
Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Polymerization of 5-Alkyl δ -Lactones Catalyzed by Diphenyl Phosphate and Their Sequential Organocatalytic Polymerization with Monosubstituted Epoxides

Junpeng Zhao^a and Nikos Hadjichristidis^{*b}

Organocatalytic ring-opening polymerization (ROP) of three renewable 5-alkyl δ -lactones, namely, δ -hexalactone (HL), δ -nonalactone (NL) and δ -decalactone (DL), using diphenyl phosphate (DPP) was investigated. Room temperature together with a relatively high monomer concentration (≥ 3 M) was demonstrated to be suited for the achievement of a living manner of the ROP, a high conversion of the lactone, a controlled molecular weight and a low dispersity of the polyester. HL, carrying a 5-methyl substituent, showed a much higher reactivity (polymerization rate) and a slightly higher equilibrium conversion than the ones with longer alkyl substituents (NL and DL). The effectiveness of DPP-catalyzed ROP of 5-alkyl δ -lactones facilitated the one-pot performance following the t-BuP4-promoted ROP of monosubstituted epoxides. It has been shown in an earlier study that substituted polyethers acted as "slow initiators" for non-substituted lactones. However, efficient initiations were observed in the present study as substituted lactones were polymerized from the substituted polyethers, which therefore has reinforced the previously developed "catalyst switch" strategy making it a more versatile tool for the synthesis of well-defined polyether–polyester block copolymers involving a large variety of epoxide and lactone monomers.

Introduction

Polyether-polyester type of block copolymers have shown great potential and promising prospect to find wide applications in the fabrication of micro- or nanostructured biomaterials for e.g. drug delivery and controlled release, gene therapy, tissue engineering, etc, owing to the combination, complementation and interplay of the respective physicochemical properties such as biodegradability, biocompatibility, solubility/miscibility, rigidity/flexibility, crystallinity derived from each of the blocky components.¹⁻⁵ Ring-opening polymerization (ROP) epoxides^{6, 7} and cyclic esters (lactones or lactides)⁸⁻¹¹ has been a commonly used method to synthesize, respectively, polyethers and polyesters with controlled molecular weights, low dispersities and tailored macromolecular structures. One-pot sequential ROP of the corresponding epoxide and cyclic ester is clearly the most ideal route for the synthesis of the polyetherpolyester block copolymer, which seems straightforward and facile at the first glance as the polyether and polyester chains both grow maintaining an alkoxide/hydroxyl end group. However, it has remained a major challenge as the monomers are suited to different initiating/catalytic systems, i.e. the active

species that work for epoxide (or cyclic ester) can either be inactive or lead to uncontrolled polymerization for the other, especially in the case of conventional metal-based initiating/catalytic systems. Therefore, the preparation of polyether–polyester block copolymers is generally tedious as multiple steps of synthesis, isolation and purification are required.¹²

The recent development of organocatalytic polymerization methodologies ¹³⁻¹⁶ has offered new opportunities for the fulfillment of such synthetic tasks. Similarly to their metallic counterparts, organic catalysts also need to be appropriately chosen for each specific monomer type to achieve the best compromise between polymerization rate and control. For example, a strong phosphazene base (*t*-BuP₄) is well suited for the ROP of epoxides (either ethylene oxide or the monosubstituted ones), ¹⁷⁻²⁵ while strong organic acids (such as trifluoromethanesulfonic acid, sulfonimide derivatives and phosphoric acids) appear more appropriate for cyclic esters. ²⁶⁻³⁴ Although neither can act as an ideal single catalyst for both types of monomers, ³⁵⁻³⁷ the combination (sequential performance) of *t*-BuP₄-promoted ROP of epoxides and acid-catalyzed ROP of lactones, i.e. the "catalyst switch" strategy,

RSCPublishing

ARTICLE

Figure 1. Formula of the monosubstituted epoxides and 5-alkyl δ -lactones used in this study.

has been successfully used to achieve one-pot preparation of well-defined polyether-polyester block copolymers. 35, 38

Previously it was found that when a monosubstituted epoxide (e.g. 1,2-butylene oxide) and a non-substituted lactone (e.g. ε caprolactone and δ -valerolactone) were sequentially polymerized, the polyether chain end (a secondary alcohol) acted as a "slow initiator" for the lactone as the polyester chain grew through a more nucleophilic primary-alcohol end group.³⁵ Hence we are interested to examine the sequential ROP of a monosubstituted epoxide and a ω -substituted lactone, which both polymerize with the chain end maintained a secondary alcohol. Two monosubstituted epoxides and three commercially available 5-alkyl δ -lactones, as listed in Figure 1, are involved in the present study. The use of such bio-sourced lactone monomers, 39, 40 associated with organocatalytic polymerization methods, adds significantly to the interests lying in the corresponding polyester-based materials due to their renewability and sustainability. 41-46 The effectiveness of the organic acid catalyst (diphenyl phosphate) for the ROP of the substituted lactones was first investigated aiming at conditions to reach high monomer conversions and controlled molecular weights. Then the one-pot sequential ROP of the two types of monomers was performed using the suitable conditions for each via the "catalyst switch" strategy.

Experimental Section

Chemicals

All chemicals were purchased from Aldrich. *N*-Ethyldiisopropylamine (EDIPA; 99%), acetic acid (AcOH; 99%) and phosphazene base (*t*-BuP₄; 0.8 M in *n*-hexane) were used as received. Toluene (HPLC grade) was dried and distilled successively over calcium hydride and *n*-butyllithium. 1,2-Butylene oxide (BO; 99%) and 2-ethylhexyl glycidyl ether (EHGE; 98%) were dried and distilled successively over calcium hydride and sodium hydride. 3-Phenyl-1-propanol (PPA; 98%), *δ*-hexalactone (HL; 98%), *δ*-nonalactone (NL;

98%) and δ -decalactone (DL; 98%) were dried over calcium hydride and distilled twice under vacuum. Diphenyl phosphate (DPP; 99%) was first dissolved in toluene (HPLC grade) followed by slow cryo-evaporation of toluene on the vacuum line, and then dissolved in purified toluene to prepare a 2.0 M solution.

