Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
CO$_2$-induced reversible morphology transition from giant worms to polymersomes assembled from a block-random segmented copolymer

Wei Wang,a,c Hanbin Liu,a,c Meng Mu,a,c Hongyao Yina,c and Yujun Fenga,b

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
 DOI: 10.1039/b000000x

Well-defined block copolymers represent “stars” among amphiphilic compounds for self-assemblies. However, few studies have been addressed on their block-random “hybrid” counterparts. In this work, a segmented diblock copolymer containing one random block, PEO$_{113}$–b–P(4VP$_{90}$–r–DEAEEMA$_{30}$), was prepared via RAFT technique from the hydrophilic poly(ethylene oxide) block and random hydrophobic block copolymerized from 2-(diethylamino)ethyl methacrylate (DEAEMA) and 4-vinyl pyridine (4VP). It was found that the copolymer in aqueous media could self-assembly into vesicles firstly, which then fuse hierarchically into giant wormlike micelles similar to shish kebab, with length and diameter of ca. 15 µm and 215 nm, respectively. After bubbling CO$_2$ into the copolymer solution up to saturation (pH 5.43), the giant worms transform into polymersomes with a diameter about 75 nm which is much larger than that of the spherical micelles assembled from the same polymer treated with HCl (pH 3.32). The vesicles obtained could restore back to wormlike aggregates after depleting CO$_2$ by N$_2$. Protonation-deprotonation of the PDEAEEMA unit, as well as the intensive steric hindrance effect from the adjacent 4VP groups, hydrogen bonding between different 4VP units and free H$_2$O in the interior of polymersomes, are accounted for such a CO$_2$-driven reversible morphology transition.

Introduction

Since the pioneering work on self-assembly of well-defined block copolymers in solution appeared early 1990s, tremendous developments in this field have been achieved, not only out of their unique microstructures, but also because of their fascinating macroscopic properties to furnish them into practical supramolecular materials or “smart” nano-objects.

Among the various assembly morphologies, polymersomes (vesicles formed from polymers), are most attractive as they are archetypes of the self-assemblies from biological amphiphilies and show superior properties to low-molecular-weight liposomes, thus find diversified end uses, particularly as an ideal drug delivery vehicle.

Since many potential applications require the ability to control the release of substances encapsulated in the interior compartment and/or in the hydrophobic core of membrane, intelligent polymersomes whose morphological transitions are interchangeable between polymersome and other microstructures upon triggering by a specific stimulus emerged recently. The regulation of polymer vesicles can mimic and investigate some organismal behaviours such as volume tuning, unfolding and endocytosis, which would be helpful for us to understand biological autonomous motions in nature. Moreover, morphology transition of copolymer self-assemblies induced by external stimuli provides greater envisions for sensing applications and controlled release, drug delivery, enzymatic nanoreactors, and pharmaceutical technology, to name just a few.

Generally, the transition from polymer vesicles to other morphologies can be tuned by an external physical or chemical stimulating signal such as pH, temperature, light, redox, and electrical field, etc. to afford controlled release of encapsulated drugs, functional materials, and bio-imaging. Grubbs’s group and Jiang et al. realized a morphological transition from spherical micelle to vesicle with increasing temperature or irradiating by UV. Besides, Discher’s team and Hubbell et al. observed a shift from vesicles to wormlike micelles upon pH-inducement or oxidation-stimulation. But noteworthy, to our knowledge, the transformation from polymer worms to vesicles is less documented, and the trigger pH has been topping on the stimulus list for the existence of the numerous pH gradients in both normal and pathophysiological states of some biological systems. However, alternate addition of acid and base to adjust pH would result in residue accumulation, and the system may be contaminated or weakened to sense the stimulation. Therefore, it is highly desirable to explore a more environmental-benign trigger possessing a suitable switchable mode.

