Photochemical & Photobiological Sciences

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pps

Fluorescence quenching in β -cyclodextrin vesicles: Membrane confinement and host-guest interactions

Frauke Schibilla¹, Linda Stegemann², Cristian A. Strassert², Fabio Rizzo^{1,3}*, Bart Jan Ravoo¹*

¹Organic Chemistry Institute and CeNTech, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, D-48149 Münster, Germany; b.j.ravoo@uni-muenster.de

²Physical Institute and CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany.
³Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via Golgi 19, I-20133 Milano, Italy; fabio.rizzo@istm.cnr.it

Fluorescent β -cyclodextrin vesicles (β -CDV) that display host cavities available for host-guest interactions at the vesicle surface were prepared by incorporation of hydrophobic spirobifluorene-based dye **1** in the membrane of unilamellar vesicles. Fluorescence quenching of dye **1** was observed in the presence of different quenchers. Methyl viologen **2** does not quench dye **1** because it does not bind to β -CDV. 4-Nitrophenol **3** and 4-nitrophenol covalently connected to adamantane **4** quench the fluorescence of dye **1** in neutral solution, but by different mechanisms according to lifetime measurements. The quenching efficiency of **3** is pH dependent due to the presence of the phenolate form. Competition experiments with excess host and guest showed that **3** is likely to diffuse in and out of the membrane, while **4** forms and inclusion complex with β -CDV leading to close contact and efficient quenching. Our findings confirm that this dynamic supramolecular system is a versatile model to investigate quenching and recognition processes at bilayer membranes.

Introduction

Fluorescence quenching describes any process decreasing the intensity of the radiative decay of emitting compounds. Quenching resulting from collisional encounter (dynamic quenching) and complex formation (static quenching) requires molecular contact between a quencher and the fluorophore and can thus be used to analyze the interaction between molecules.¹ Fluorescence quenching is often used to detect molecular recognition in sensors, which play an important role in biology as well as chemical analysis.² Among others, fluorescence quenching has applications in biochemistry such as the investigation of accessibility and localization of probes in a membrane or protein.^{1,3} Furthermore, quenching is used for the detection of analytes in fluorescent chemosensors with high sensitivities and fast response times.^{4,5,6,7} It is important to understand and control quenching processes in order to design and construct selective chemosensors.

Almost all biological processes depend on molecular recognition. Vesicles are widely used as model for biological membranes.^{8,9} Vesicles can encapsulate water-soluble molecules in the aqueous interior and incorporate hydrophobic molecules into the bilayer membrane. Synthetic amphiphiles used to form vesicles can additionally include a binding motif which selectively binds complementary molecules. Vesicles are attractive systems to control photophysical processes such as quenching.^{10,11} Photochemical reactivity is often enhanced by binding quencher and fluorophore to vesicles compared to homogeneous solutions.¹² For example, electron transfer from hydrophobic molecules incorporated in the membrane of liposomes to molecules bound electrostatically at the surface of the vesicle was investigated.^{13,14} Other reports describe the preparation of an artificial photosynthetic reaction center incorporated in the bilayer of a liposome¹⁵ and the improvement of the efficiency of electron transfer by using charged photosensitizers adsorbed on charged vesicles.¹⁶ Also luminescent chemosensing vesicles have been described.^{17,18,19}

Among the amphiphilic compounds used to form vesicles, modified cyclodextrins (CDs) appear very interesting as stimuliresponsive nanomaterials due to their host-guest properties.²⁰ In fact, CDs are able to act as host for hydrophobic molecules in aqueous solution and for example are used as molecular encapsulators in pharmaceutical applications.^{21,22,23} In addition, amphiphilic CDs form self-assembled nanostructures.²⁴ Vesicles consisting of β -CD amphiphiles (β -cyclodextrin vesicles, β -CDV) can encapsulate molecules in their aqueous interior, incorporate hydrophobic molecules in the membrane and form selective inclusion complexes at the surface of the vesicle.²⁵ For example, the incorporation of hydrophobic, magnetic nanoparticles in the membrane of β -CDV and the directed assembly by magnetic forces and photoresponsive hydrophobic guest molecules has been reported.²⁶ Studies on the modification of host-guest interactions at β -CDV in the presence of competitive host or guest are also reported in literature.^{27,28} Förster resonance energy transfer (FRET) between a hydrophobic dye incorporated in the membrane of β-CDV acting as donor and an acceptor fluorophore bearing adamantane, a well-known guest for β -CD, was used to investigate the dynamic multivalent molecular recognition of CDV.²⁹ Thus, β-CDV appear as suitable systems to control photophysical processes by the combination of hydrophobic copartitioning and host-guest interactions. Recently, there have been a number of reports on the combination of chromophores with β -CDV or CD nanoparticles. The integration of photosensitizers in β-CDV or CD nanoparticles may potentially find application in nanomedicine as a system for photodynamic therapy.^{21,30,31,32} However, systematic photophysical studies of these structures are rare.³³. In this paper we use the β -CDV as a

model membrane to investigate the quenching of the fluorescence of an incorporated dye with guest compounds interacting in a different way with β -CDV. In particular, we describe the incorporation of spirobifluorene chromophore 1^{34} (2,7-bis-(4-(*N*,*N*-diphenylamino)phen-1-yl)-9,9-spirobifluorene) in the membrane of β -CDV and the investigation of fluorescence quenching by three different quenchers depicted in Chart 1.