Instrumentation

Size exclusion chromatography (SEC) was conducted in chloroform (CHCl₃) at 30 °C using two 7.8 mm × 300 mm (5 μm) Styragel columns (Styragel HR 2 and Styragel HR 4) at a flow rate of 1.0 mL min⁻¹. Calibration was done with a series of polystyrene (PS) standards to obtain the apparent numberaverage molecular weights $(M_{n.SEC})$ of the (co)polymers and their dispersities (M_w/M_p) . Nuclear magnetic resonance (NMR) measurements were carried out at room temperature using a Bruker AVANCEDIII 600 spectrometer operating at 600 MHz; CDCl₃ (Aldrich) was used as solvent. ¹H NMR spectra were used to calculate the molecular weights $(M_{n,NMR})$ of the isolated (co)polymers using the integrals of the characteristic signals from the end groups and main bodies of the (co)polymers. Differential scanning calorimetry (DSC) measurements were performed with a Mettler Toledo DSC1/TC100 system in a nitrogen atmosphere. The samples were first heated from room temperature (RT) to 100 °C in order to erase the thermal history, then cooled to -150 °C and finally heated again to 100 °C at a heating/cooling rate of 10 °C min⁻¹. The second heating curve was used to acquire the glass transition temperature (T_{σ}) , which was determined as the temperature corresponding to the middle (half-height) of the glass transition.

DPP-catalyzed ROP of 5-alkyl δ -lactones

Typical procedure for PDL41 and PDL 42 (Table 1): 0.057 mL of PPA (0.42 mmol), 0.21 mL of DPP solution (0.42 mmol of DPP) and 1.6 mL of clean toluene were charged into a reaction flask. Then 3.0 mL of DL (16.8 mmol) was added to start the polymerization. Aliquots were withdrawn (0.05 mL each) in an argon flow in different time intervals. Each aliquot was injected to a mixture of 1.0 mL of CDCl₃ and two drops of EDIPA. This solution was used for ¹H NMR measurement to determine the conversion of DL. 0.1 mL of such CDCl₃ solution was diluted with 1.0 mL of CHCl₃ for SEC analysis. After 72 h, the conversion of DL reached 78%. The polymer is termed as PDL41 (Table 1). $M_{\rm n,theor}$ = 5.3 kg mol⁻¹. $M_{\rm n,SEC}$ = 9.1 kg mol⁻¹, $M_{\rm w}/M_{\rm n}$ = 1.20.

As the second monomer feed, 5.0 mL of DL (28.0 mmol) was added to PDL41 solution. Aliquots were withdrawn from time to time for ¹H NMR and SEC analysis. After another 168 h, the polymerization was quenched by addition of 1 mL of

RSCPublishing

ARTICLE

Table 1. Polymerization conditions and macromolecular characteristics of the products.

polymer	temp.a	$[\mathbf{M}]_0^a$	[M] ₀ /[OH] ₀ ^a	time ^a	conv.a	$M_{ m n,theor}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$M_{ m n,NMR}^c$	$M_{ m n,SEC}^{d}$	$M_{\rm w}/M_{\rm n}{}^d$
DDI 1	(°C)	(mol L ⁻¹)	50	(h)	(%)	(kg mol ⁻¹)	(kg mol ⁻¹)	(kg mol ⁻¹)	
PDL1	RT RT	1.5	50 50	48 48	6 68	5.8	- 6 1	8.3	1.12
PDL2		3.0					6.1		
PDL3	RT	3.5	50	114	80	6.8	7.4	10.9	1.16
PDL41	RT	3.5	40	72	78	5.3	_	9.1	1.20
$PDL42^{e}$	RT	4.5	107	168	83	15.1	16.2	26.4	1.09
PDL5	40	3.5	40	72	68	4.6	-	8.5	1.36
PBO1	40	bulk	41	24	>99	3.0	3.1	4.6	1.04
PBO2	40	bulk	41	24	>99	3.0	2.9	4.5	1.05
PBO2PDL	RT	3.5	40	72	77	8.2	8.3	11.7	1.09
PNL11	RT	3.5	40	72	78	4.9	_	9.7	1.18
$PNL12^e$	RT	4.5	80	72	80	10.0	11.3	18.4	1.10
PEHGE1	40	bulk	27	24	>99	5.0	5.4	5.1	1.07
PEHGE2	40	bulk	27	24	>99	5.0	5.4	5.3	1.05
PEHGE2PNL	RT	3.7	53	120	80	11.6	12.3	15.0	1.09
PHL11	RT	3.5	40	24	85	3.9	_	8.8	1.17
$PHL12^e$	RT	5.7	107	24	89	10.9	11.4	23.6	1.09
PBO3	40	bulk	55	24	>99	4.0	4.2	6.7	1.04
PBO3PHL	RT	3.7	71	31	87	11.1	10.9	18.6	1.09
PEHGE3	40	bulk	27	24	>99	5.0	5.5	5.1	1.08
PEHGE3PHL	RT	3.5	69	31	88	11.9	12.2	16.3	1.16