CO$_2$ is just such a mild trigger due to its feeble acidity and carbonate character in cells. Besides, CO$_2$ as a trigger is easily-removing and free of contamination because of the produced bicarbonate salt is unstable, thus endowing the system with a better “smart” reversibility. Most importantly, CO$_2$ possesses a good biocompatibility and membrane permeability as an endogenous metabolite, thus leading to a great potential application in biotherapy. In such a context, Yuan’s team developed vesicles based on a diblock copolymer composed of polyethylene glycol (PEO) and CO$_2$-responsive poly(N-amidino)dodecyl acrylamide (PAD), and found the vesicles could undergo an interesting “breathing” behavior upon CO$_2$ stimuli—the hydrodynamic radius change reversibly between 59 and 120 nm. Soon later, Zhao and coworkers extended CO$_2$-stimulated..
diversiform deformations such as polymer vesicles to large sacs via triblock terpolymer PEO-b-PS-b-PDEAEMA, and polymeric microtubules to polymersomes or vesicles and further to spherical micelles based on PEO-b-PAD-b-PS, in which PDEAEMA and PAD are protonated when continuously purging with CO2. So the requisition of optimizing interfacial free energy drives shape transformation. But it is worth pointing out that all the above assemblies are based on well-defined block copolymers, which involved a relatively tedious and time-consuming synthesis processes, requiring fine control of multi-step copolymerization and post-polymerization treatment.

Random copolymers, on the contrary, could be achieved from diverse components in a single polymerization step, and the random strategy might render a special morphology. Eisenberg and coworkers observed bowl-shaped aggregates assembled from the sole random copolymer PS-co-PMAA, and they found such assemblies may result from the hydrogen bond interactions among carboxylate groups along the backbone, implying both polymer composition and architecture play important roles on the micellar morphology. The same team then extended their work by mixing a random copolymer PS-co-PMAA in the solution of well-defined diblock copolymer PS-b-PAA, and found that with increasing MAA content, the localization of the random copolymer in the aggregates changed from the core to the interface, which led to a morphological transition from sphericals to vesicles; while the random copolymer was the minor component in the mixture, vesicles were formed with the random copolymer preferentially at the interface; when the random copolymer was the major component in the mixture, large sphericals could be formed with the block copolymer serving as a surfactant. Aggregates with both rod and vesicle morphologies were observed for random copolymers with a high molar mass at low water contents; otherwise, only vesicles were seen.

Tsitsilianis et al. recently demonstrated a strategy to prepare the so-called segmented polymers which bear at least a random copolymer as the building block by replacing a homopolymer block in the conventional diblock copolymer with a random one, and they found further tuning of the copolymer properties can be achieved through such a block-random topology. Enlightened by this concept, we prepared two structurally-similar and molecular-weight-equal terpolymers—one is a completely block terpolymer, PEO93-b-PS90-b-PDEAEMA90, while another one, PEO95-b-P(St90-r-DEAEMA92), possesses only two blocks, the second of which is a random copolymer composed of styrene and DEAEMA. Both polymers can form polymersomes before CO2 treatment, but the vesicles resulted from triblock copolymer do not change after uptaking CO2; instead, the vesicles from the diblock copolymer would transfer into spherical micelles after reaction with CO2, but the spherical micelles cannot reversibly return back to vesicles. Such a new finding from block-random segmented copolymer stimulated our interest to further explore morphology transition based on vesicles with alternate treatment of CO2 and N2, and to see if other segments can get similar results.

To this end, the styrene unit in above PEO-b-PS-b-PDEAEMA was replaced in this work by 4-vinyl pyridine (4VP) to get a new block-random “hybrid” copolymer because P4VP could form hydrogen bond with water, which may bring about new findings. This diblock copolymer was prepared from reversible addition-fragmentation chain transfer (RAFT) polymerization, and the morphological transition of the polymer assemblies triggered by CO2 was investigated. It was found that the copolymer could self-assemble into giant wormlike micelles by fusing vesicles in aqueous solution without CO2, but the worms would transform into polymersomes after the aeration of CO2, and could restore to threadlike aggregates again when CO2 was depleted from the solution.

