Photochemical & Photobiological Sciences

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pps

A systematic review of the influence of skin pigmentation on changes in the concentrations of vitamin D and 25-hydroxyvitamin D in plasma/serum following experimental UV irradiation

Fan Xiang^{1*}, Robyn Lucas¹, Frank de Gruijl², and Mary Norval³

¹ National Centre for Epidemiology and Population Health, The Australian National

University, Canberra, Australia

² Department of Dermatology, Leiden University Medical Centre, P.O. Box 9600, NL-2300 RC Leiden, Netherlands

³ Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom

*Corresponding author:

Dr Fan Xiang

National Centre for Epidemiology and Population Health

Research School of Population Health, The Australian National University

ACT 0200, Australia

Tel: +61 2 6125 2312

Fax: +61 2 6125 5614

Email: fan.xiang@anu.edu.au

Short title: Skin pigment and UV-induced vitamin D

Abbreviations: 1,25(OH)₂D: 1,25-dihydroxyvitamin D, 25(OH)D: 25-hydroxyvitamin D, 7-DHC: 7-dehydrocholesterol; HPLC: high-performance liquid chromatography, MED: minimal erythema dose, SED: standard erythema dose, UV: ultraviolet; DBP: vitamin D binding protein

Tables: 2

Figure: 1

Abstract

Defining whether skin pigmentation influences vitamin D photosynthesis is important for delivering accurate public health messages. Current evidence is contradictory. We undertook a systematic review of the published literature to examine the association between skin pigmentation and change in blood concentrations of vitamin D and 25-hydroxyvitamin D following experimental UV irradiation. Twelve studies fulfilled the inclusion criteria: human study in vivo with non-diseased participants; controlled artificial UV radiation; vitamin D or 25-hydroxyvitamin D measured in serum or plasma; full text in English. In seven studies, vitamin D photosynthesis was reduced in dark-skinned compared with fairer-skinned individuals. In the remaining five studies, only one of which was published after 1990, there was no difference in vitamin D photosynthesis according to skin type. The disparities in these results may be due to small sample sizes and variations in study methodology, including the source, dose and frequency of UV irradiation, phototype classification, and analysis of vitamin D and 25-hydroxyvitamin D. Of these, the spectrum emitted by the UV lamps may be significant. No study considered potential modifying factors, such as relevant genetic polymorphisms. On balance, we conclude that pigmented skin has less effective photoproduction of vitamin D and 25-hydroxyvitamin D. The quantity of sun exposure needed for dark-skinned, compared with light-skinned, people to achieve vitamin D sufficiency remains uncertain.

1 Introduction

2 Exposure of the skin to solar ultraviolet B radiation (UVB, 280-315 nm) is a key source of vitamin D.¹ The irradiation converts 7-dehydrocholesterol (7-DHC) to previtamin D₃. 7-DHC 3 4 is found mainly in the basal and spinous layers of the cutaneous epidermis although small amounts are also present in the outer layers of the epidermis (stratum corneum and 5 granulosum) and in the dermis.² Previtamin D₃ undergoes a thermal isomerisation to form 6 vitamin D₃, which is taken up into the blood. UV-induced vitamin D₃, as well as vitamin D 7 obtained from the diet, is hydroxylated in the liver to form 25-hydroxyvitamin D [25(OH)D], 8 9 the main circulating form of vitamin D. The serum concentration of 25(OH)D is currently considered to be the best measure of vitamin D status³ and the consensus view is that the 10 large majority of systemic vitamin D and its metabolites derives from the UV-induced 11 synthesis in the skin³. 25(OH)D undergoes further hydroxylation in the kidney to form the 12 13 active hormone, 1,25-dihydroxyvitamin D $[1,25(OH)_2D]$. Vitamin D metabolites circulate in blood bound tightly to a vitamin D-binding protein (DBP)⁴. 14

15

16 In 1922, Hess *et al.* showed that repeated daily UV irradiation for the treatment of rickets was more effective in white rats than in black rats, for a given dose of UV radiation.⁵ This led to 17 18 the notion that darker skin is less effective at vitamin D photosynthesis than lighter skin because melanin and 7-DHC compete for UV photons.⁴ Melanin is produced by melanocytes 19 in human skin located in the basal layer of the epidermis, and is stored in melanosomes. The 20 21 melanosomes are exported to adjacent keratinocytes (primarily basal cells) where they can form a cap-like structure over the nuclei in response to UV radiation.^{6,7} Differences in skin 22 pigmentation are due to differences in the number, size, composition and distribution of 23 melanin pigments throughout the epidermis. 24