"Temperature, monomer concentration, feed ratio of monomer to the alcoholic initiator (hydroxyl group), time and monomer conversion for the ROP of the epoxide or lactone in the case of polyether or polyester homopolymer, and for the ROP of the lactone (the second monomer) in case of polyether–polyester diblock copolymer. The ratio of the catalyst to the alcoholic initiator is kept at 0.1 for the ROP of epoxides and 1.0 for the ROP of lactones ([*t*-BuP₄]₀/[OH]₀ = 0.1 and [DPP]₀/[OH]₀ = 1). Theoretical number-average molecular weight calculated from the feed and monomer conversion. Number-average molecular weight calculated from ¹H NMR spectrum of the isolated polymer using integrals of the characteristic signals from the end group and polymer main body. Mumber-average molecular weight and dispersity obtained from SEC analysis (CHCl₃, 30 °C, PS standards) of the non-precipitated polymer. PDL42, PNL12 and PHL12 are from chain extension experiments (second monomer feed) of PDL41, PNL11 and PHL11, respectively. The reaction time herein represents the time used for chain extension

EDIPA. Then the solution was diluted with 10 mL of toluene and poured into cold (-20 °C) methanol to precipitate the polymer. The viscous liquid polymer (PDL42, Table 1) was then collected and dried substantially in vacuum. Conv.(DL) = 83%; theoretical number-average molecular weight $(M_{n,theor})$ =15.1 kg mol⁻¹. $M_{\rm n.SEC}$ = 26.4 kg mol⁻¹, $M_{\rm w}/M_{\rm n}$ = 1.09. ¹H NMR (600 MHz, CDCl₃): δ /ppm = 7.20–7.15 (aromatic protons on end group), 5.01–4.71 (–OCOCH₂CH₂CH₂ CH(CH₂CH₂CH₂CH₂CH₃)-), 4.12-4.07 (PhCH₂CH₂CH₂OCO-PDL), 3.62–3.55 (PDL–OCOCH₂CH₂CH₂CH₂CH(CH₂CH₂CH₂CH₂ CH₃)OH), 2.71–2.65 (PhCH₂CH₂CH₂OCO–PDL), 2.43–2.13 (- $OCOCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$)-), 1.99-1.92 (Ph $CH_2CH_2CH_2OCO-PDL$), 1.83–1.37 ($-OCOCH_2CH_2CH_2CH$ $(CH_2CH_2CH_2CH_2CH_3)$ -), 1.36-1.13 (-OCOCH₂CH₂CH₂CH (CH₂CH₂CH₂CH₂CH₃)-), 1.00-0.74 (-OCOCH₂CH₂CH₂CH $(CH_2CH_2CH_2CH_3)-); M_{n,NMR} = 16.2 \text{ kg mol}^{-1}.$

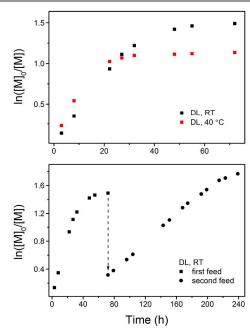
Sequential ROP of a monosubstituted epoxide and a 5-alkyl $\delta\text{-}$ lactone

Typical procedure for PBO2 and PBO2PDL (Table 1): 0.17 mL of PPA (1.3 mmol) and 4.5 mL of BO (51.7 mmol) were charged into a reaction flask and cooled at 0 °C. Then 0.16 mL of t-BuP₄ solution (0.13 mmol of t-BuP₄) was added to start the polymerization. The flask was then sealed by a stopcock and temperature was slowly elevated to 40 °C. After heating and stirring for 24 h, 0.05 mL of the reaction mixture was withdrawn in an argon flow and injected into a mixture of 1 mL of CDCl₃ and a few drops of AcOH for ¹H NMR analysis. 0.1 mL of this solution was diluted with 2 mL of CHCl₃ for SEC measurement. Conv.(BO) > 99%; $M_{\rm n,theor}$ = 3.0 kg mol⁻¹. $M_{\rm n,SEC}$ = 4.5 kg mol⁻¹, $M_{\rm w}/M_{\rm n}$ = 1.05.

Subsequently, 0.71 mL of DPP solution (1.42 mmol of DPP) was added in an argon flow to the living PBO2 solution (1.3 mmol of PBO–OH + PBO–O⁻, 0.13 mmol of PBO–O⁻), upon which the brownish yellow living PBO turned white and opaque indicating the neutralization of the alkoxide PBO chain ends. 15 min later, the flask was cooled to RT and 9.0 mL of DL (50.4 mmol) was added in an argon flow, which turned the

RSCPublishing

ARTICLE


Scheme 1. Schematic illustration of DPP-catalyzed ROP of 5-alkyl δ -lactones.

reaction mixture into a transparent and slightly yellowish solution. Aliquots were withdrawn in different time intervals for ¹H NMR and SEC analysis. After the withdrawal of last aliquot at 72 h, the polymerization was quenched by addition of 1 mL of EDIPA. Then the solution was poured into cold (-20 °C) methanol and kept at -20 °C overnight to precipitate the PBO-b-PDL diblock copolymer. The white viscous liquid was then collected and dried substantially in vacuum. Conv.(DL) = 77%; $M_{\text{n,theor}}(\text{PDL}) = 5.2 \text{ kg mol}^{-1}$, $M_{\text{n,theor}}(\text{PBO-}b\text{-PDL}) = 8.2$ kg mol⁻¹. $M_{\rm n,SEC} = 11.7$ kg mol⁻¹, $M_{\rm w}/M_{\rm n} = 1.09$. ¹H NMR (600) MHz, CDCl₃): $\delta/ppm = 7.20-7.15$ (aromatic protons on the PPA end group), 5.01-4.71 (-OCOCH₂CH₂CH₂CH₂CH(CH₂CH₂ $CH_2CH_2CH_3$)-), 3.75-3.15 (- $CH_2CH(CH_2CH_3)O$ -), 2.70-2.66 (PhC H_2 CH $_2$ CH $_2$ O-PBO-), 2.43-2.16 (-OCOC H_2 CH $_2$ CH $_2$ CH (CH₂CH₂CH₂CH₂CH₃)-), 1.92-1.85 (PhCH₂CH₂CH₂O-PBO-), $1.82-1.37(-CH_2CH(CH_2CH_3)O-)$ and $(-OCOCH_2CH_2CH_2CH_2CH_3)O (CH_2CH_2CH_2CH_2CH_3)-)$, 1.36–1.13 (-OCOCH₂CH₂CH₂CH $(CH_2CH_2CH_2CH_2CH_3)-)$, 1.05-0.74 $(-CH_2CH(CH_2CH_3)O-)$ $M_{\text{n.NMR}}(\text{PBO}) = 2.9 \text{ kg mol}^{-1}, M_{\text{n,NMR}}(\text{PDL}) = 5.4 \text{ kg mol}^{-1},$ $M_{\text{n.NMR}}(\text{PBO-}b\text{-PDL}) = 8.3 \text{ kg mol}^{-1}$.