Experimental

Materials

The monomers, 2-(diethylamino)ethyl methacrylate (DEAEMA, Aldrich, 99%) and 4-vinyl pyridine (4VP, Sigma-Aldrich, ≥99%), were passed through an activated basic alumina column to eliminate the inhibitors. Poly(ethylene glycol) methyl ether (PEO, Mn = ~5,000 g mol−1), 4,4-azobisis(cyanovaleic acid) (ACVA, ≥98.0%), 4-(dimethylamino) pyridine (DMAP, ≥99%), and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride crystalline (EDAC), were purchased from Sigma-Aldrich and used as received. The chain transfer agent (CTA), 4-cyano-4-thiothiopropylsulfonyl pentanoic acid (CTPPA) was synthesized according to a previously-reported procedure. The organic solvents with A.R. grade were obtained from Guanghua Sci-Tech Co., Ltd. (Guangdong, China) without further treatment unless otherwise specified. The deionized water (conductivity, κ = 7.9 μS cm−1) used in the dialysis process was treated by the ultrapure water purification system (CDUP-III, Chengdu Ultrapure Technology Co., Ltd., China). The CO2 and N2 gas with a purity of above 99.99% were provided by the Jinnengda Gas Company (Chengdu, China).

Characterization

1H NMR spectra were carried out at 25 °C on a Bruker AV300 NMR spectrometer at 300 MHz, and the chemical shifts (δ) are presented in parts per million (ppm) with reference to the internal standard protons of tetramethylsilane (TMS).

The molecular weight (MW) and the molecular weight distribution (MWD) of the polymer were determined by a HLC-8320 gel permeation chromatography system (TOSOH, Japan) equipped with TSK gel super HZM-M 6.0×150 mm and TSK gel SuperHZ3000 6.0×150 mm chromatographic column, as well as a refractive index detector. THF was selected as the eluent at a flow rate of 1.0 mL min−1 at 40 °C. Monodisperse polystyrene was used as the standard to build the calibration curve.

Transmission electron microscopy (TEM) observation was conducted on a Hitachi H600 electron microscope at an acceleration voltage of 75 kV. The specimens were prepared by dipping about 15 μL micellar solution on a copper grid coated with polyvinyl formal film and then stained with 0.2wt% phosphotungstic acid aqueous solution for 20–30 s followed by drying in air.

Fluorescence microscopy (FM) images were recorded with a Leica TCS SP8 (Leica, Germany) confocal laser scanning microscope at 570–620 nm (excitation at 552 nm) with an HCX PL APO 63×1.4 oil immersion objective. The sample is prepared as follows: 500 μL polymer solution was taken in an endopore tube, then 10 μL of 0.02 mM fluorescent dye (PKH26, Sigma) was added, and they were then gently mixed. Finally 10 μL of
This mixture solution was placed on a glass slide, followed by drying in a vacuum oven and then washed with deionized water.

Dynamic light scattering (DLS) measurements were performed with Malvern Zetasizer Nano-ZS90. He-Ne laser with a wavelength of 633 nm was used. The temperature was set to 25 °C and the scattering angle is fixed at 90°.

The pH variation was monitored by a Sartorius basic pH meter PB-10 (± 0.01) calibrated with standard buffer solutions. The conductivity of micellar solution was determined by an FE30 conductometer (Mettler Toledo, USA). Both measurements were conducted at 25 °C.

Synthesis of the macromolecular chain transfer agent macro-PEO113

The macromolecular chain transfer agent, macro-PEO113, was prepared following the procedure reported previously. Dichloromethane (CH2Cl2) was dried with CaH2 and then refluxed to be used as the solvent for the reaction. The detailed process could be described as follows: chain transfer agent CTPPA (0.554 g, 2.0 mmol), mPEG-5000 (5.003 g, 1.0 mmol), EDAC (0.767 g, 4.0 mmol) and DMAP (0.244 g, 2.0 mmol) were dissolved in 50 mL dry CH2Cl2, and then transferred into a round bottom flask stirred for 48 h at room temperature after deoxygenating by bubbling Ar gas for 15 min. The reaction mixture was precipitated by −72 °C n-hexane (in the bath of acetone and dry ice mixture) three times, and then washed with diethyl ether three times. Finally, yellow powder was obtained after lyophilisation (4.802 g, yield: 96%). 1H NMR (δ, ppm, CDCl3; Fig. 1): 3.62 (−CH2CH2O−), 3.36 (−OCH3, −SCH2−), 2.38−2.71 (−OOCCH2CH2−), 1.85 (−(CH2)3CN−), 1.67−1.85 (−SCH2CH2CH2−), 0.97−1.02 (−SCH2CH2CH3). The molecular weights are Mw,NMR = 5,277 g mol−1, Mw,GPC = 5,521 g mol−1, and Mw/Mn = 1.03.