2	5
	-

26	In many locations, serum 25(OH)D concentrations (as a measure of vitamin D status) are
27	lower, on average, in dark-skinned compared with fair-skinned populations. ⁸⁻¹⁰ For example,
28	in the United States, the mean serum 25(OH)D levels in all age groups of non-Hispanic
29	whites was 1.2-1.7 times higher than in Mexican Americans and non-Hispanic blacks, and the
30	mean in Mexican Americans was 1.3-1.4 times higher than in non-Hispanic blacks, after
31	taking season and latitude of blood collection into account. ¹¹ New Zealanders of European
32	origins had the highest mean serum 25(OH)D concentration of 51 nmol/L, compared to 42
33	nmol/L in Maori and 37 nmol/L in Pacific Islanders. ¹² Cultural/behavioural factors in
34	addition to skin pigmentation are important in these differences. ¹³
35	
36	Several studies have evaluated the influence of skin pigmentation on vitamin D
37	photosynthesis in experimental settings by measuring the relationship between exposure to a
38	controlled dose or doses of UV radiation and levels of vitamin D or 25(OH)D in the serum of
39	individuals with different skin colour. This experimental design has advantages over
40	population-based studies in providing accurate data on the dose and spectrum of the UV
41	radiation and area of the body surface irradiated. However the sample sizes are usually small
42	and studies have not taken adequate account of factors causing individual variability, such as
43	genetic polymorphisms and body mass index, resulting in lower discriminatory power.
44	
45	We conducted a systematic review of these experimental studies in order to clarify whether
46	and to what extent differences in skin pigmentation alter the production of vitamin D and
47	25(OH)D in blood following exposure to UV radiation.

49 Methods

51	PubMed was searched for papers published before 31 December 2014, using the terms: ("skin
52	pigmentation" or "skin colour" OR "skin type") AND ("UVR" OR "UVB") AND ("vitamin
53	D synthesis" OR "vitamin D production"). Criteria for inclusion were: 1) in vivo human
54	studies of participants without any known underlying medical conditions; 2) controlled
55	exposure to artificial UV radiation; 3) vitamin D or 25(OH)D measured in blood samples; 4)
56	full text in English. Due to the small number of included studies, strict criteria were not
57	applied to evaluate the quality of the evidence. ¹⁶ The assessment of risk of publication bias
58	was also not included.

59

The electronic search resulted in 63 articles. Forty were excluded after screening the titles and abstracts as they were not relevant, such as studies that examined the photoprotective effect of 25(OH)D on UV-induced damage, or the efficacy of UVB phototherapy on skin disorders. The full texts for the 23 remaining articles were obtained and four additional articles were identified from the reference lists of these papers. After screening against the inclusion criteria, 12 reports were retained (Figure 1).

66

67 Data extraction

68 Data were extracted from the eligible publications, including study characteristics (location,

69 month, numbers, age and skin type/ethnicity of participants), UV irradiation (source,

Photochemical & Photobiological Sciences

70	wavelength, dose, frequency and area of body surface area exposed), vitamin D and 25(OH)D
71	measurement (timing of blood sample collection, metabolite measured and assay), and
72	results. Studies reported the units of controlled UV irradiation dose as mJ/cm ² , SED or MED.
73	One SED is equivalent to an erythemal effective radiant exposure of 10 mJ/cm^2 (100 J/m^2),
74	and one MED is the dose of UV irradiation required to produce just perceptible redness. For
75	example, a dose of 20 mJ/cm ² (2 SED) would be expected to cause barely perceptible
76	erythema - one MED - in people with pale white skin, Fitzpatrick skin type I. ¹⁷
77	
78	Due to the substantially different methodologies across the included studies, we were unable
79	to conduct a formal meta-analysis. We thus provide a qualitative review of the findings
80	including grouping studies with similar findings into two summary tables.

81

82 Results and Discussion

83 The 12 studies analysed were conducted in the Northern Hemisphere, between latitudes 40-84 55°N and, where recorded, were undertaken during the winter months. Five concluded that 85 skin pigmentation did not influence vitamin D production (Table 1, henceforth referred to as 86 negative) and seven that it did (Table 2, henceforth referred to as positive). In the negative group, four reports were published prior to 1991 compared with one in the positive group. 87 The negative group contained only one study with more than 20 participants¹⁸ while the 88 89 positive group contained only two with less than 30 participants. In addition to numbers of 90 subjects, many other parameters varied considerably between studies. These are outlined and 91 discussed below in an effort to understand why the published results have been so 92 inconsistent.

93

94	Skin pigmentation. Two studies (both positive) used reflectance spectrometry to define
95	constitutive skin pigmentation at an unexposed skin site, reporting the L* metric, and
96	assessed change in vitamin D status according to this method of skin typing. In one case, all
97	participants were South Asian, ¹⁹ in the other, ²⁰ ethnicity was not reported but there was a
98	wide range of skin reflectance from readings typical of a white person to those typical of a
99	black African. Two additional studies measured skin type objectively, but did not use this to
100	define comparator groups. ^{13, 18} Three positive ^{13, 21, 22} and three negative ²³⁻²⁵ studies defined
101	the skin type according to ethnicity. The remaining studies (two positive, two negative) used
102	the Fitzpatrick skin type classification ¹⁷ that assesses sun sensitivity rather than skin colour
103	specifically. Note that Farrar et al. ¹³ compared south Asian, notionally skin type V, and
104	White, notionally skin type I-IV, groups, and Bogh et al. ¹⁸ compared people of dark skin (V-
105	VI) with light skin (I-IV), rather than according to skin type categories or ethnicity per se. It
106	is possible that separation according to ethnicity provides additional consistency within the
107	groups due to a closer similarity not just of skin type, but also of genetic type.