Results and discussion

It has been demonstrated previously that DPP is an effective organic catalyst for the ROP of non-substituted lactones giving rise to well-defined polyesters at nearly complete monomer conversions. Organocatalytic ROP of renewable 5-alkyl δ -lactones has also been studied, however, significantly less than the non-substituted ones. To assess the feasibility of their sequential ROP with the monosubstituted epoxides using the base—acid "catalyst switch" strategy, DPP-catalyzed ROP of the 5-alkyl δ -lactones (HL, NL and DL in Figure 1) was first investigated (Scheme 1). Similarly to the organic catalyst, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), that has been successfully used to polymerize DL, hosphate type of organic catalysts are also considered to function by a monomer/chain-end dual activation mechanism. $^{32, 47-49}$

DPP-catalyzed ROP of DL was first performed in toluene at RT and different concentrations ([DL]₀/[PPA]₀/[DPP] = 50/1/1). At 1.5 M, a DL conversion of only 6% was reached after 48 h (PDL1 in Table 1). When DL concentration was elevated to ≥ 3

Figure 2. Kinetic plots of DPP-catalyzed ROP of DL at RT and 40 °C (upper figure, PDL41 and PDL5 in Table 1) and at RT upon the first and second monomer feed (lower figure, PDL41 and PDL42 in Table 1).

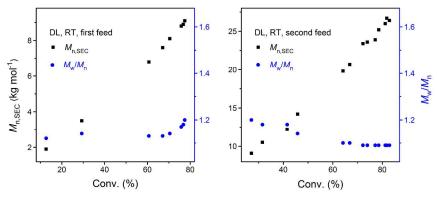
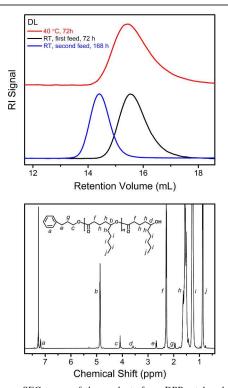
mol L⁻¹ (PDL2 and PDL3 in Table 1), reasonable conversions were reached (ca. 70% after 48 h). The polymers had relatively low dispersities which slightly increased upon extended reaction time (PDL3, from 1.12 to 1.16 as reaction time was extended from 48 h to 114 h). These tests showed that relatively high monomer concentration and long polymerization time are essential for the DPP-catalyzed ROP of 5-alkyl δ -lactones, compared to the non-substituted ones, ^{33, 35} for the achievement of good monomer conversions due to their much lower reactivity. ^{41, 43, 50-52}

Detailed kinetic study was performed with a DL concentration of 3.5 mol L⁻¹ ([DL]₀/[PPA]₀/[DPP] = 40/1/1). Figure 2 shows the kinetics plots obtained under different experimental conditions. In each case, the kinetic plot appears to be linear at the early stages and slowly turns into a plateau after a certain conversion due to the monomer/polymer equilibrium. ⁴¹ The polymerization at the early stages appears to be faster at 40 °C (PDL5 in Table 1) in terms of DL conversion, however, a higher equilibrium conversion of DL is eventually reached at RT (PDL 41 in Table 1), indicating that the formation of PDL is more favored at lower temperature in the present catalytic system used.

As shown by SEC analysis of the withdrawn aliquots, the apparent molecular weight $(M_{n,SEC})$ of PDL increases linearly with DL conversion (Figure 3). A steady increase of the PDL

RSCPublishing

ARTICLE

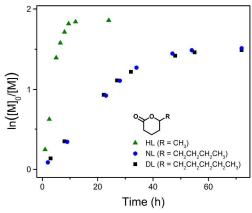

Figure 3. Dependence of apparent molecular weight $(M_{n,SEC})$ and dispersity (M_w/M_n) of PDL on monomer conversion during the DPP-catalyzed ROP of DL upon the first (left) and second (right) monomer feed (corresponding to PDL41 and PDL42 in Table 1, respectively).

Figure 4. Upper: SEC traces of the products from DPP-catalyzed ROP of DL under different conditions (PDL5, PDL41 and PDL42 in Table 1). Lower: ¹H NMR spectrum obtained from a representative isolated PDL (PDL2 in Table 1).

dispersity is also observed after the kinetic plot starts to approach the plateau, which is ascribed to the monomer—polymer (polymerization—depolymerization) equilibrium. Such an effect is more profound at an elevated temperature as PDL5 obtained at 40 °C has a significantly higher dispersity (Table 1 and Figure 4).