Synthesis of the block-random segmented copolymer PEO113−b-(4VP90−r–DEAEMA90)

Starting with the RAFT agent macro-PEO113, the diblock copolymer PEO113-b-(4VP90−r–DEAEMA90) was synthesized as follows: the macro-PEO113 (0.301 g, 0.058 mmol), 4VP (1.271 g, 12.08 mmol), DEAEMA (2.351 g, 12.69 mmol), ACVA (2.0 mg, 0.0072 mmol) and 3.5 mL dry THF were added into a reaction tube equipped with a magnetic bar. The mixture reacted at 70 °C for 24 h under magnetic stirring after deoxygenizing by three freeze-pump-thaw cycles. 1H NMR (δ, ppm, CD2OD; Fig. 1): 6.58−7.36, 8.05−8.58 (−C5H4), 3.60 (−CH2CH2O−), 3.75−4.19 (−COOCCH2CH2N(CH2CH2)n), 2.21−2.87 (−OOCCH2CH2−), 1.24−2.10 (−(CH2)3CN−), −CCH3CNCH3−, −SCCH2CH2CH2−, 0.35−1.20 (−N(CH2CH2)n), −CCH2−, −SCCH2−, −SCH2CH2−, −CH2CH2−. From the peak area ratio of PEO113 to DEAEMA moieties (peaks b and h, the bottom spectrum in Fig. 1), as well as the 4VP segment (peak i, Fig. 1) on the 1H NMR spectrum of the copolymer, the Mn, the polymerization degree (DP), of the polymer can be calculated via the following equations:

\[\frac{\delta \cdot \delta \cdot 2 \cdot \delta}{4} = DP_{\text{PEO}} : DP_{\text{PVP}} : DP_{\text{DEAEMA}} \]

\[\frac{\delta}{4} = 113 \]

where δ represents integral proportion, DP refers to polymerization degree, and the subscripts refer to different peak and units. The polymerization degree of two monomers in the random block are found to be DP_{DEAEMA,NMR} = 30 and DP_{4VP,NMR} = 90, respectively. The corresponding molecular weights are: Mw,NMR = 20,295 g mol−1, Mw,GPC = 22,156 g mol−1, and Mw/Mn = 1.36.

Preparation of micellar solution

40 mg polymer powders were dissolved in 10 mL THF, which is a good solvent for all the three units, followed by stirring for several hours to ensure the polymer to be dissolved completely. Then the obtained polymer solution was transferred to a dialysis bag (MW cut-off: 8,000−14,000 g mol−1) and dialyzed against deionized water for 3−4 days to exclude the organic solvent. After that, the micellar solution was diluted to 20 mL, yielding a micellar solution with concentration of 2 g L−1. Such final micellar solution was used for all the further experiments including conductivity and pH monitoring, CO2−responsiveness, as well as TEM and FM observation.