108

109 UV sources and spectra. There was considerable variation across the studies in the UV source used and the resulting irradiation spectrum. We have been unable to obtain the exact spectral 110 output of some of the older lamps. However, from the data available, it seems that, overall, 111 there was a higher proportion of short-wave radiation in the lamps used in the negative group 112 compared with the positive group. For example, the Theratkin,²⁴ FS-36T12,²⁵ FS72T12²⁶ and 113 TL-12¹⁸ sources all emit a significant amount of UVC (<290nm) radiation.^{18, 27} Irradiation 114 with short wavelength UVB and UVC results in higher maximum yield of pre-vitamin D₃ (up 115 to 60% conversion) compared to sunlight-like exposure that lacks wavelengths below 290nm 116

117	and contains relatively more UVA (max. 10-15% conversion). ²⁸ Moreover, Bjorn ²⁹ has
118	suggested that this type of radiation can induce the conversion of 7-DHC to previtamin D_3 in
119	the superficial layers of the epidermis, above the melanocyte layer, and therefore is not
120	affected by skin colour. In contrast, UV radiation of longer wavelength penetrates more
121	deeply to reach the 7-DHC in the lower epidermal layers, where melanin is located in the
122	winter months. ³⁰ The result is a lower production of pre-vitamin D (and vitamin D
123	metabolites) in more highly melanised skin. UVC is not present at the Earth's surface,
124	suggesting that artificial UV sources should be filtered to omit such wavelengths when used
125	in vitamin D studies.

126

The different spectra emitted by the lamps cannot fully account for all of the differences in 127 the results. Thus both Clemens et al.²¹ (positive) and Brazerol et al.²³ (negative) used the 128 Westinghouse FS-40 lamp but with opposite findings. This may be explained by the different 129 dosing regimes - a single dose of 54 mJ/cm² (positive) compared with an escalating dose 130 biweekly for six weeks, starting at 30 mJ/cm² and rising to 48 mJ/cm² (negative). In addition 131 the two studies by Matsuoka *et al.*^{22, 26} used the FS72T12 lamp, with the same single, 132 relatively low dose (27 mJ/cm²) but reported opposite results, possibly related to the different 133 way of classifying skin type (ethnicity in the positive study,²² Fitzpatrick skin type in the 134 negative study 26). This may suggest that ethnicity is a better discriminator of differences in 135 136 vitamin D photosynthesis than Fitzpatrick skin type, possibly because the former also takes account of modifying factors such as genotype. The combination of lamps used by Farrar et 137 al.^{13, 19} emit a spectrum similar to sunlight, starting from around 300 nm (with a small peak at 138 313 nm), as does the HOUV-A lamp used by Armas *et al.*²⁰ 139

141 UV dose and frequency. Different dosing regimes were used in the 12 studies, ranging from a 142 single dose to three-times weekly for 12 weeks. The dose was reported in standard erythema 143 dose (SED), minimal erythema dose (MED) or as an unweighted physical dose, and was 144 based on personal measured MED, self-reported skin type or ethnicity. Generally efforts were made to ensure that the exposure was sub-erythemal. Two methods were used to assess the 145 146 effect of skin pigmentation on vitamin D production. In several studies a standard dose of UV 147 radiation was given regardless of skin type (SED, physical dose), in which case the outcome 148 is the difference in the concentration of a vitamin D metabolite assessed at a later time. In 149 other studies, a dose of UV radiation according to skin type (MED) was given. Although the 150 action spectra for erythema and vitamin D differ, the MED provides the best available 151 estimate of skin type relevant to UV-induced production of vitamin D. In this second method, 152 the outcome focuses more on the difference in the absolute dose of UV radiation that is 153 required to achieve a similar change in concentration of the vitamin D metabolite. Both 154 methods provide valid results but cannot be compared. In general, there was no consistent pattern in terms of dose across the negative vs. the positive studies that could account for the 155 156 difference in the results. The use of repeated doses of irradiation will lead to progressively 157 greater tanning, with altered distribution and increased synthesis of melanin in the epidermis, 158 as well as thickening of the stratum corneum. Less adaptation will occur in highly pigmented 159 skin than in lightly pigmented skin. Thus it would not be possible under these circumstances 160 to determine the relationship between constitutive skin colour and 25(OH)D production. On 161 the other hand, exposure to a single dose gives no information about the influence of tanning 162 on vitamin D production.