To confirm the living manner of such a ROP system, another batch of DL (second monomer feed) was added to PDL41 for a chain extension, upon which the polymerization was clearly "restarted" (Figures 2 and 3, PDL42 in Table 1). Due to the lowered concentration of the catalyst (DPP) and hydroxy species, the polymerization proceeds slower this time (Figure 2). However, linear $M_{n,SEC}$ -conversion dependence is still presented (Figure 3). The equilibrium DL conversion appears to be higher (Figure 2) presumably due to the higher monomer concentration (Table 1) which leads to more favored formation of polymer in the polymerization-depolymerization equilibrium. The dispersity of PDL is kept at a lower level this time (Table 1, Figures 3 and 4) most probably because of the extended length of the polyester chain and the fact that the polymerization was quenched before the kinetic plot completely plateaued. Such results clearly verify the "livingness" of the DPP-catalyzed ROP of DL.

Figure 5. Kinetic plots of DPP-catalyzed ROP of HL, NL and DL at RT ($[M]_0 = 3.5 \text{ mol L}^{-1}$, $[M]_0/[PPA]_0/[DPP] = 40/1/1$) corresponding to PHL11, PNL11 and PDL41 in Table 1, respectively.

RSCPublishing

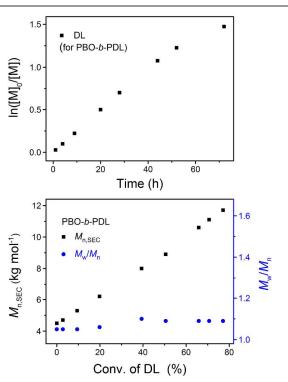
ARTICLE

Scheme 2. Reaction scheme toward the synthesis of polyether–polyester diblock copolymer via sequential organocatalytic ROP of a monosubstituted epoxide and a 5-alkyl δ -lactone using the base \rightarrow acid "catalyst switch" strategy.

Figure 4 also shows the ^{1}H NMR spectrum of a representative PDL after isolation. All the characteristic signals from PPA end group and PDL main body are clearly presented. The molecular weights ($M_{n,NMR}$) of PDLs calculated from the signal integrals (e.g. c and f in Figure 4) are slightly higher than the corresponding theoretical values ($M_{n,theor}$) calculated from the feed and monomer conversion (Table 1). This is because a bit of the low-molecular-weight part of the polymer is removed by the precipitation in methanol (the substituted polyesters have a better solubility in methanol than the non-substituted ones). However, the removal is less than 10 wt.% in all cases as indicated by the mass of the polymers finally collected.

Kinetic studies of DPP-catalyzed ROP of HL and NL under similar conditions (RT, $[M]_0 = 3.5 \text{ mol L}^{-1}$, $[M]_0/[PPA]_0/[DPP]$ = 40/1/1) were also conducted. For a better comparison, Figure 5 presents the kinetic plots of all the three 5-alkyl δ -lactones investigated (PDL41, PNL11 and PHL11 in Table 1). NL, having a 5-butyl substituent, shows a similar polymerization rate to that of DL (with a 5-pentyl substituent) and reaches nearly the same equilibrium conversion (78%, Table 1). On the other hand, the one carrying a 5-methyl substituent (HL) polymerizes much faster and reaches a higher equilibrium monomer conversion (85%, Table 1), indicating that higher reactivity of the lactone monomer leads to more favored formation of polyester in the monomer–polymer equilibrium.⁵⁰ This is consistent with the fact that the ROP of much more active non-substituted lactones (e.g. δ -valerolactone) can reach practically complete monomer conversion. 33, 35

Linear $M_{\rm n,SEC}$ —conversion dependence, together with increased dispersities at high conversions, is also observed in the ROP of NL and HL (Figure S1). Chain extension experiments were also performed for these two monomers (Table 1, from PNL11 to PNL12 and from PHL11 to PHL12), which also showed the restart of the apparently ceased chain growth, further increased molecular weights and lowered


dispersities (Table 1, Figures S2 and S3). The well-defined structures and controlled molecular weights of the obtained PNL and PHL are also confirmed by 1H NMR analysis (Figures S2 and S3, Table 1). These results have disclosed some common features shared by the ROPs of different 5-alkyl δ -lactones regardless of the length of the alkyl substituent and the corresponding monomer reactivity.

Upon the confirmation of the effectiveness of DPP-catalyzed ROP of the 5-alkyl δ -lactones, the one-pot sequential polymerizations with monosubstituted epoxides performed similarly as previously developed. 35, 38 In order to ensure adequately high concentrations for the lactones to polymerize efficiently, the t-BuP₄-promoted ROPs of the epoxides (BO and EHGE, Figure 1) were performed in bulk. As previously demonstrated, the existence of phosphazenium diphenyl phosphate salt decelerate the ROP of the lactones.³⁵ Therefore, in the present study the ratio of t-BuP₄ to the alcoholic initiator was reduced to 0.1 ([t-BuP₄]₀/[PPA]₀ = 0.1, Scheme 2). Nevertheless, complete conversions of the epoxides and well-defined polyethers were still achieved in 24 h (PBO1/2/3 and PEHGE1/2/3 in Table 1, also see Experimental Section), which are essential requirements for the successful performance of the "catalyst switch" strategy.³⁵

After the completed ROP of BO (PBO2 in Table 1), excess DPP was added to neutralize the phosphazenium PBO-alkoxide and to catalyze the subsequent ROP of the second monomer (DL). The eventual ratio of DPP to the hydroxy species was kept at 1.0 in all cases (Scheme 2). The complete dissolution of viscous PBO precursor in liquid DL took *ca.* 1 min, which, however, did not show any influence on the formation of the diblock copolymer as the ROP of DL is a much slower process. Similarly to the case of homopolymerization, the kinetic plot obtained from the ROP of DL appears to be linear at the early stages and bends down later on, indicating that the monomerpolymer equilibrium also exists when the ROP starts from a