Results and discussion

Unlike the covalent link of a homopolymer and a random block copolymer proposed by Tsitsilianis et al.,13 here in this work, macromolecular chain transfer agent (macro-PEO113) was prepared the first, with which the other two monomers (4VP and DEAEMA) further copolymerization happened to form a random copolymer which co-acts as the second block through RAFT copolymerization (Scheme 1). According to Liu et al.,15 the reactivity ratio of styrene to DEAEMA was 0.22:0.42, and here 4VP possesses a structure similar to styrene except the more prominent electron-donator effect. Therefore, 4VP and DEAEMA would be randomly distributed in the second block.
As aforementioned, the M_n of the copolymer from 1H NMR is comparable to that from GPC; the polydispersity is 1.36, less than 1.40 and could be accepted for a controlled living radical polymerization. What is more, as reported by Eisenberg, the MWD determined by GPC for the copolymer containing 4VP or DEAEMA should be broader than the real polydispersity because some 4VP or DEAEMA units would have an adsorption in the GPC column, which introduces a systematic error into the retention time measurement. Meanwhile, as shown in Fig. 2, the GPC curve of the copolymer has a shift compared with macro-PEO$_{113}$, implying the complete initiation of macro-PEO$_{113}$ as a chain transfer agent and the success of the synthesis.

The solubility parameters of PEO, P4VP, THF and H$_2$O are 20.2, 20.6, 19.4 and 47.3 MPa$^{-1/2}$, respectively, and the polymer-solvent interaction parameters, $\chi_{PEO,THF} = 0.3875$ and $\chi_{PEO,H_2O} = 0.3611$, are very close, though, the non-protonated P4VP segment is not soluble and hydrophobic in aqueous media, without CO$_2$ treatment, PDEAEMA is also hydrophobic. Therefore, the amphiphilic PEO$_{113}$$-b$$-$(4VP$_{30}$-$r$DEAEMA$_{30}$) could self-assemble into micelles with the block P(4VP$_{30}$$-r$DEAEMA$_{30}$) as the core and PEO as the shell. In THF, a good solvent for both blocks, the copolymer could be dispersed molecularly; however, unique microstructure would be expected after dialyzing against deionized water followed by equilibration for 3 days.

To prove this, morphological observation by TEM was performed. Surprisingly, as displayed in Fig. 3a, long filament-like or linear wormlike structures are observed. Usually, the typical surfactant-based wormlike micelles have diameter of 1–10 nm and length of 10–104 nm, and the polymer-based wormlike micelles possess diameter less than 100 nm; nevertheless, the worms observed here have diameter around 215 nm and maximum contour length up to 15 μm, both of which are much larger than those of the traditional wormlike micelles.

Generally, the polymer micellar morphologies can be predicted by the hydrophilic mass fraction (f_h) of the copolymer: a copolymer with $f_{h,PEO}$ greater than 50% will self-assemble into traditional spherical micelles; with $f_{h,PEO}$ between 40% and 50%, cylindrical or worm micelles are formed; when $f_{h,PEO}$ is below 40%, vesicles may appear. Here, the $f_{h,PEO}$ can be expressed as

$$f_{h,PEO} = \frac{M_{PEO}}{\rho_{PEO}} + \frac{M_{DEAEMA}}{\rho_{DEAEMA}} + \frac{M_{4VP}}{\rho_{4VP}}$$

where M_{PEO}, M_{DEAEMA}, M_{4VP} and ρ_{4VP} are the molecular weight of PEO, charged DEAEMA, total DEAEMA, and 4VP; ρ_{PEO}, ρ_{DEAEMA} and ρ_{4VP} are their corresponding density. According to Zhao’s report, $\rho_{PEO} = 1.19$ g cm$^{-3}$, $\rho_{4VP} = 0.989$ g cm$^{-3}$, $\rho_{DEAEMA} = 1.19$ g cm$^{-3}$, so the calculated $f_{h,PEO}$ of PEO$_{113}$$-b$$-$(4VP$_{30}$-$r$DEAEMA$_{30}$) is 23.3%, corresponding to the formation of vesicles other than wormlike micelles. Besides, few literature results show wormlike micelles with radius of hundreds of nanometre. So how the filament-like structures are formed?