163

Body area irradiated. While Barth *et al.*³¹ reported that a higher level of 25(OH)D was
produced if more of the body area was irradiated, Bogh *et al.*³² found that this was only the

Photochemical & Photobiological Sciences

166	case for small doses of UV radiation (less than 1.5 SED). In the 12 studies reviewed here, the
167	body area exposed to irradiation varied from 24% to full body. No consistency relating to
168	surface area irradiated was observed which distinguished the positive and negative reports.
169	Full body exposure, used in 8 of the 12 studies, is not usually practical in daily life.

171	Assessment of vitamin D and 25(OH)D. Serum or plasma levels of vitamin D and 25(OH)D
172	were measured by HPLC, competitive protein binding, radioimmunoassay, immunoassay
173	(Liaison) and liquid chromatography-tandem mass spectroscopy across the 12 reports, but
174	with no systematic difference between the positive and negative studies. Two of the older
175	negative ^{22, 25} and one older positive ²⁶ studies measured only serum vitamin D, while the
176	remaining studies measured concentrations of 25(OH)D either on serum or plasma. Vitamin
177	D levels are low in serum, so that the inconsistent results could be due to measurement error,
178	particularly in combination with the small sample sizes. The concentration of 25(OH)D in
179	serum or plasma is considered the best measure of vitamin D status: it is present at levels that
180	can be reliably assessed (nmol/L), has a half-life of about two weeks in the circulation, and
181	takes account of both UV-induced synthesis in the skin as well as dietary intake. ³³ In most
182	locations, over 90% of systemic 25(OH)D derives from UV-induced synthesis of vitamin D
183	in the skin. ¹ The assessment of 25(OH)D is not straightforward, with care required to ensure
184	consistent results, even when using the same assay method. ^{34, 35} The displacement of
185	25(OH)D from the DBP varies between different assays. ³⁶ This factor could be significant as
186	the binding affinities of 25(OH)D to the DBP may differ between phototypes. Another
187	critical variable could be the pre-irradiation concentration of 25(OH)D. In the majority of the
188	12 reports, the starting 25(OH)D values, when assessed, were lower in the deeply pigmented
189	people than in the people with fair skin. Serum 25(OH)D levels rise more quickly following
190	UV irradiation in individuals with a low starting level compared to those with higher starting

evels. ¹⁹ In addition, in each individual there is a tendency for a plateau to be reached. ³⁷
whether the level of this plateau varies between people of different ethnicities or with
ifferences in skin pigmentation is largely unknown. Therefore the UV dose used needs to be
hosen carefully to ensure this plateau is not reached in the participants of different skin
blour. In some cases, particularly where the UV dose was repeated several times, this could
ave happened. The studies by Bogh <i>et al.</i> ¹⁸ and Brazerol <i>et al.</i> ²³ are possible examples.
ollowing an oral bolus of vitamin D, there was considerable variability between individuals
the change in 25(OH)D levels in the blood, ³⁸ suggestive of fast and slow responders. This
ay also apply to UV-induced vitamin D production and changes in 25(OH)D level,
owering the discriminatory power and adding to the variability in the results, especially for

- small studies.
- 203

204 Timing of vitamin D measurement. Concentration of vitamin D or 25(OH)D was measured at 205 baseline, and then with a wide range of intervals post-irradiation – from 1 hour to 1 week 206 after the irradiation, on varying schedules – daily, weekly, and at various times after the 207 completion of the irradiation schedule. Certainly more information can be gathered if the 208 assessment takes place at various time points throughout a repeated-exposures schedule or at several times following a single exposure. It is notable that in the study reported by Bogh et 209 al.¹⁸ the measurement of serum 25(OH)D was made only at baseline and at two days after the 210 211 last of four UV exposures, and not throughout. Hence, there are no data on possible 212 differences in the rates at which final levels were reached, and whether these differed 213 according to skin type.

^	4	
,	1	/
~	ᆂ	-

215	Other contributing factors. The criteria used to recruit the subjects into the different groups
216	were not provided in any of the 12 reports. The majority of the studies gave no information
217	regarding diet, body mass index or the general health of the participants, particularly any
218	underlying liver or renal disease. Genetic differences in the epidermal content and
219	distribution of 7-DHC, the vitamin D receptor, the DBP, enzymes that lead to the production
220	and degradation of the vitamin D metabolites, and the different pigment genes that control the
221	ratio of eumelanin to pheomelanin and melanin content, were not considered, but are likely to
222	be important. ^{39,40}

224 Conclusions

225 Careful analysis of the 12 reports that were eligible for inclusion in this systematic review 226 failed to reveal any consistent factor which could distinguish the positive and negative 227 studies. However, on balance, we found the results of the positive studies more convincing 228 than those of the negative studies. We thus conclude that having pigmented skin reduces the 229 effectiveness of UV-induced production of vitamin D and 25(OH)D in blood compared with 230 having fair skin. One possibility to partially explain the discrepant results was the type of UV 231 source used. Those lamps that emitted a higher proportion of UV-C wavelengths tended to 232 result in negative findings (no difference according to skin type). As such wavelengths are 233 not found naturally at the Earth's surface, future studies should ensure that the lamps selected 234 mimic as closely as possible the solar UV spectrum with the UV-C wavelengths filtered out.