RSCPublishing

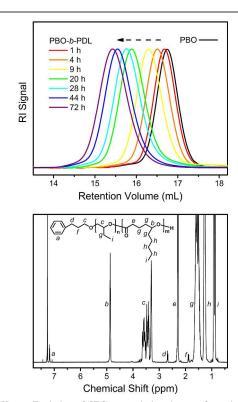
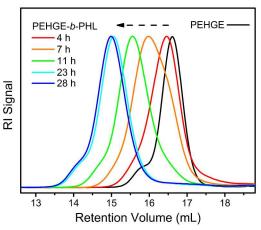

ARTICLE

Figure 6. Kinetic plot of DL (upper) and dependence of apparent molecular weight $(M_{n,SEC})$ and dispersity (M_w/M_n) of PBO-*b*-PDL on DL conversion in its sequential ROP with BO using the "catalyst switch" strategy (PBO2PDL in Table 1).

macroinitiator (Figure 6, upper). Linear $M_{\rm n,SEC}$ —conversion dependence is presented and the dispersity of PBO-b-PDL is kept at a low level (Figure 6, lower) until the polymerization is quenched at a DL conversion of 77%.

The linear kinetic plot implies that the slow initiation encountered in the sequential ROP of a monosubstituted epoxide and a non-substituted lactone may not be the case herein.³⁵ Figure 7 shows the evolution of SEC traces during the transformation of PBO to PBO-b-PDL. It can be seen that the entire peak shifts slowly to the high-molecular-weight side while maintaining a narrow distribution as DL polymerizes, without the emerging of a bimodal distribution. ¹H NMR spectrum of the isolated PBO-b-PDL shows all the characteristic signals from the expected diblock copolymer structure (Figure 7) with the molecular weight of each block calculated to be close to the theoretical values (Table 1). These results have pointed to the fact that the secondary-alcohol end group of PBO is an efficient initiator for DL, as the polymerization of DL also proceeds through a secondaryalcohol end group and in a sufficiently slow manner.


Figure 7. Upper: Evolution of SEC traces during the transformation of PBO to PBO-b-PDL (PBO2 and PBO2PDL in Table 1) using the "catalyst switch" strategy. Lower: ¹H NMR spectrum obtained from the isolated PBO-b-PDL.

The sequential ROP of EHGE and NL (Figure 1) proceeded similarly (Figure S4), which implies that PEHGE, carrying bulky 2-ethylhexyl pendent groups, is also capable of acting as an efficient initiator for the lactone with a low reactivity. The isolated PEHEG-b-PNL (PEHGE2PNL in Table 1) has a low dispersity and a $M_{n,NMR}$ being close to the theoretical value (Table 1 and Figure S4). For the ROP of the more active HL, the less bulky PBO still seems to be an efficient initiator (Figures S5 and S6). However, PEHGE shows some evidence of being a "slow initiator", i.e. a shoulder toward the lowmolecular-weight side in the SEC peak (Figure 8, 4-11 h) and a distinctly non-linear kinetic plot at the early stages of the ROP of HL (Figure S6). Note that the shoulder toward the highmolecular-weight side in the SEC peaks is due to the existence of impurities (e.g. water) that function as difunctional initiators during the ROP of EHGE.⁵³

To better illustrate the initiation efficiency for the DPP-catalyzed ROP of the 5-alkyl δ -lactones, quantatative analysis was carried out utilizing ^{1}H NMR spectra from the aliquots withdrawn during the polymerization (Figure 9). For the ROP of NL and HL initiated by PPA or PEHGE, the chemical shift

RSCPublishing

ARTICLE

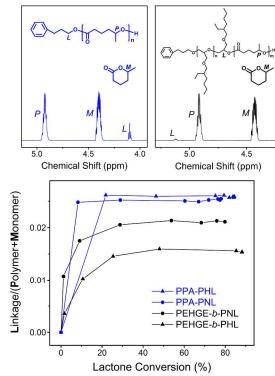


Figure 8. Evolution of SEC traces during the transformation of PEHGE to PEHGE-b-PHL (PEHEG3 and PEHEG3PHL in Table 1) using the "catalyst switch" strategy.

of ester group linking the initiator moiety and the polyester main body is distinct from that of the lactone monomer and polyester (Figure 9, upper). Such a linkage is formed only in the initiation step, which enables us to use the signal integral ratio, Linkage/(Monomer+Polymer), to illustrate the evolution of the initiation using the combined integral of (Monomer+Polymer) as a constant (Figure 9, lower).

For the PPA-initiated ROP of NL/HL, the initiation step is completed before the withdrawal of the first aliquot (monomer conversion < 20%). However, when the polymerization starts from PEHGE, a slower initiation mode is evidently presented for both NL and HL and the initiation is completed at a monomer conversion between 30% and 40%. Such a slow initiation is quite different from the case observed with PBO and a non-substituted lactone, in which the initiation step remains unfinished even after the full conversion of the monomer. 35 In another word, for the ROP of a 5-alkyl δ -lactone the initiation from a macromolecular secondary alcohol is relatively slow, compared to that from a small-molecule primary alcohol, but not slow enough to have a significant impact on the product as the isolated diblock copolymers still have well-defined structures, controlled molecular weights and dispersities (Figures 7, S4, S5, S7 and Table 1). It has to be noted that such analysis cannot be performed for the polymerization from a PBO initiator, as the ¹H NMR signal of the linking group overlaps with others (Figures 7 and S5).

