ppm assigned to phosphonic acid groups (**Figure 8**).

Dealkylation of pCF_2 -PMMA₇₂ was confirmed by ¹H NMR spectroscopy analysis. The signal at 4.86 ppm corresponding to -OCH(CH₃)₂ (labeled c) of the phosphonate ester in pCF_2 -PMMA₇₂ disappeared in the ¹H NMR spectrum of the dealkylated pCF_2 -PMMA₇₂ (**Figure 9**).

Figure 7: Overlaid ¹H NMR spectra of well-defined poly(pCF_2MA)₁₆ before dealkylation in acetone D₆ (bottom) and after dealkylation in methanol D₄ (top)

Figure 8: Overlaid ³¹P NMR spectra of well-defined poly(pCF₂MA)₁₆ before dealkylation in acetone D₆ (bottom) and after dealkylation in methanol D₄ (top).

Conclusions

In this paper, the introduction of difluorophosphonylated moieties within polymer backbone was achieved by RAFT difluorophosphonylated-based polymerization of а methacrylate. Moreover, a novel chain transfer agent based on a difluorophosphonate moiety (pCF2-CTA) was synthesized to control the polymerization of MMA and to design pCF₂ functionality at the end of the chain of PMMA by RAFT polymerization. Additionally, the conversion of difluorophosphonate-functionalized poly(methacrylate)s into difluorophosphonic acid analogues was performed successfully using bromotrimethylsilane. Finally, to conclude, it is also important to point out that difluorophosphorus based (co)polymers could contribute to many applications, including flame retardancy, anticorrosion, and in the biomedical field. As these applications are of great interest, we can assume that the development of new RAFT agents (pCF₂-CTA) with other difluorophosphorus monomers and difluorophosphonate, difluorophosphonic acids will continue in the future to study the biocompatibility and thermal stability of the (co)polymers.

Acknowledgements

This work has been performed within the institute of chemistry INC3M FR 3038. We gratefully acknowledge financial support from the "Ministère de la Recherche et des Nouvelles Technologies", CNRS (Centre National de la Recherche Scientifique), the "Région Basse-Normandie", the European Union (FEDER funding) and Professor M. C. Lasne for helpful discussion.

Notes and references

^a Laboratoire de Chimie Moléculaire et Thio-organique (LCMT) UMR CNRS 6507, INC3M, FR 3038, ENSICAEN & Université Caen - Basse Normandie, 6 boulevard du Maréchal Juin, 14050 Caen, France. Email: nhan.pham@ensicaen.fr, Fax: +33 (0)2 31 45 28 65; Tel: +33 (0)2 31 45 28 45.

^b Université du Maine, Institut des Molécules et des Matériaux du Mans (IMMM), Equipe Méthodologie et Synthèse des Polymères, UMR CNRS 6283, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.

 $^{+}$ Electronic Supplementary Information (ESI) available: Synthetic detail and characterization of pCF₂OH, NMR spectroscopies and SEC characterization. See DOI: 10.1039/b000000x/

- 1 B. P. Tripathi and V. K. Shahi, Prog. Polym. Sci., 2011, 36, 945-979.
- 2 Y. Tamura, L. Sheng, S. Nakazawa, T. Higashihara and M. Ueda, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 4334-4340.
- 3 Z. El Asri, K. Chougrani, C. Negrell-Guirao, G. David, B. Boutevin and C. Loubat, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4794-4803.
- 4 G. David, C. Negrell, A. Manseri and B. Boutevin, J. Appl. Polym. Sci., 2009, 114, 2213-2220.
- 5 K. Chougrani, B. Boutevin, G. David, S. Seabrook and C. Loubat, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7972-7984.