236	Based on our analysis of the studies included here, the "perfect" study to generate evidence
237	for public health messages would measure skin pigmentation objectively using a measure of
238	skin reflectance, rather than relying on a proxy such as ethnicity, self-reported skin type, or
239	Fitzpatrick skin type. The source of UV radiation should have a spectral output that simulates
240	normal sunlight and the irradiation schedule should deliver suberythemal doses at a frequency
241	likely to be relevant to normal daily living. The body area irradiated should be similarly
242	realistic; serum 25(OH)D levels should be measured at baseline and at regular intervals
243	during and after the UV irradiation regime, using a standardised assay with excellent
244	performance on accuracy and precision metrics. Most current sun exposure messages for
245	optimal vitamin D status are given for skin type II (Fitzpatrick) with multipliers for other skin
246	types, based largely on differences in average MED across the different skin types. ⁴¹
247	Currently there is insufficient evidence on the effectiveness of vitamin D production for
248	different skin types, with different doses (and spectral variation by time of day, time of year
249	and location) of UV radiation to be able to frame any evidence-based messages on optimal
250	sun exposure for vitamin D sufficiency.
251	
252	Conflict of Interest
253	The authors declare no conflicts of interest
254	
255	Acknowledgements

- 256
- 257 We thank Dr Caradee Wright for supplying the photograph of the hands used in the Graphical
- 258 Abstract. RML is supported by an Australian National Health and Medical Research Career
- 259 Development Fellowship.

Page 16 of 24

262 **References**

263 1. M. F. Holick, Sunlight and vitamin D for bone health and prevention of autoimmune 264 diseases, cancers, and cardiovascular disease, Am J Clin Nutr, 2004, 80, 1678S-265 1688S. 266 2. M. F. Holick, J. A. MacLaughlin, M. B. Clark, S. A. Holick, J. T. Potts, Jr., R. R. 267 Anderson, I. H. Blank, J. A. Parrish and P. Elias, Photosynthesis of previtamin D₃ in human skin and the physiologic consequences, Science, 1980, 210, 203-205. 268 269 3. M. F. Holick, Vitamin D deficiency, The New England journal of medicine, 2007, 270 357, 266-281. 271 4. M. F. Holick, J. A. MacLaughlin and S. H. Doppelt, Regulation of cutaneous previtamin D₃ photosynthesis in man: skin pigment is not an essential regulator, 272 273 Science, 1981, 211, 590-593. 5. A. F. Hess, L. J. Unger and A. M. Pappenheimer, Experimental rickets in rats : Vii. 274 the prevention of rickets by sunlight, by the rays of the mercury vapor lamp, and by 275 276 the carbon arc lamp, *J Exp Med*, 1922, **36**, 427-446. 277 6. J. Y. Lin and D. E. Fisher, Melanocyte biology and skin pigmentation, *Nature*, 2007, 445, 843-850. 278 7. M. Brenner and V. J. Hearing, The protective role of melanin against UV damage in 279 280 human skin, Photochem Photobiol, 2008, 84, 539-549. 281 8. S. S. Harris and B. Dawson-Hughes, Seasonal changes in plasma 25-hydroxyvitamin 282 D concentrations of young American black and white women, Am J Clin Nutr, 1998, 283 67, 1232-1236. 284 9. S. Nesby-O'Dell, K. S. Scanlon, M. E. Cogswell, C. Gillespie, B. W. Hollis, A. C. Looker, C. Allen, C. Doughertly, E. W. Gunter and B. A. Bowman, Hypovitaminosis 285 D prevalence and determinants among African American and white women of 286 287 reproductive age: third National Health and Nutrition Examination Survey, 1988-1994, Am J Clin Nutr, 2002, 76, 187-192. 288 289 10. A. Mithal, D. A. Wahl, J. P. Bonjour, P. Burckhardt, B. Dawson-Hughes, J. A. 290 Eisman, G. E. Fuleihan, R. G. Josse, P. Lips, J. Morales-Torres and I. C. S. Advisors, Global vitamin D status and determinants of hypovitaminosis D, Osteoporos Int, 291 292 2009, 20, 1807-1820. 293 11. A. C. Looker, B. Dawson-Hughes, M. S. Calvo, E. W. Gunter and N. R. Sahyoun, 294 Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal 295 subpopulations from NHANES III, Bone, 2002, 30, 771-777. J. E. P. Rockell, C. M. Skeaff, S. M. Williams and T. J. Green, Serum 25-296 12. 297 hydroxyvitamin D concentrations of New Zealanders aged 15 years and older, 298 Osteoporos Int, 2006, 17, 1382-1389.