Chart 1: Schematic representation of β -CDV (5) with incorporated spirobifluorene-based dye 1 and different binding modes of quenchers methyl viologen (2), 4-nitrophenol (3) and 4-nitrophenol covalently connected to adamantane (4).

Methyl viologen **2** (commonly called paraquat) is widely used as herbicide and it is highly toxic to humans and animals. People working with this herbicide are more likely to develop Parkinson's disease.^{35,36} Also 4-nitrophenol **3** is toxic, hazardous for the environment and suspected to be carcinogenic. It is used as an important intermediate in industrial synthesis for explosives, pesticides and drugs and is eventually released to the environment as waste.³⁷ The detection of paraquat and 4nitrophenol and their derivatives is discussed in recent literature.^{38,39,40,41} To increase the affinity of **3** to CD, we synthesized 4-(2-((adamant-1-yl)oxy)ethoxy)nitrobenzene **4** in which **3** is covalently connected to adamantane. The fluorescence quenching of **1** was investigated using fluorescence spectroscopy and lifetime measurements.

Results and Discussion

Spirobifluorene derivative $\mathbf{1}^{34}$ and amphiphilic β -CD $\mathbf{5}^{25,42}$ were synthesized as described previously. Experimental details of the synthesis of $\mathbf{4}$ are reported in the Electronic Supplementary Information (ESI). Highly hydrophobic spirobifluorene derivative $\mathbf{1}$ shows an intense luminescence in the blue region. Due to its rigid cross-like shape, π - π stacking and aggregation are hampered even at high concentration. Thus, we can reasonably exclude that the emission is affected by side effects such as the formation of excimers.³⁴ Therefore, $\mathbf{1}$ is highly suitable as a photophysical membrane probe.

Unilamellar β -CDV with incorporated dye **1** were prepared by sonication and extrusion in phosphate buffer at pH 7.2. The average diameter of the vesicles was around 120 nm according to dynamic light scattering (DLS) measurements. The concentration heptakis[6-deoxy-6-dodecylthio-2-oligo(ethyleneoxide)]-βof cyclodextrin (5) was 100 μ M, while the average amount of incorporated dye 1 was around 6 µM calculated by absorption measurements (the dye's absorbance lies approximately between 0.40 and 0.45). It is important to note that this calculation is strongly affected by the scattered light due to the presence of vesicles. Figure 1 shows the absorption and emission spectra of **1** incorporated in β -CDV. The absorption spectrum shows the π - π * band with a maximum at 375 nm. The emission band has a peak at 420 nm for an excitation wavelength (λ_{ex}) of 375 nm, slightly blue shifted compared to the fluorescence in solution.34

Figure 1: Absorption (dashed line) and normalized fluorescence intensity (solid line) spectra (λ_{exc} = 375 nm) of 1 (6 μ M) incorporated in β -CDV in phosphate buffer (pH 7.2).

Figure 2: Microscopy images of GUVs with incorporated 1: Left: light microscopy with UV-irradiation. Right: fluorescence microscopy.

To study the distribution of the dye in the membrane microscopically, giant unilamellar vesicles (GUVs) with incorporated **1** were prepared by electroformation. Microscopic images of these GUVs (Figure 2) indicate spherical and elongated vesicles with slightly irregular surfaces. Similar GUVs were previously described by our group for pure β -CDV.⁴³ GUVs show fluorescence exclusively in the region of the membrane and thus these observations confirm that dye **1** is confined to the membrane.

Although the dye and the cyclodextrin are in close proximity, we can reasonable exclude the formation of inclusion complexes. In fact, the rigid spirobifluorene derivative **1** appears too large to bind the cavity of β -CD and peripheral phenyl rings show low binding constant values.^{44,45} Thus all cavities along the vesicle can be considered available for host-guest interactions. The vesicles are stable for more than one day and their stability is not affected by the addition of quenchers **2**, **3** or **4** up to 100 μ M.

Compounds 2-4 all quench the fluorescence of 1 in organic solutions, but each have different affinity for β -CD. Dicationic quencher 2 is highly hydrophilic and thus is not able to form hostguest complexes with β -CD. Quencher **3** is soluble in water, but shows moderate affinity towards β -CD (K_a $\approx 10^2$ -10³ M⁻¹)⁴⁶, while adamantane derivative 4 strongly binds β -CD⁴⁷ (K_a $\approx 10^4$ M⁻¹) and is not soluble in water. On the basis of these data, we assumed a dynamic partitioning of nitrophenol **3** between solution and β -CDV and a preferential localization of 4 at the surface of β -CDV close to the dye. To investigate the fluorescence quenching, emission spectra of 1 incorporated in β -CDV were measured in presence of 2-4 at different concentration (see ESI Figures S1 and S2). The concentration dependent quenching of 1 by 2-4 shown in Figure 3 is reported as the ratio F/F_0 at the emission maximum (420 nm), where F and F_0 are the emission intensities of 1 incorporated in β -CDV in presence and absence of quenchers, respectively. This ratio allows a direct comparison of the quenching efficiency among different quenchers. The fluorescence data F and F₀ were corrected using the formula reported in the ESI, which takes into account the co-absorption of **1** and the quencher at the excitation wavelength (absorption at λ_{exc} = 375 nm) and the inner filter effect at the emission wavelength (absorption at λ_{em} = 420 nm) (see ESI Figure S3).¹ We emphasize the importance of the correction factor, since in fact the *uncorrected* data would suggest that **3** and **4** have the same quenching efficiency (see ESI Figure S4). In the text, we refer the corrected values of F and F₀.