If we closely look at the enlarged linear worms shown in Figs. 3b and 3c, it is clear that the long giant worms are connected by the vesicles continuously, with a clear contrast between the dark periphery and hollow centre (indicated by the arrows), looking like a necklace composed pearls, or more alike a bunch of shish kebab. The size of such a single vesicle was approximately 275 nm, much larger than that of the traditional spherical micelles whose size is usually below 100 nm. Kressler et al. observed similar wormlike polymersomes aggregates from a block-graft copolymer, poly(glycerol adipate)$-g$-(poly(3-caprolactone)$-b$-poly(ethylene oxide)), PGA$-g$-(PCL$-b$-PEO), and they attributed such an elongated fashion to the partially fused polymersomes under the influence of shear flow. Moreover, Liu et al. illustrated that the stability of vesicles would increase after fusion due to the decrease of surface areas of vesicles and the increase of average density of hydrophilic segments on vesicles surfaces. Battaglia and coworkers found vesicles formed by the diblock copolymer polybutadiene-b-poly(methacrylic acid) become smaller with increasing pH until a transition to wormlike micelles at pH 8; they postulated the chains extend and swell caused the break-up of large vesicles to obtain smaller species of greater curvature, and then the vesicles subsequently collapse into pearl necklace-like structures, which eventually evolve into cylindrical micelles. Here in this system, therefore, it is possible that the vesicle wall composed of hydrophobic segment P(4VP$_{30}$$-r$DEAEMA$_{30}$) would be inclined to merge together for greater curvature and higher average
hydrophilic density, which drive the vesicles to fuse after approaching to each other, and eventually to grow into giant wormlike micelles. So it is interesting to see what structure would appear when increasing the hydrophilcity of P(4VP-r-DEAEMA).

Fig. 3 TEM (stained with 0.2 wt% phosphotungstic acid) images of polymer assemblies before CO$_2$ bubbling: (a) giant worms with a diameter about 215 nm; both (b) and (c) demonstrated large wormlike micelles are connected with fused vesicles (pointed by the black arrows).

What addressed above are the results obtained in the absence of CO$_2$; to explore the CO$_2$-stimuli responsiveness of the self-assemblies, the appearance and optical transmittance of the copolymer solution with and without CO$_2$ are compared. As displayed in the insets of Fig. 4, the original solution is absolutely opaque before CO$_2$ aeration, but it becomes transparent after 10 min of CO$_2$ treatment. Correspondingly, the transmittance varies from 0 to 84% during this period. It is well recognized that the turbidity of colloidal solution has a positive correlation with the colloidal size; usually, the larger aggregates result in opaque solution, while the transparent solution implies self-assemblies with small size; thus, the gradual increase in transmittance here suggests that the size of the aggregates becomes smaller upon continuous CO$_2$ treatment.

With the uptake of CO$_2$, the variation of conductivity and pH of the polymer solution during alternate bubbling CO$_2$ and N$_2$ also confirm the responsiveness to CO$_2$. As shown in Fig. 5, the conductivity (κ) of polymer aqueous solution rises sharply from 55.6 to 186.6 μS·cm$^{-1}$ in 20 min, and finally ascends to the maximum during CO$_2$ bubbling, indicating the development of bicarbonate ions in solution. Concurrently, the pH value drops from 7.50 to 5.43, suggesting the protonation of the tertiary amine groups in the DEAEMA unit. pKa determined by the continuous titration of 2.5 mL polymer solution with 2 mM hydrochloric acid was found to be 6.61. Following the previously-reported procedures and based on the correlation between pH and pKa (the different pH values of the polymer solution as function of CO$_2$ bubbling time), the protonation degrees of DEAEMA moieties in copolymers at different pH values were calculated, which increases from 6.5% (it may result from the initial protonation of the DEAEMA unit by the CO$_2$ dissolved in water) to approximately 95% after 10-min CO$_2$ bubbling.