299 300 301 302	13.	M. D. Farrar, R. Kift, S. J. Felton, J. L. Berry, M. T. Durkin, D. Allan, A. Vail, A. R. Webb and L. E. Rhodes, Recommended summer sunlight exposure amounts fail to produce sufficient vitamin D status in UK adults of South Asian origin, <i>Am J Clin Nutr</i> , 2011, 94 , 1219-1224.
303 304	14.	P. Autier, M. Boniol, C. Pizot and P. Mullie, Vitamin D status and ill health: a systematic review, <i>Lancet Diabetes Endocrinol</i> , 2014, 2 , 76-89.
305 306 307	15.	E. Theodoratou, I. Tzoulaki, L. Zgaga and J. P. A. Ioannidis, Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials, <i>Brit Med J</i> , 2014, 348 .
308 309	16.	D. L. Weed, Methodologic guidelines for review papers, <i>J Natl Cancer Inst</i> , 1997, 89 , 6-7.
310 311	17.	T. B. Fitzpatrick, The validity and practicality of sun-reactive skin types I through VI, <i>Arch Dermatol</i> , 1988, 124 , 869-871.
312 313 314	18.	M. K. B. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation, <i>J Invest Dermatol</i> , 2010, 130 , 546-553.
315 316 317 318	19.	M. D. Farrar, A. R. Webb, R. Kift, M. T. Durkin, D. Allan, A. Herbert, J. L. Berry and L. E. Rhodes, Efficacy of a dose range of simulated sunlight exposures in raising vitamin D status in South Asian adults: implications for targeted guidance on sun exposure, <i>Am J Clin Nutr</i> , 2013, 97 , 1210-1216.
319 320 321 322	20.	L. A. G. Armas, S. Dowell, M. Akhter, S. Duthuluru, C. Huerter, B. W. Hollis, R. Lund and R. P. Heaney, Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: The effect of UVB dose and skin color, <i>J Am Acad Dermatol</i> , 2007, 57 , 588-593.
323 324	21.	T. L. Clemens, J. S. Adams, S. L. Henderson and M. F. Holick, Increased skin pigment reduces the capacity of skin to synthesise vitamin D ₃ , <i>Lancet</i> , 1982, 1 , 74-76.
325 326 327	22.	L. Y. Matsuoka, J. Wortsman, J. G. Haddad, P. Kolm and B. W. Hollis, Racial pigmentation and the cutaneous synthesis of vitamin-D, <i>Arch Dermatol</i> , 1991, 127 , 536-538.
328 329 330	23.	W. F. Brazerol, A. J. McPhee, F. Mimouni, B. L. Specker and R. C. Tsang, Serial ultraviolet B exposure and serum 25 hydroxyvitamin D response in young adult American blacks and whites: no racial differences, <i>J Am Coll Nutr</i> , 1988, 7 , 111-118.
331 332	24.	T. C. Stamp, Factors in human vitamin D nutrition and in the production and cure of classical rickets, <i>Proc Nutr Soc</i> , 1975, 34 , 119-130.
333 334 335	25.	C. W. Lo, P. W. Paris and M. F. Holick, Indian and Pakistani immigrants have the same capacity as Caucasians to produce vitamin D in response to ultraviolet irradiation, <i>Am J Clin Nutr</i> , 1986, 44 , 683-685.
336 337	26.	L. Y. Matsuoka, J. Wortsman, J. G. Haddad and B. W. Hollis, Skin types and epidermal photosynthesis of vitamin-D ₃ , <i>J Am Acad Dermatol</i> , 1990, 23 , 525-526.