Figure 3: F/F₀ at 420 nm (λ_{exc} = 375 nm) of **1** incorporated in β -CDV in phosphate buffer (pH 7.2) as a function of the concentration of quencher (Q) **2**, **3** and **4**. F and F₀ are the emission maximum in presence and absence of quenchers, respectively.

As depicted in Figure 3, the presence of 2 does not influence the fluorescence in vesicle solution (black squares). As expected, the dicationic and hydrophilic methyl viologen remains in solution resulting in a large distance between 1 and 2, while a close contact is necessary for quenching. In contrast, 3 (red circle) and 4 (blue triangle) quench the fluorescence of the dye. Despite their similar structure, 4 results to be more efficient than 3.

To investigate the quenching process in more detail the Stern-Volmer plot was used. The classical Stern-Volmer equation can be written as $F_0/F = 1 + K_{SV}$ [Q], where F_0 and F is the intensity of the fluorophore in absence and presence of the quencher, K_{SV} is the Stern-Volmer constant and [Q] is the concentration of the quencher. The equation shows linear behavior and describes dynamic ($\tau_0/\tau = F_0/F$) or static ($\tau_0/\tau = 1$) quenching (τ_0 and τ are the lifetime of the dye in the absence and in the presence of quencher Q, respectively). In some cases dynamic and static quenching appear simultaneously resulting in a positive deviation from linearity. Therefore, the adjusted Stern-Volmer plot, $F_0/F = (1 + K_D [Q])$ ($1 + K_S$ [Q]), can be divided in a linear dynamic (K_D) and linear static (K_S) part, whereby the dynamic part ($1 + K_D$ [Q]) is equal to τ_0/τ .¹

To analyze the Stern-Volmer plot, the fluorescence lifetime of **1** incorporated in β -CDV was measured as a function of the concentration of **2**, **3** or **4** (Figure 4). The average lifetime (τ_0) of dye **1** incorporated in β -CDV in aqueous solution is **1**.0 ns, which is slightly lower than the value reported for **1** in organic solvent

Accepted Manuscr

Photochemical & Photobiological Sciences

(1.3 ns).³⁴ Upon increasing the concentration of **2** in solution, the lifetime remains almost constant. The addition of **3** leads to a lower decrease in lifetime (τ (100 μ M **3**) = 0.86 ns) compared to the addition of **4** (τ (100 μ M **4**) = 0.45 ns) (Figure 4). The different behaviour of **3** and **4** indicates the operation of dissimilar quenching mechanisms. The Stern-Volmer plots for quenching of **1** incorporated in β -CDV with **3** and **4** are shown in Figure 5. As depicted in Figure 5, the slope of F₀/F in the presence of **3** or **4** shows a positive deviation from linearity, which refers to a complex quenching process compared to the classic behaviour.

Figure 4: Fluorescence lifetime (λ_{exc} = 375 nm) of **1** incorporated in β -CDV in phosphate buffer (pH 7.2) in dependence of the concentration of quencher (Q) **2** (black square), **3** (red circle) and **4** (blue triangle).

Figure 5: Stern-Volmer plot (F_0/F , black square) divided in dynamic (τ_0/τ , red circle) and apparent static quenching ((F_0/F)/(τ_0/τ), blue triangle) for quenching of 1 incorporated in β -CDV at pH 7.2 in dependence of different concentrations of 3 (up) and 4 (down).

In order to interpret these data, the dynamic and static contribution of the quenching have to be evaluated separately. The dynamic part of the quenching can be determined by lifetime measurements and showed linear behaviour, as indicated in the following equation:

$$\frac{\tau_0}{\tau} = 1 + K_D[Q]$$

The dynamic Stern-Volmer constant K_D was calculated to be 1.75 $\times~10^3~M^{-1}$ for 3 and $1.2~\times~10^4~M^{-1}$ for 4. In both cases the contribution of dynamic quenching to the decrease of luminescence is high. The second quenching contribution $((F_0/F)/(\tau_0/\tau))$ could be assigned to apparent static quenching, but shows an exponential growth instead of a linear behaviour (blue triangle in Figure 5). The upward curvature cannot be attributed to classic static quenching with the formation of a ground-state non-fluorescent complex, but to the existence of a sphere of effective quenching, as predicted by the Perrin's model.⁴⁸ In fact, the fluorophore is strictly confined in the membrane with low diffusion freedom. As a consequence, the quencher can act only when it is located near the dye at the moment of excitation.

4

Because of the high local concentration in the vesicle, the positive deviation from linearity in the Stern-Volmer plot with exponential behaviour can be associated to a simultaneous dynamic and static quenching in which the sphere of quenching has to been considered. The equation of the sphere of quenching is $F_0/F = (1 + K_D[Q]) * e^{VN_A[Q]}$ where V is the volume of the sphere and N_A the Avogadro's number.¹ By plotting $\ln(\frac{F_0/F}{1+K_D})$ vs. [Q] it is possible to calculate the radius of the quenching sphere. We obtained a value for R of 15 Å and 19 Å for **3** and **4** respectively, which are in agreement with the size of the

membrane (diameter 42 Å).²⁵ Additionally, the quantum yield (QY) was measured to calculate

the rates of radiative and non radiative decay (k_r and k_{nr}).

$$k_r = \frac{QY}{\tau}$$
 $k_{nr} = \frac{(1 - QY)}{\tau}$

The QY of the spiro-compound incorporated in β -CDV without quencher is 45% and thus lower than for **1** in DMF (87%).³⁴ The QY decreases with increasing concentration of **3** or **4**, whereby the absorbance of quencher **3** and **4** overlaps the absorbance of **1** and thus the measured quantum yield had to be corrected (see ESI Figure S3).