- 6 C. Boyer, M. R. Whittaker, V. Bulmus, J. Liu and T. P. Davis, *NPG Asia Mater*, 2010, 2, 23-30.
- 7 T. T. T. N'Guyen, H. T. T. Duong, J. Basuki, V. Montembault, S. Pascual, C. Guibert, J. Fresnais, C. Boyer, M. R. Whittaker, T. P. Davis and L. Fontaine, *Angew. Chem. Int. Ed.*, 2013, **52**, 14152-14156.
- 8 R. Boissezon, J. Muller, V. Beaugeard, S. Monge and J.-J. Robin, *RSC Advances*, 2014, **4**, 35690-35707.
- 9 V. Torrisi, A. Graillot, L. Vitorazi, Q. Crouzet, G. Marletta, C. Loubat and J. F. Berret, *Biomacromolecules*, 2014, 15, 3171-3179.
- 10 S. Monge and G. David, *Phosphorus-Based Polymers : From* Synthesis to Applications (RSC), 2014.
- 11 S. Monge, B. Canniccioni, A. Graillot and J.-J. Robin, *Biomacromolecules*, 2011, **12**, 1973-1982.
- 12 G. David, C. Negrell-Guirao, F. Iftene, B. Boutevin and K. Chougrani, *Polym. Chem.*, 2012, 3, 265-274.
- 13 J. S. Basuki, L. Esser, H. T. T. Duong, Q. Zhang, P. Wilson, M. R. Whittaker, D. M. Haddleton, C. Boyer and T. P. Davis, *Chemical Science*, 2014, 5, 715-726.
- 14 N. Moszner and T. Hirt, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 4369-4402.
- 15 K. L. Van Landuyt, J. Snauwaert, J. De Munck, M. Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki, P. Lambrechts and B. Van Meerbeek, *Biomaterials*, 2007, 28, 3757-3785.
- 16 N. Moszner and U. Salz, Prog. Polym. Sci., 2001, 26, 535-576.
- 17 Y. Catel, L. Le Pluart, P.-J. Madec and T.-N. Pham, J. Appl. Polym. Sci., 2010, 117, 2676-2687.
- 18 P. E. Dufils, G. David, B. Boutevin, G. Woodward, G. Otter, A. Guinaudeau, S. Mazières and M. Destarac, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 1997-2007.
- 19 S.-I. Lee, K.-H. Yoon, M. Song, H. Peng, K. A. Page, C. L. Soles and D. Y. Yoon, *Chem. Mater.*, 2011, 24, 115-122.
- 20 S. Suzuki, M. R. Whittaker, L. Grøndahl, M. J. Monteiro and E. Wentrup-Byrne, *Biomacromolecules*, 2006, 7, 3178-3187.
- 21 C. Bouilhac, C. Travelet, A. Graillot, S. Monge, R. Borsali and J.-J. Robin, *Polym. Chem.*, 2014, 5, 2756-2767.
- 22 T. Xu, L. Zhang, Z. Cheng and X. Zhu, Polym. Chem., 2015, 6, 2283-2289.
- 23 V. D. Romanenko and V. P. Kukhar, Chem. Rev., 2006, 106, 3868-3935.
- 24 K. Panigrahi, David L. Nelson and D. B. Berkowitz, *Chem. Biol.*, 2012, **19**, 666-667.
- 25 K. Panigrahi, M. Eggen, J.-H. Maeng, Q. Shen and D. B. Berkowitz, *Chem. Biol.*, 2009, **16**, 928-936.
- 26 D. B. Berkowitz and M. Bose, *J. Fluorine Chem.*, 2001, **112**, 13-33.
- 27 M. Derbanne, A. Zulauf, S. Le Goff, E. Pfund, M. Sadoun, T.-N. Pham and T. Lequeux, Org. Process Res. Dev., 2014, 18, 1010-1019.
- 28 Y. Catel, V. Besse, A. Zulauf, D. Marchat, E. Pfund, T.-N. Pham, D. Bernache-Assolant, M. Degrange, T. Lequeux, P.-J. Madec and L. Le Pluart, *Eur. Polym. J.*, 2012, 48, 318-330.
- 29 T. Lequeux, P.-J. Madec, T.-N. Pham and A. Zulauf, *Composes fluorophosphonyles, composition les contenant et leur utilisation pour restaurer les dents*, WO2013105049 A1, 2013.
- 30 B. Lafitte and P. Jannasch, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 269-283.

ARTICLE

- 31 S. Nakazawa, M. Ueda, T. Higashihara and N. Fukuzaki, Phosphonic acid polymer, production method of same, and electrolyte film for fuel cell, WO2012052815 A1, 2012.
- 32 B. Canniccioni, S. Monge, G. David and J.-J. Robin, *Polym. Chem.*, 2013, 4, 3676-3685.
- 33 A. Graillot, S. Monge, C. Faur, D. Bouyer and J.-J. Robin, *Polym. Chem.*, 2013, 4, 795-803.
- 34 J. S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer and T. P. Davis, *Polym. Chem.*, 2014, 5, 2611-2620.
- 35 C. Boyer, V. Bulmus, P. Priyanto, W. Y. Teoh, R. Amal and T. P. Davis, J. Mater. Chem., 2009, 19, 111-123.
- 36 A. Henry-dit-Quesnel, L. Toupet, J.-C. Pommelet and T. Lequeux, Org. Biomol. Chem., 2003, 1, 2486-2491.
- 37 A. Favier and M.-T. Charreyre, *Macromol. Rapid Commun.*, 2006, 27, 653-692.
- 38 C. Barner-Kowollik, *Handbook of RAFT Polymerization*, Wiley, 2008.