The thermal properties (glass transition) of the isolated polyethers, polyesters and polyether–polyester diblock copolymers were analyzed by DSC (Figure 10). PEHGE,

Figure 9. Illustration of the initiation efficiency for the DPP-catalyzed ROP of the 5-alkyl δ -lactones initiated by small-molecule primary alcohol (PPA, blue) and macromolecular secondary alcohol (PEHGE, black) using ¹H NMR spectra from the aliquots withdrawn during the polymerization (upper) and the evolution of the signal integral ratios (lower).

carrying a larger alkyl pendent group, shows a lower $T_{\rm g}$ than PBO. $T_{\rm g}$ of the substituted polyester also decreases with the increasing length of the alkyl pendent group. PEHGE-b-PNL and PBO-b-PDL each show only one glass transition with the T_{σ} lying between those of the corresponding polyether and polyester homopolymers, indicating that the long alkyl pendent groups, especially those on the polyesters, results in a good miscibility of the polyether and polyester blocks. On the other hand, PEHGE-b-PHL and PBO-b-PHL each present two glass transitions with T_{g} s being close to the value of the corresponding polyether or polyester homopolymer, respectively. It is thus evident that PHL, carrying a short alkyl pendent group, is immiscible with the polyethers, which is consistent with the fact that the non-substituted polyethers and polyesters are usually immiscible and their block copolymers readily undergo nano- or microphase segregation in bulk or solution.4

RSCPublishing

ARTICLE

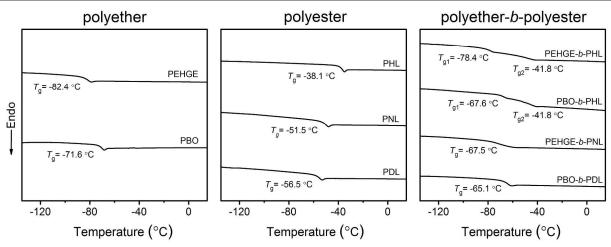


Figure 10. DSC traces (second heating curves) of the isolated polyethers (PEHGE1 and PBO1 in Table 1), polyesters (PHL12, PNL12 and PDL2 in Table 1) and polyether–polyester diblock copolymers (PEHGE3PHL, PBO3PHL, PEHGE2PNL and PBO2PDL in Table 1).

Conclusions

DPP has been demonstrated to be an effective organic catalyst for the ROP of renewable 5-alkyl δ -lactones. In spite of the monomer-polymer equilibrium, reasonable conversions and controlled molecular weights can still be reached provided suitable polymerization conditions, i.e. room temperature, sufficiently high monomer concentrations and relatively long reaction time. The sequential ROP of 5-alkyl δ lactones and monosubstituted epoxides via the base→acid "catalyst switch" strategy is consequently feasible. Although slow initiation from the substituted polyethers is still manifested, the influence is practically insignificant due to the much slower polymerization of the 5-alkyl δ -lactones and thus well-defined polyether-polyester block copolymers can still be achieved. This study has strengthened the "catalyst switch" strategy by involving epoxides and lactones with different substituents, and has further proven it an efficient and versatile synthetic method toward polyether-polyester type of renewable and sustainable materials with variable thermal property, miscibility, phase segregation and morphological behavior, etc.

Notes and references

- ^aFaculty of Materials Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China 510640
- ^bPolymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

E-mail: nikolaos.hadjichristidis@kaust.edu.sa.

- † Electronic Supplementary Information (ESI) available: [additional SEC traces, ¹H NMR spectra and kinetic plots]. See DOI: 10.1039/b000000x/.
- R. T. Liggins and H. M. Burt, Adv. Drug Delivery Rev., 2002, 54, 191-202.
- 2. L. S. Nair and C. T. Laurencin, Progr. Polym. Sci., 2007, 32, 762-798.
- M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff and A. J. Domb, Adv. Drug Delivery Rev., 2007, 59, 187-206.
- 4. R. V. Castillo and A. J. Müller, *Progr. Polym. Sci.*, 2009, **34**, 516-560.
- X. Wei, C. Gong, M. Gou, S. Fu, Q. Guo, S. Shi, F. Luo, G. Guo, L. Qiu and Z. Qian, *Int. J. Pharm.*, 2009, 381, 1-18.
- 6. H. Keul and M. Möller, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 3209-3231.
- A.-L. Brocas, C. Mantzaridis, D. Tunc and S. Carlotti, *Progr. Polym. Sci.*, 2013, 38, 845-873.
- O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, *Chem. Rev.*, 2004, 104, 6147-6176.
- O. Coulembier, P. Degee, J. L. Hedrick and P. Dubois, *Progr. Polym. Sci.*, 2006, 31, 723-747.
- 10. A. P. Dove, Chem. Commun., 2008, 6446-6470.
- 11. M. Labet and W. Thielemans, Chem. Soc. Rev., 2009, 38, 3484-3504.
- 12. N. Hadjichristidis, S. Pispas and G. Floudas, *Block Copolymers*, John Wiley & Sons, Hoboken, 2003.
- N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G. Lohmeijer and J. L. Hedrick, *Chem. Rev.*, 2007, **107**, 5813-5840.
- M. K. Kiesewetter, E. J. Shin, J. L. Hedrick and R. M. Waymouth, *Macromolecules*, 2010, 43, 2093-2107.
- 15. A. P. Dove, ACS Macro Lett., 2012, 1, 1409-1412.
- M. Fevre, J. Pinaud, Y. Gnanou, J. Vignolle and D. Taton, *Chem. Soc. Rev.*, 2013, 42, 2142-2172.
- 17. B. Esswein and M. Möller, Angew. Chem. Int. Ed., 1996, 35, 623-625.