In the absence of quencher, the rate of radiative decay of **1** incorporated in β -CDV in buffer solution (4.5 × 10⁸ s⁻¹) is smaller than in DMF (6.8 × 10⁸ s⁻¹), while the rate of non radiative decay is much higher (β -CDV solution: 5.5 × 10⁸ s⁻¹, DMF: 1.0 × 10⁸ s⁻¹).³⁴ Although the formation of excimers can be excluded, the incorporation in the membrane influences the emission of **1**. However, because k_{nr} is strictly connected to the quenching process, we focused our attention on its variations by increasing the concentration of quenchers in buffer solution (Table 1). By adding different amounts of quencher **3** or **4**, an increase of the rate of non radiative decay was measured. The increase is much higher for **4** than for **3**, which strengthens the interpretation of different involved quenching mechanisms. The high increase of k_{nr} for **4** can be explained by taking into account the high affinity of **4** to the cavity of β -CDV.

 $\label{eq:constraint} \begin{array}{l} \textbf{Table 1:} Rates of non radiative decay (k_{nr}) for 1 incorporated in \beta-CDV in \\ phosphate buffer (pH 7.2) with different concentrations of 3 and 4. \end{array}$

μM	k _{nr} (3) [10 ⁸ s ⁻¹]	k _{nr} (4) [10 ⁸ s ⁻¹]
0	5.5	
50	9.6	14.6
100	10.8	21.8

Due to the host-guest interaction between the cyclodextrin cavity and adamantane, almost all quencher molecules are located in the proximity of the membrane, which leads to a high local concentration of **4** close to the dye. We can then conclude that k_{nr} data are in agreement with the sphere of quenching interpretation.

In the case of **3**, the distribution of the quencher in the proximity of **1** appears very different for **4**. The 4-nitrophenol has low affinity for the hydrophobic cavity of β -CD (K_a $\approx 10^2 \cdot 10^3 \text{ M}^{-1}$).⁴⁶ However, it might also be able to diffuse through the hydrophobic membrane of the vesicles due to its aromatic and apolar structure. Thus, **3** can come in close contact to **1** and quench its fluorescence. On the other hand, **3** is soluble in water, which probably leads to a partitioning of **3** between the vesicles and aqueous solution.

To interpret the quenching behaviour of **3**, also the pH has to be considered. In phosphate buffer at pH = 7.2, 4-nitrophenol ($pK_a =$ 7.15)⁴⁹ exists in its protonated (phenol) and deprotonated (phenolate) form, while more than 99.9% of 3 is protonated in acetate buffer at pH = 4.5 and deprotoned in carbonate buffer at pH = 10.3, respectively. To investigate the effect of pH, β -CDV with incorporated dye 1 were additionally prepared in acetate buffer and carbonate buffer. Absorption and emission spectra were recorded at different concentrations of 3. In Figure 6 the normalized fluorescence intensity of 1 in β -CDV is reported at various concentration of 4-nitrophenol at different pH values. The general trend seems to indicate that the quenching is more efficient if **3** is deprotonated (phenolate) than if it is protonated (phenol), even though the association constant of 4-nitrophenol and 4-nitrophenolate with β -CD is approximately the same.⁴⁷ This effect can be explained by considering the absorption spectra of 4-nitrophenol as a function of pH (see ESI Figure S5).

Figure 6: F/F₀ at 420 nm (λ_{exc} = 375 nm) of **1** incorporated in β -CDV as a function of the concentration of **3** at pH 4.5 (black square), 7.2 (red circle) and 10.3 (green triangle). F and F₀ are the emission maximum in presence and absence of quenchers, respectively.

The absorption maximum of **3** is at 310 nm in acid solution (phenol) and at 405 nm in basic solution (phenolate), while the emission peak of **1** is at 420 nm (Figure 7). Thus, the variation of pH results in a more extended overlap between the emission of **1** and the absorption of **3** and in an increasing of the inner filter effect. Although the data were corrected by a factor which takes into account the co-absorption and the reabsorption of the emitted light, at pH 7.2 and 10.3 the high absorption band of **3** at higher concentrations can give an overestimation of the quenching. In fact, as reported in literature^{48,50} the correction factors regarding the inner filter effect are affected by uncertainties difficult to estimate.

hotochemical & Photobiological

Sciences Accepted Manuscrip

Figure 7: Absorption of 3 (100 μ M) added to 1 (6 μ M) incorporated in β -CDV at different pH values and normalized fluorescence intensity (λ_{exc} = 375 nm) of the system 1 / β -CDV without quencher.