338 339	27.	A. C. Green, Premature ageing of the skin in a Queensland population, <i>Med J Aust</i> , 1991, 155 , 473-474, 477-478.
340 341	28.	M. F. Holick, The photobiology of vitamin-D and its consequences for humans, <i>Ann Ny Acad Sci</i> , 1985, 453 , 1-13.
342 343	29.	L. O. Bjorn, Vitamin D synthesis may be independent of skin pigmentation only with UV of short wavelength, <i>J Invest Dermatol</i> , 2010, 130 , 2848-2850.
344 345 346 347	30.	T. Tadokoro, Y. Yamaguchi, J. Batzer, S. G. Coelho, B. Z. Zmudzka, S. A. Miller, R. Wolber, J. Z. Beer and V. J. Hearing, Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation, <i>J Invest Dermatol</i> , 2005, 124 , 1326-1332.
348 349 350	31.	J. Barth, B. Gerlach, P. Knuschke and B. Lehmann, Serum 25(OH)D ₃ and ultraviolet exposure of residents in an old people's home in Germany, <i>Photodermatol Photoimmunol Photomed</i> , 1992, 9 , 229-231.
351 352 353	32.	M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Interdependence between body surface area and ultraviolet B dose in vitamin D production: a randomized controlled trial, <i>Br J Dermatol</i> , 2011, 164 , 163-169.
354 355	33.	M. F. Holick, Resurrection of vitamin D deficiency and rickets, <i>Journal of Clinical Investigation</i> , 2006, 116 , 2062-2072.
356 357 358	34.	C. T. Sempos, H. W. Vesper, K. W. Phinney, L. M. Thienpont, P. M. Coates and Vdsp, Vitamin D status as an international issue: National surveys and the problem of standardization, <i>Scand J Clin Lab Inv</i> , 2012, 72 , 32-40.
359 360	35.	F. Granado-Lorencio, I. Blanco-Navarro and B. Perez-Sacrsitan, Critical evaluation of assays for vitamin D status, <i>Curr Opin Clin Nutr</i> , 2013, 16 , 734-740.
361 362	36.	W. D. Fraser and A. M. Milan, Vitamin D assays: past and present debates, difficulties, and developments, <i>Calcified Tissue Int</i> , 2013, 92 , 118-127.
363 364 365	37.	A. R. Webb, B. R. Decosta and M. F. Holick, Sunlight regulates the cutaneous production of vitamin-D ₃ by causing its photodegradation, <i>J Clin Endocrinol Metab</i> , 1989, 68 , 882-887.
366 367 368	38.	R. P. Heaney, K. M. Davies, T. C. Chen, M. F. Holick and M. J. Barger-Lux, Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol, <i>Am J Clin Nutr</i> , 2003, 77 , 204-210.
369 370 371 372	39.	R. Saternus, S. Pilz, S. Graber, M. Kleber, W. Marz, T. Vogt and J. Reichrath, A closer look at evolution: Variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration, <i>Endocrinology</i> , 2015, 156 , 39-47.
373 374	40.	A. Slominski and A. E. Postlethwaite, Skin under the sun: when melanin pigment meets vitamin D, <i>Endocrinology</i> , 2015, 156 , 1-4.

375 376 377 378	41.	A. J. Samanek, E. J. Croager, P. Gies, E. Milne, R. Prince, A. J. McMichael, R. M. Lucas and T. Slevin, Estimates of beneficial and harmful sun exposure times during the year for major Australian population centres, <i>Med J Australia</i> , 2006, 184 , 338-341.
379 380 381 382	42.	T. C. Chen, F. Chimeh, Z. R. Lu, J. Mathieu, K. S. Person, A. Q. Zhang, N. Kohn, S. Martinello, R. Berkowitz and M. F. Holick, Factors that influence the cutaneous synthesis and dietary sources of vitamin D, <i>Arch Biochem Biophys</i> , 2007, 460 , 213-217.
383 384	43.	F. Libon, E. Cavalier and A. F. Nikkels, Skin color is relevant to vitamin D synthesis, <i>Dermatology</i> , 2013, 227 , 250-254.
385		

Table	1 Summary of	studies	reporting that sk	in pigmentai	lion does n	lot influence	e the synthesis of v	vitaiiiiii	D and 23(OH)	D	
	Study characteristics					UV radiation				te measurement	
Reference	Location	Study month	No of participants Ethnicity/skin type (Age)	Skin pigmentation measurement	UV source	UV wavelength (peak) [λ<290 nm]	UV dose/frequency	Body area	Time of blood collection	Metabolite measured and assay	Results
Stamp, 1975 ²⁴	London, UK	NR	2 Asian (14 years), 3 White, 1 Black (age unknown)	No	Theratkin	290-350 nm (290 nm), [Yes]	Once per day for 24 days; mainly suberythemal	Full body	Every 2-3 days	Plasma 25(OH)D, Competitive protein- binding radioassay	Rate of increase same in all subjects
Lo et al., 1986 ²⁵	Boston, USA	NR	6 Asian, 4 Caucasian (18-30 years)	No	FS-36T12 UVB:HO	280-450 nm (313 nm) [Yes]	1.5 personal MEDs, single dose	Full body	0,1,2,3,6,9 days after exposure	Serum vitamin D, HPLC	No difference in baseline and post- exposure serum vitamin D between Asians and Caucasians
Brazerol et al., 1988 ²³	Cincinnati, USA	Jan-Feb	13 White, 7 Black (22-35 years)	No	FS-40	280-450 nm (313 nm) [Yes]	30 mJ/cm ² , 10% increase for each of the next 5 exposures, then 48 mJ/cm ² for remaining 6 exposures, given biweekly	Full body	1 week before, weekly for 6 weeks, and 4 days after the last exposure	Serum 25(OH)D, Competitive protein- binding radioassay	25(OH)D response similar in black and white participants
Matsuoka et al., 1990 ²⁶	Philadelphia, USA	Dec- Mar	2 I, 4 II, 6 III, 4 IV (about 20 years)	No	FS-72T12	260-330 nm (313 nm) [Yes]	27 mJ/cm ² , single dose	Full body	1 hour before, 24 hours after exposure	Serum vitamin D ₃ , HPLC	No difference in rate of increase in vitamin D between skin types
Bogh et al., 2010 ¹⁸	Copenhagen, Denmark	Jan - Mar	4 I, 5 II, 4 III, 5 IV, 7 V, 3 VI (19-48 years)	Reflectance meter on exposed and unexposed body sites (PPF)	TL-12	280-350 nm (300-325 nm) [Yes]	3 SEDs, 4 times in one week	24%	Baseline, 2 days after last exposure	Serum 25(OH)D, Liquid chromatography-tandem mass spectrometry	No correlations between increase in 25(OH)D and constitutive or facultative skin PPF; no difference in increase in 25(OH)D between V-VI and I-IV groups (9 matched pairs)