After inletting CO$_2$ at a flow rate approximately 15 mL min$^{-1}$ for 30 min, the morphology was re-observed via TEM. As displayed in Fig. 6a, the giant worms have turned into polymersomes with an average diameter of about 70 nm, in good line with the DLS result which shows a hydrodynamic diameter about 75 nm with the polydispersity index (PDI) 0.20 (Fig. 7). In addition, as reported by Munk and Webber et al., the diblock polymer PEO-b-PVP would be hard to be protonated when the pH is higher than 5; and the reported pK$_a$ value of P4VP is around 4.7, suggests that the P4VP would not be protonated when pH is higher than 4.7. Thus stable micelles could be formed and the size will not change clearly at higher pH. Correspondingly, upon the aeration of CO$_2$, the pH would drop from 7.50 to 5.43 (with the prolongation of ventilation, the pH would not decline further), implying the pH of polymer solution would not go below 4.7.
during CO$_2$ saturation. So we attribute such a morphology deformation to the protonation of DEAEMA segment. For comparison, the micellar solution at lower pH (3.32, much below the pK$_a$ of P4VP) which was adjusted by HCl was studied. The uniform spherical micelles with an average size of 35 nm were observed (Fig. 6b), and the average hydrodynamic radius R_d was only 38 nm (Fig. 7). This means such a much lower pH ($<<4.7$) resulted from protonation of both DEAEMA and 4VP units, which make the copolymer more hydrophilic, thus the worms turning into spherical micelles instead of vesicles. Such a transition process indicates the weak acidic gas, CO$_2$, can drive large wormlike micelles to transform into polymersomes.

Fig. 6 TEM images (stained with 0.2 wt% phosphotungstic acid) of (a) the assemblies treated with CO$_2$ to pH 5.43, (b) copolymer solution dealt with HCl to pH 3.32, (c) necklace-like aggregates after removing CO$_2$ by N$_2$ (pH=7.35), and (d) the giant worms before CO$_2$ treatment (pH=7.50).

To check if the morphology change is reversible, TEM observation was again performed on the CO$_2$-containing micellar solution re-treated by N$_2$. With extension of N$_2$ bubbling time, the transparent solution turns into opaque gradually (the transmittance drops from 84% to 4.85% in 40 min). As exhibited in Fig. 6c, these vesicles assemble into wormlike aggregates again. Even though these polymersomes did not revert back to regular worms, they were formed visibly by the connection of vesicles (the sample was black on account of staining for a longer time, but the wrinkles belong to vesicles and the size approaching 180 nm implies the microscopic structure may be formed by single vesicle). Moreover, this necklace-like structure was similar to the initial form, which verified that the morphology transition was invertible and manipulative.

Due to the greater size of this polymer worms, the morphology changes of assemblies might be visualized by a fluorescence microscopy, which could give a broader view to see the full morphology. Since the fluorescence dye PKH26 was loaded into the self-assemblies without CO$_2$ treatment by direct addition to the polymer solution, thus the red rod-like micelles appeared in Fig. 8a should be ascribed to the giant worms which have a contour length up to about 10 μm. Unfortunately, the polymersomes (obtained by treated with CO$_2$) were too small to be evidenced by microscope. However, when the CO$_2$ is discharged, short rod-like aggregates can be observed in light field (Fig. 8b), which was in consistent with the above necklace-like aggregates observed by TEM.

Fig. 8 (a) Fluorescence microscopy images of giant worms before uptaking CO$_2$ and (b) photograph of micellar solution eliminated CO$_2$ by N$_2$ under light field.

Based on the above findings, we proposed the mechanism that how CO$_2$ induces the morphology change. Before CO$_2$ treatment, the segmented diblock copolymer possesses the hydrophobic random polymer segment P(4VP$_{90}$-r-DEAEMA$_{30}$) and a hydrophilic block PEO$_{113}$, which induce the micelles to form a hydrophilic-hydrophobic-hydrophilic three-layer structure (Scheme 2a) in aqueous solution. After reaction with CO$_2$, the DEAEMA moieties become protonated and coverted into charged species, which would break the equilibrium of this system and drive the giant worms to turn into single polymersome. However, while aerating N$_2$ to eliminate CO$_2$, this system would have fewer charges and that may induce the single polymersome to return back to the initial state, in agreement with the theory of hydrophilic volume fraction, which forecasts the formation of
vesicles. With the aeration of CO₂, the polymer becomes more hydrophilic due to the protonation of DEAEMA units, which would drive the micellar morphology deformation in order to reduce the interfacial free energy originated from the electrostatic repulsion (Scheme 2b). In addition, the intensive steric hindrance effect from the adjacent 4VP groups in the random segment hinders the DEAEMA units to be protonated completely, and the random block also imparts hydrogen bond between 4VP units with free H₂O in the interior of polymersomes which increases the ability of water retention and also answers why giant worms do not transfer into traditional wormlike micelles or spherical micelles.