However, an alternative explanation in agreement with the recorded data can be also given. The charged phenolate can interact with **1** leading to the formation of a non-emitting ground-state complex (static quenching). This hypothesis is justified by examining the Stern-Volmer plot at different pH values (see ESI Figure S6). F₀/F appears linear at pH 4.5 suggesting a pure dynamic quenching contribution, while at pH 7.2 and 10.3 the plot leads to an exponential fit. The increased upwards curvature can be associated to an additional static quenching contribution described by the abovementioned sphere of quenching model.

Finally, the quenching effect of **3** and **4** was also analyzed by the addition of competitive, non quenching host (β -CD) and guest (1-adamantane methanol) to obtain more information about host-guest interactions involved in the supramolecular system. In case of quencher **3**, the addition of an excess of β -CD (up to 8 mM) or 1-adamantane methanol (50 μ M) to **1** in β -CDV quenched by **3** (50 μ M) does not influence the fluorescence intensity. This strengthens the interpretation that **3** is not bound to the CD, but diffuses through the hydrophobic membrane. Thus, the quenching action exerted by **3** can be definitely attributed to its partitioning and diffusion between the aqueous phase and the membrane and not by host-guest interaction.

A completely different behaviour was observed in the case of quencher **4**, as depicted in Figure 8. Upon addition of an excess of β -CD (up to 8.3 mM) to **1** in quenched by **4** (50 μ M), the fluorescence intensity increased, even though the initial intensity of **1** in absence of the quencher cannot be fully restored. (A higher concentration of β -CD cannot be achieved due to its limited solubility.) Thus, we can reasonably suppose that β -CD in solution binds competitively to **4** decreasing the amount of the quencher in β -CDV. The lower concentration of **4** in proximity of **1** results in less efficient quenching.

Figure 8: Fluorescence intensity (λ_{exc} = 375 nm) of **1** (6 µM) incorporated in β-CDV in phosphate buffer (pH 7.2) before and after the addition of **4** (50 µM) and different amounts of β-CD (0-8.3 mM). The spectra are normalized by dividing the data for the intensity of **1** at 420 nm in absence of quenchers.

In contrast, the addition of a competitive guest (3.5 mM of 4diamantane carboxylic acid, 10 mM of 1-adamantane carboxylic acid or 50 μ M of 1-adamantane methanol) after quenching with **4** (50 μ M) induces a further decrease of the fluorescence intensity. This effect could be explained with a partially displacement of **4** from the β -CD cavities by the presence of the competitive guest. Due to its hydrophobic character, the nitrophenolate-adamantane derivative diffuses into the membrane leading to a higher effective concentration of quencher in close proximity to the dye. This strengthens the interpretation that the effective quenching of **4** is due to hostguest interaction.

Conclusion

Hydrophobic spirobifluorene 1 was incorporated in the membrane of β -CDV and its photophysical properties in the presence of quenchers have been investigated. Hydrophilic and dicationic methyl viologen (paraquat) 2 does not interact with the vesicles and thus does not quench the fluorescence of 1. 4nitrophenol **3** and 4-nitrophenolate covalently linked to adamantane **4** quench the fluorescence of **1** through different mechanism due to their dissimilar affinity to the cavity of β -CD. For both compounds the Stern-Volmer analysis reveals the presence of a dynamic and an apparent static quenching component, which can be explained with the sphere of effective quenching model. Quencher 3 is partitioned between the membrane and the aqueous phase because of its solubility in water and its low affinity for β -CD, whereas **4** is confined in the vesicle membrane leading to a higher quenching efficiency. The quenching behaviour of 4-nitrophenol (3) is pH dependent and appears more efficient in basic conditions. Competitive host or guest do not influence the emission intensity in case of 3, confirming the hypothesis that the quenching is not controlled by

host-guest interactions. In contrast, **4** strongly quenches the fluorescence due to host-guest interactions due to the high affinity between the adamantane and cyclodextrin cavities. Competitive host decreases the quenching, while competitive guest increase the quenching effect. In general, we can conclude that quenching can be controlled by hydrophobic and host-guest interactions between quencher and vesicle. The investigated supramolecular system appears as a versatile model to study quenching processes and molecular recognition at membrane surfaces. Future applications in the field of chemosensors can be foreseen.

Experimental Section

Vesicle Preparation: A 1.0 mM solution of 5 and a 0.1 mM solution of 1 were prepared in chloroform. 500 μ L of both solutions were added to a round bottom flask. The solvent was removed by a stream of argon to yield a thin film. The solvent was completely removed under high vacuum for 5 min. Buffer solution (20 mM, 5 mL) was added and stirred overnight. The resulting suspension was sonicated for 15 min. Afterwards the suspension was extruded with a LiposoFast manual extruder (AVESTIN Europe GmbH, Mannheim, Germany) by repeatedly passing it through a polycarbonate membrane. The size (between 80 and 150 nm) was confirmed by DLS measurements which is relative to an approximate vesicle concentration between 0.2 and 0.8 nM.²⁵ For the preparation of giant unilamellar vesicles (GUVs) 0.50 mM 5 and 0.05 mM 1 were dissolved in chloroform. Two electrode slices coated with ITO were covered with a thin layer of the solution (22.5 µL). The solvent was evaporated in a vacuum oven at 50 °C. After adding buffer solution (1 mM HEPES, 300 mM sucrose, pH 7.2), an alternating electric field was applied (1 V, 10 Hz) at 50 °C for 1 h. The solution was spread on a microscope slide coated with bovine serum albumin to reduce surface adsorption and investigated by light and fluorescence microscopy.