- B. Eßwein, N. M. Steidl and M. Möller, Macromol. Rapid Commun., 1996 17 143-148
- H. Schlaad, H. Kukula, J. Rudloff and I. Below, Macromolecules, 2001, 34, 4302-4304
- H. Misaka, R. Sakai, T. Satoh and T. Kakuchi, *Macromolecules*, 2011, 44, 9099-9107.
- 21. J. Zhao and H. Schlaad, Macromolecules, 2011, 44, 5861-5864.
- H. Misaka, E. Tamura, K. Makiguchi, K. Kamoshida, R. Sakai, T. Satoh and T. Kakuchi, J. Polym. Sci. Part A: Polym. Chem., 2012, 50, 1941-1952.
- T. Isono, K. Kamoshida, Y. Satoh, T. Takaoka, S. Sato, T. Satoh and T. Kakuchi, *Macromolecules*, 2013, 46, 3841-3849.
- J. Zhao, H. Alamri and N. Hadjichristidis, *Chem. Commun.*, 2013, 49, 7079-7081.
- J. Zhao, D. Pahovnik, Y. Gnanou and N. Hadjichristidis, *Macromolecules*, 2014, 47, 1693-1698.
- D. Bourissou, B. Martin-Vaca, A. Dumitrescu, M. Graullier and F. Lacombe, *Macromolecules*, 2005, 38, 9993-9998.
- J. M. Ren, Q. Fu, A. Blencowe and G. G. Qiao, ACS Macro Lett., 2012, 1, 681-686.
- 28. R. Kakuchi, Y. Tsuji, K. Chiba, K. Fuchise, R. Sakai, T. Satoh and T. Kakuchi, *Macromolecules*, 2010, **43**, 7090-7094.
- K. Makiguchi, T. Satoh and T. Kakuchi, J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 3769-3777.
- K. Makiguchi, S. Kikuchi, T. Satoh and T. Kakuchi, J. Polym. Sci. Part A: Polym. Chem., 2013, 51, 2455-2463.
- Y. Jin, Y. Ji, X. He, S. Kan, H. Xia, B. Liang, J. Chen, H. Wu, K. Guo and Z. Li, *Polym. Chem.*, 2014, 5, 3098-3106.
- D. Delcroix, A. Couffin, N. Susperregui, C. Navarro, L. Maron, B. Martin-Vaca and D. Bourissou, *Polym. Chem.*, 2011, 2, 2249-2256.
- K. Makiguchi, T. Satoh and T. Kakuchi, Macromolecules, 2011, 44, 1999-2005.
- 34. J. Xu, J. Song, S. Pispas and G. Zhang, *J. Polym. Sci. Part A: Polym. Chem.*, 2014, **52**, 1185-1192.
- 35. J. Zhao, D. Pahovnik, Y. Gnanou and N. Hadjichristidis, *Macromolecules*, 2014, **47**, 3814-3822.
- K. Brzezińska, R. Szymański, P. Kubisa and S. Penczek, Makromol. Chem., Rapid Commun., 1986, 7, 1-4.
- 37. T. Biela and P. Kubisa, Makromol. Chem., 1991, 192, 473-489.
- J. Zhao, D. Pahovnik, Y. Gnanou and N. Hadjichristidis, J. Polym. Sci. Part A: Polym. Chem., 2015, 53, 304-312.
- T. B. Adams, D. B. Greer, J. Doull, I. C. Munro, P. Newberne, P. S. Portoghese, R. L. Smith, B. M. Wagner, C. S. Weil, L. A. Woods and R. A. Ford, Food Chem. Toxicol., 1998, 36, 249-278.
- 40. Y. Gounaris, Flavour Frag. J., 2010, 25, 367-386.
- 41. M. T. Martello, A. Burns and M. Hillmyer, *ACS Macro Lett.*, 2011, 1, 131-135.
- J.-O. Lin, W. Chen, Z. Shen and J. Ling, *Macromolecules*, 2013, 46, 7769-7776.
- 43. P. Olsén, T. Borke, K. Odelius and A.-C. Albertsson, *Biomacromolecules*, 2013, **14**, 2883-2890.
- L. Jasinska-Walc, M. R. Hansen, D. Dudenko, A. Rozanski, M. Bouyahyi, M. Wagner, R. Graf and R. Duchateau, *Polym. Chem.*, 2014, 5, 3306-3310.
- D. Tang, C. W. Macosko and M. A. Hillmyer, *Polym. Chem.*, 2014, 5, 3231-3237.

- A. L. Holmberg, K. H. Reno, R. P. Wool and I. I. I. T. H. Epps, Soft Matter, 2014, 10, 7405-7424.
- K. Makiguchi, T. Yamanaka, T. Kakuchi, M. Terada and T. Satoh, Chem. Commun., 2014, 50, 2883-2885.
- K. Makiguchi, T. Saito, T. Satoh and T. Kakuchi, J. Polym. Sci. Part A: Polym. Chem., 2014, 52, 2032-2039.
- Y. Miao, Y. Phuphuak, C. Rousseau, T. Bousquet, A. Mortreux, S. Chirachanchai and P. Zinck, J. Polym. Sci. Part A: Polym. Chem., 2013, 51, 2279-2287.
- W. H. Carothers, G. L. Dorough and F. J. van Natta, J. Am. Chem. Soc., 1932, 54, 761-772.
- 51. H. Kikuchi, H. Uyama and S. Kobayashi, *Polym. J.*, 2002, **34**, 835-840.
- J. van Buijtenen, B. A. C. van As, M. Verbruggen, L. Roumen, J. A. J. M. Vekemans, K. Pieterse, P. A. J. Hilbers, L. A. Hulshof, A. R. A. Palmans and E. W. Meijer, J. Am. Chem. Soc., 2007, 129, 7393-7398.
- 53. J. Zhao, D. Pahovnik, Y. Gnanou and N. Hadjichristidis, *Polym. Chem.*, 2014, **5**, 3750-3753.