Table 1 Summary of studies reporting that skin pigmentation does not influence the synthesis of vitamin D and 25(OH)D

Abbreviations: HPLC: high-performance liquid chromatography; MED: minimal erythema dose; No: Number; NR: not reported; PPF: pigmentation protection factor; SED: standard erythema dose; UK: United Kingdom; USA: United States of America; UV: ultraviolet; λ: wavelength. Roman numerals denote Fitzpatrick skin type.

Reference L Clemens et al., B	Location	Study month	No of participants Ethnicity/skin type (Age)	Skin pigmentation measurement	UV source	UV wavelength (neak)	UV dose/frequency	Body	Time of blood	Metabolite measured	Results
Clemens et al., B				measurement		[λ<290 nm]		area	collection	and assay	
1982 ²¹ U	Boston, USA	NR	2 Caucasians (mean 29 years), 3 Black (mean 33 years)	No	FS-40	280-450 nm (313 nm) [Yes]	54 mJ/cm ² , single dose	Full body	Daily for 21 days after treatment	Serum vitamin D, 25(OH)D, HPLC	Vitamin D and 25(OH)D increased Whites, no increase in Blacks
Matsuoka et al., Pl 1991^{22} U	Philadelphia, USA	Nov - Feb	8 white, 8 oriental, 7 indian, 8 black (in 30s)	No	FS-72T12	260-330 nm (303 nm) [Yes]	27 mJ/cm ² , single dose	Full body	1 hour before, 24 hours after exposure	Serum vitamin D ₃ , HPLC	Basal serum vitamin D same in all groups, post-exposure level higher in- Whites than Indians and Blacks, higher in Orientals than Indians and Blacks
Chen et al., B 2007^{42} U	Boston, USA	Winter	II, III, IV, V, numbers and age unknown	No	Tanning bed, similar output to sunlight	NR	0.75 personal MED, 3 times per week, 12 weeks	Full body	Baseline, during and at completion of the study	Serum 25(OH)D, Competitive protein binding	Percentage increase in 25(OH)D:32 ⁻ for II; 287 for III; 225 for IV, 140 for V
Armas et al., O 2007 ²⁰ U	Omaha, USA	Sep - Jun, 72% Nov - Mar	72 (19-49 years)	Reflective meter (L*); Upper inner arm	HOUVA II	[No]	20-80 mJ/cm ² , depending on the self- reported skin type, 3 times per week, 4 weeks	90%	Baseline, weekly for 4 weeks and then at eighth week	Serum 25(OH)D, Liquid phase radioimunoassay	The lighter the skin tone, the greater the rates of increase in serum 25(OH)D with UVB dose
Farrar et al., M 2011 ¹³ U	Manchester, UK	Jan - Feb	15 V (South Asians), 109 I-IV (white) (20-60 years)	Spectrophoto meter (L*) (used only to measure change in skin colour over course of irradiation)	Arimed B and Cleo Natural lamps, similar to sunlight, 95% UVA and 5% UVB	290-400 nm (313 nm) [No]	1.3 SEDs, 3 times per week, 6 weeks	35%	Weekly	Serum 25(OH)D, HPLC	Increase greater in I-IV than in V
Farrar et al., M 2013 ¹⁹ U	Manchester, UK	Jan - Feb	10 South Asian, V, (mean 26 years)	Spectrophoto meter (L*) (unexposed buttock)	Arimed B and Cleo Natural lamps, similar to sunlight, 95% UVA and 5% UVB	290-400 nm (313 nm) [No]	3.25 SEDs, 3 times per week, 6 weeks	35%	Weekly	Serum 25(OH)D, HPLC	Increase more rapidly in those with lighter skin over the first 3 weeks
Libon et al., Li 2013^{43} B	Liege, Belgium	Feb	19 II, 1 III, 11 VI, (19-41 years)	No	Waldmann 8001 k	290-320 nm [No]	22 mJ/cm ² , single dose	Full body	Before, days 2 and 6	Serum 25(OH)D, DiaSorin Liaison Total Vitamin D method	High 25(OH)D levels in fair subjects compared with Blacks on day 6

Table 2 Summary of studies reporting that skin pigmentation does influence the synthesis of vitamin D and 25(OH)D

Photochemical & Photobiological Sciences

Page 22 of 24

Figure 1 Flow chart of literature search

1337x1016mm (72 x 72 DPI)