Dynamic light scattering (DLS): DLS measurements were performed on a Nano ZS Zetasizer (*Malvern Instruments Ltd.*, Worcestershire, UK) with disposable semi-micro PMMA cuvettes (*BRAND GmbH & Co. KG*, Wertheim, Germany) with a path length of 1 cm at 25 °C. The control of the spectrometer and data analysis was done with the software Zetasizer 6.32 (*JASCO Malvern Instruments Ltd.*, Worcestershire, UK). The average size of the vesicles was measured before and after addition of quencher.

Microscopy: Light and fluorescence microscopy was done by a *Leica DMRE* with a *TCS SL* scanning unit (*Leica Microsystems Heidelberg GmbH*, Mannheim, Germany).

Photophysical characterization: Absorption spectra were measured on a Varian Cary 5000 double-beam UV-Vis-NIR spectrometer (*Agilent Technologies*, Santa Clara, USA) and were baseline corrected. Steady-state emission spectra and lifetimes were recorded on a FluoTime300 spectrometer (*PicoQuant*, Berlin, Germany) equipped with a 300 W ozone-free Xe lamp (250-900nm), a 10 W Xe flash-lamp (250-900 nm, pulse width < 10 μ s) with repetition rates of 0.1 – 300 Hz, an excitation monochromator (Czerny-Turner 2.7 nm/mm dispersion, 1200

grooves/mm, blazed at 300 nm), diode lasers (pulse width < 80 ps) operated by a computer-controlled laser driver PDL-820 (repetition rate up to 80 MHz, burst mode for slow and weak decays), two emission monochromators (Czerny-Turner, selectable gratings blazed at 500 nm with 2.7 nm/mm dispersion and 1200 grooves/mm, or blazed at 1250 nm with 5.4 nm/mm dispersion and 600 grooves/mm), Glan-Thompson polarizers for excitation (Xe-lamps) and emission, a Peltier-thermostatized sample holder (Quantum Northwest, Liberty Lake, USA) (-40°C -105°C), and two detectors, namely a PMA Hybrid 40 (transit time spread FWHM < 120 ps, 300 - 720 nm) and a R5509-42 NIRphotomultiplier tube (transit time spread FWHM 1.5 ns, 300-1400 nm) with external cooling (-80°C) (Hamamatsu Photonics, Ltd., Shizuoka, Japan). Steady-state and fluorescence lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps). Emission spectra were corrected for source intensity (lamp and grating) by standard correction curves. Lifetime analysis was performed using the commercial FluoFit software. The quality of the fit was assessed by minimizing the reduced chi squared function ($\chi 2$) and visual inspection of the weighted residuals and their autocorrelation. Luminescence quantum yields were measured with an absolute PL quantum yield measurement system (C9920-02) (Hamamatsu Photonics, Ltd., Shizuoka, Japan) equipped with a L9799-01 CW Xenon light source (150 W), monochromator, C7473 photonic multi-channel analyzer, integrating sphere and employing U6039-05 PLQY measurement software (Hamamatsu Photonics, Ltd., Shizuoka, Japan).

NMR: NMR-spectra were recorded on a Bruker AV 300 (*Bruker Corporation*, Billerica, Massachusetts, USA). The measurements were performed in deuterated solvents at room temperature. MestReNova 9.0 (*Mestrelab Research S. L.*, Santiago de Compostela, Spain) was used for data analysis. The chemical shifts are given in parts per million (ppm) relative to the residual solvent signals. The multiplicity of the signals is labeled as singlet (s), douplet (d), triplet (t), quartet (q), heptet (h), multiplet (m) and broad (br) and the coupling constant *J* is noted in Hz.

Mass spectrometry: Electrospray ionization (ESI) mass spectra were recorded on a MicroTof (*Bruker Daltonics*, Bremen, Germany), while MALDI mass spectra were measured on a Autoflex Speed (*Bruker Daltonics*, Bremen, Germany).

Infrared-Spectroscopy (IR): IR Spectra were recorded on a Varian Fourier transformation IR spectrometer Type 310 (*Agilent Technologies,* Santa Clara, USA) with potassium bromide pellets (KBr). The data was analyzed using the Resolution Pro software (*Agilent Technologies,* Santa Clara, USA) and all spectral data were corrected by subtracting the background signal.

Acknowledgment

F.R. thanks the Deutscher Akademischer Austauschdienst DAAD for a fellowship. This work was supported by the Deutsche Forschungsgemeinschaft (DFG TRR 61).