Scheme 2

Schematic illustration of (a) protonation-deprotonation of the diblock copolymer PEO₁₁₋₋˓–r–DEAEMA

Conclusions

In short, long, linear giant worms have been assembled hierarchically through the fusion of vesicles formed by a block-random segmented diblock copolymer, and these filament structures are disassembled into polyionsomes upon reaction with CO₂ at pH 5.43; on the contrary, only much smaller spherical micelles were got when decreasing the pH of polymer solution to 3.22 with HCl directly. When the CO₂ inside the polymer aqueous solution was depleted with N₂, the single vesicles would reform necklace-like aggregates. The hydrophilic volume fraction theory and the intensive steric hindrance effect from the adjacent 4VP groups, and hydrogen bonding between different 4VP units with free H₂O molecules in the interior of polyionsomes should be responsible for the morphology transformation. Considering the convenience of synthesis procedure of block-random segmented polymer, as well as the good biocompatibility and membrane permeability of CO₂ as a new trigger, the use of random copolymer as a tecton in the diblock copolymer possess huge potential applications in drug delivery, controlled release and biotherapy as well.

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (21273223, 21173207), and the Distinguished Youth Fund of Sichuan Province (2010JQ0029).

Notes and references

26. (a) Z. Guo, Y. Feng, S. He, M. Qu, H. Chen, H. Liu, Y. Wu and Y. Wang, Adv. Mater., 2013, 25, 584; (b) Z. Guo, Y. Feng, Y. Wang, J. Wang, Y. Wu and Y. Zhang, Chem Commun., 2011, 47, 9348; (c) Y.
X. Liu, P. G. Jessop, M. Cunningham, C. A. Eckert and C. L. Liotta,

28 Q. Yan, R. Zhou, C. K. Fu, H. J. Zhang, Y. W. Yin and J. Y. Yuan,

29 B. Yan, D. H. Han, O. Boissiere, P. Ayotte and Y. Zhao, *Soft Matter*,
2013, 9, 2011.

2013, 4, 3667; (b) J. Guo, Y. Zhou, L. Qiu, C. Yuan and F. Yan,

31 X. Liu, J. S. Kim, J. Wu and A. Eisenberg, *Macromolecules*, 2005, 38,
6749.

497.

2006, 27, 1757; (b) M. M. S. Lencina, Z. Iatridi, M. A. Villar and C.
Chassenieux, O. Colombani and T. Nicolai, *Macromolecules*, 2011,
44, 4487; (d) A. Shedge, O. Colombani, T. Nicolai and C.

2014, 5, 4756.

Chem.*, 2005, 72, 695; (b) Y. Xu, Q. Xu, J. Lu, X. Xia and L. Wang,

39 (a) J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe and D. R.
Phys.*, 2010, 211, 297.

6071.

42 L. Sun, N. Petzetakis, A. Pitta-Barry, T. L. Schiller, N. Kirby, D. J.
2013, 46, 9074.

43 T. Naolou, A. Meister, R. Schöps, M. Pietzsch and J. Kressler, *Soft
Matter*, 2013, 9, 10364.

1674.

46 (a) Y. Zhang, Y. Feng, J. Wang, S. He, Z. Guo, Z. Chu and C. A.
Dreiss, *Chem. Commun.*, 2013, 49, 4902; (b) Y. Zhang, Y. Feng,

47 (a) B. Li, X. Lu, Y. Ma and Z. Chen, *Eur. Polym. J.*, 2014, 60, 255; (b)
1989, 22, 1808.

48 S. N. Sidorov, L. M. Bronstein, Y. A. Kabachii, P. M. Valetsky, P. L.

49 E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo and G.