hotochemical & Photobiological Sciences Accepted Manuscrip

References

- 1. J. R. Lakowicz, *Principles of fluorescence spectroscopy*, Springer, New York, 3rd edn., 2006.
- A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling recognition events with fluorescent sensors and switches, *Chem. Rev.*, 1997, **97**, 1515-1566.
- 3. G. A. Caputo and E. London, Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid Bilayers to determine hydrophobic alpha-helix locations within membranes, *Biochemistry*, 2003, **42**, 3265-3274.
- 4. F. Mancin, E. Rampazzo, P. Tecilla and U. Tonellato, Selfassembled fluorescent chemosensors, *Chem. Eur. J.*, 2006, **12**, 1844-1854.
- 5. G. Ghale and W. M. Nau, Dynamically Analyte-Responsive Macrocyclic Host-Fluorophore Systems, *Acc. Chem. Res.*, 2014, **47**, 2150-2159.
- T. Pradhan, H. S. Jung, J. H. Jang, T. W. Kim, C. Kang and J. S. Kim, Chemical sensing of neurotransmitters, *Chem. Soc. Rev.*, 2014, **43**, 4684-4713.
- R. Martinez-Manez and F. Sancenon, Fluorogenic and chromogenic chemosensors and reagents for anions, *Chem. Rev.*, 2003, **103**, 4419-4476.
- J. Voskuhl and B. J. Ravoo, Molecular recognition of bilayer vesicles, *Chem. Soc. Rev.*, 2009, 38, 495-505.
- 9. H. Valkenier, N. Lopez Mora, A. Kros and A. P. Davis, Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles, *Angew. Chem. Int. Ed.*, 2015, **54**, 2137-2141.
- 10. B. Gruber and B. König, Self-assembled vesicles with functionalized membranes, *Chem. Eur. J.*, 2013, **19**, 438-448.
- 11. M. A. Fox and M. Chanon, *Photoinduced electron transfer, Part B*, Elsevier, Amsterdam, 1988.
- 12. B. Armitage and D. F. O'Brien, Lipid Bilayer Enhanced Photoinduced Electron-Transfer, J. Am. Chem. Soc., 1991, **113**, 9678-9679.
- B. Armitage and D. F. O'Brien, Vectorial Photoinduced Electron-Transfer between Phospholipid Membrane-Bound Donors and Acceptors, J. Am. Chem. Soc., 1992, 114, 7396-7403.
- 14. P. J. Clapp, B. Armitage, P. Roosa and D. F. O'Brien, Efficient Photoinduced Orthogonal Energy and Electron-Transfer Reactions Via Phospholipid Membrane-Bound Donors and Accepters, J. Am. Chem. Soc., 1994, **116**, 9166-9173.
- 15. G. Steinberg-Yfrach, P. A. Liddell, S. C. Hung, A. L. Moore, D. Gust and T. A. Moore, Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres, *Nature*, 1997, **385**, 239-241.
- B. Limburg, G. Laisne, E. Bouwman and S. Bonnet, Enhanced Photoinduced Electron Transfer at the Surface of Charged Lipid Bilayers, *Chem. Eur. J.*, 2014, 20, 8965-8972.
- 17. S. Banerjee and B. König, Molecular Imprinting of Luminescent Vesicles, J. Am. Chem. Soc., 2013, **135**, 2967-2970.
- S. Banerjee, M. Bhuyan and B. König, Tb(III) functionalized vesicles for phosphate sensing:

membrane fluidity controls the sensitivity, *Chem. Commun.*, 2013, **49**, 5681-5683.

- A. Müller and B. König, Preparation of luminescent chemosensors by post-functionalization of vesicle surfaces, Org. Biomol. Chem., 2015, 13, 1690-1699.
- A. P. Blum, J. K. Kammeyer, A. M. Rush, C. E. Callmann, M. E. Hahn and N. C. Gianneschi, Stimuli-Responsive Nanomaterials for Biomedical Applications, *J. Am. Chem. Soc.*, 2015, **137**, 2140-2154.
- X. Ma and Y. L. Zhao, Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions, *Chem. Rev.*, 2015, **115**, 7794-7839.
- 22. Y. Kang, K. Guo, B. J. Li and S. Zhang, Nanoassemblies driven by cyclodextrin-based inclusion complexation, *Chem. Commun.*, 2014, **50**, 11083-11092.
- 23. E. M. M. Del Valle, Cyclodextrins and their uses: a review, *Process Biochem.*, 2004, **39**, 1033-1046.
- F. Sallas and R. Darcy, Amphiphilic cyclodextrins -Advances in synthesis and supramolecular chemistry, *Eur. J. Org. Chem.*, 2008, 2008, 957-969.
- P. Falvey, C. W. Lim, R. Darcy, T. Revermann, U. Karst, M. Giesbers, A. T. M. Marcelis, A. Lazar, A. W. Coleman, D. N. Reinhoudt and B. J. Ravoo, Bilayer vesicles of amphiphilic cyclodextrins: Host membranes that recognize guest molecules, *Chem. Eur. J.*, 2005, **11**, 1171-1180.
- 26. J. H. Schenkel, A. Samanta and B. J. Ravoo, Self-Assembly of Soft Hybrid Materials Directed by Light and a Magnetic Field, *Adv. Mater.*, 2014, **26**, 1076-1080.
- S. K. M. Nalluri, J. B. Bultema, E. J. Boekema and B. J. Ravoo, Photoresponsive Molecular Recognition and Adhesion of Vesicles in a Competitive Ternary Supramolecular System, *Chem. Eur. J.*, 2011, **17**, 10297-10303.
- N. Nayak and K. R. Gopidas, Unusual self-assembly of a hydrophilic [small beta]-cyclodextrin inclusion complex into vesicles capable of drug encapsulation and release, *J. Mater. Chem. B*, 2015, 3, 3425-3428.
- 29. C. W. Lim, B. J. Ravoo and D. N. Reinhoudt, Dynamic multivalent recognition of cyclodextrin vesicles, *Chem. Commun.*, 2005, 5627-5629.
- M. Trapani, A. Romeo, T. Parisi, M. T. Sciortino, S. Patane, V. Villari and A. Mazzaglia, Supramolecular hybrid assemblies based on gold nanoparticles, amphiphilic cyclodextrin and porphyrins with combined phototherapeutic action, *RSC Adv.*, 2013, 3, 5607-5614.
- C. Conte, A. Scala, G. Siracusano, N. Leone, S. Patane, F. Ungaro, A. Miro, M. T. Sciortino, F. Quaglia and A. Mazzaglia, Nanoassembly of an amphiphilic cyclodextrin and Zn(II)-phthalocyanine with the potential for photodynamic therapy of cancer, *RSC Adv.*, 2014, 4, 43903-43911.
- J. Voskuhl, U. Kauscher, M. Gruener, H. Frisch, B. Wibbeling, C. A. Strassert and B. J. Ravoo, A soft supramolecular carrier with enhanced singlet oxygen photosensitizing properties, *Soft Matter*, 2013, 9, 2453-2457.
- N. Kandoth, E. Vittorino, M. T. Sciortino, T. Parisi, I. Colao, A. Mazzaglia and S. Sortino, A Cyclodextrin-Based Nanoassembly with Bimodal Photodynamic Action, *Chem. Eur. J.*, 2012, **18**, 1684-1690.
- 34. F. Polo, F. Rizzo, M. Veiga-Gutierrez, L. De Cola and S. Quici, Efficient Greenish Blue Electrochemiluminescence from Fluorene and

Spirobifluorene Derivatives, J. Am. Chem. Soc., 2012, **134**, 15402-15409.

- 35. F. Kamel, Epidemiology. Paths from pesticides to Parkinson's, *Science*, 2013, **341**, 722-723.
- C. M. Tanner, F. Kamel, G. W. Ross, J. A. Hoppin, S. M. Goldman, M. Korell, C. Marras, G. S. Bhudhikanok, M. Kasten, A. R. Chade, K. Comyns, M. B. Richards, C. Meng, B. Priestley, H. H. Fernandez, F. Cambi, D. M. Umbach, A. Blair, D. P. Sandler and J. W. Langston, Rotenone, Paraquat, and Parkinson's Disease, *Environ. Health Perspect.*, 2011, **119**, 866-872.
- C. Nistor, A. Oubina, M. P. Marco, D. Barcelo and J. Emneus, Competitive flow immunoassay with fluorescence detection for determination of 4nitrophenol, *Anal. Chim. Acta*, 2001, **426**, 185-195.
- R. Gao, N. Choi, S. I. Chang, S. H. Kang, J. M. Song, S. I. Cho, D. W. Lim and J. Choo, Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor, *Anal. Chim. Acta*, 2010, 681, 87-91.
- H. Fang, X. Zhang, S. J. Zhang, L. Liu, Y. M. Zhao and H. J. Xu, Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy, *Sens. Actuators B Chem.*, 2015, 213, 452-456.
- 40. Z. N. Liu, J. G. Du, C. C. Qiu, L. H. Huang, H. Y. Ma, D. Z. Shen and Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold, *Electrochem. Commun.*, 2009, **11**, 1365-1368.
- J. H. Ko, J. H. Moon, N. Kang, J. H. Park, H.-W. Shin, N. Park, S. Kang, S. M. Lee, H. J. Kim, T. K. Ahn, J. Y. Lee and S. U. Son, Engineering of Sn-porphyrin networks on the silica surface: sensing of nitrophenols in water, *Chem. Commun.*, 2015, **51**, 8781-8784.

- F. Guillo, B. Hamelin, L. Jullien, J. Canceill, J. M. Lehn, L. Derobertis and H. Driguez, Synthesis of Symmetrical Cyclodextrin Derivatives Bearing Multiple Charges, *Bull. Soc. Chim. Fr.*, 1995, **132**, 857-866.
- U. Kauscher, M. C. A. Stuart, P. Drucker, H. J. Galla and B. J. Ravoo, Incorporation of Amphiphilic Cyclodextrins into Liposomes as Artificial Receptor Units, *Langmuir*, 2013, 29, 7377-7383.
- I. Gomezorellana and D. Hallen, The Thermodynamics of the Binding of Benzene to Beta-Cyclodextrin in Aqueous-Solution, *Thermochim. Acta*, 1993, **221**, 183-193.
- E. Siimer, M. Kobu and M. Kurvits, Thermochemical Study of Cyclodextrin Inclusion Complexes, *Thermochim. Acta*, 1990, **170**, 89-95.
- G. L. Bertrand, J. R. Faulkner, S. M. Han and D. W. Armstrong, Substituent Effects on the Binding of Phenols to Cyclodextrins in Aqueous-Solution, *J. Phys. Chem.*, 1989, 93, 6863-6867.
- M. V. Rekharsky and Y. Inoue, Complexation thermodynamics of cyclodextrins, *Chem. Rev.*, 1998, 98, 1875-1917.
- B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag GmbH, Weinheim, 2001.
- E. P. Serjeant and B. Dempsey, *Ionisation constants of organic acids in aqueous solution*, Pergamon Press, New York, 1979.
- A. Credi and L. Prodi, Inner filter effects and other traps in quantitative spectrofluorimetric measurements: Origins and methods of correction, *J. Mol. Struct.*, 2014, 1077, 30-39.

Graphical Abstract

Host-guest interactions of nitro compounds at different pH determine the fluorescence quenching of a spirobifluorene dye confined in the membrane of β -cyclodextrin vesicles.

