Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Organic & Biomolecular Chemistry

PAPER

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Catalytic cycloaddition of 2-hydroxy ketones with 1,1dicyanoalkenes

Shinji Tsunoi,^a Yuta Seo^a Yugo Takano,^a Itaru Suzuki^a and Ikuya Shibata^{a*}

A tin-catalyzed reaction of α -hydroxy ketones with 1,1-dicyanoalkenes produced 2-amino-4,5-dihydrofuran-3-nitriles. In the catalytic reaction, tin enolates were generated from α -hydroxy ketones as active catalytic species. The highly basic ability of the Sn-O bonds played an important role in the reactions. This tin-catalyzed reaction was highly atom-economical and required no other metal reagents.

Introduction

Organotin enolates act as efficient carbon nucleophiles to generate carbon-carbon bonds, and are more reactive than silyl enolates but less basic than the lithium versions.¹ Tin enolates are difficult to handle compared with silyl enolates due to their limited availability, nonetheless, development of the synthetic utility of tin enolates has progressed because of their efficient chemo- and stereoselec-tivities. These reactions proceed without the use of any other catalysts such as transition-metals or Lewis acids. The general procedures using tin enolates are mainly based on stoichiometric reactions.¹ This background shows why the development of a system employing catalytic tin enolates is in high demand.² We investigated the catalytic use of tin enolates generated by the hydrostanation of enones with dibutylhalogenotin hydride (Bu₂SnClH or Bu₂SnIH), leading to the reductive aldol reaction of enones.³ For the tincatalyzed reductive aldol reactions, an equimolar amount of hydrosilane was essential in the regeneration of the tin hydride.^{3b} Herein, we describe a tin-catalyzed cycloaddition of α -hydroxy ketones with 1,1-dicyanoalkenes to produce 2-amino-3-cyano-4,5dihydrofurans 3. The corresponding reaction was highly atom economical.⁴ In this reaction, tin enolates were generated efficiently as active catalytic species without using any other metal species.

Results and discussion

Initially, the reaction of α -hydroxy acetone (1a) with 1,1dicyanoalkene (2a) was examined (Table 1). Without a catalyst, no reaction proceeded at 25 °C for 24 h. In the presence of a tin(II) bis(2ethylhexanoate)-MeOH system [Sn(Oct)₂-2MeOH] (10 mol%),⁵ 2amino-3-cyano-4-phenyl-5-acetyl-4,5-dihydrofuran (3a) was obtained as an adduct in a 39% yield (entry 1). The product 3a was derived from the addition of an α -carbon of 1a to 2a. This feature

This journal is © The Royal Society of Chemistry 20xx

contrasted with previously reported reaction with isocyanates by Tamariz^{6a-d} and our groups,^{6e} in which the product was derived from the addition of an OH group of **1a**.

Although the yield of **3a** at rt was insufficient (entry 1), the reaction under microwave irradiation gave **3a** in a higher yield (75%) within 10 min (entry 2). In contrast, using a $Bu_2Sn(OMe)_2$ catalyst resulted in a lower yield, for which a complex mixture was obtained (entry 3). Thus $Sn(Oct)_2/MeOH$ was revealed to be a superior catalyst. Using excess amounts (2 equiv) of **1a** increased the yield of **3a** to 90% (entry 4). Among solvents examined (entries 5-8), MeCN was the best choice (entry 8). Product **3a** was also obtained under heating conditions at 80°C for 2 h (entry 9).

Table 1 Optimization of conditions^a

	cat. solvent Ph CN
--	-----------------------

Entry Catalyst		1a (mmol) Solvent		Conditions	Yield of 3a dr (%)	
1	Sn(Oct) ₂ -2MeOH	1	THF	25 °C, 24 h	39	74:26
2	Sn(Oct) ₂ -2MeOH	1	THF	MW, 94 °C	75	73:27
3	Bu ₂ Sn(OMe) ₂	1	THF	MW, 97 °C	24	58:42
4	Sn(Oct)2-2MeOH	2	THF	MW, 111 °C	90	71:29
5	Sn(Oct) ₂ -2MeOH	2	Hexane	MW, 95 °C	81	58:42
6	Sn(Oct)2-2MeOH	2	DCE	MW, 117 °C	67	66:34
7	Sn(Oct)2-2MeOH	2	Et ₂ O	MW, 95 °C	84	61:39
8	Sn(Oct)2-2MeOH	2	MeCN	MW, 97 °C	96	67:33
9	Sn(Oct)2-2MeOH	2	MeCN	80 °C ^b	86	58:42

^{*a*} Reaction conditions: **2a** (2 mmol), cat. (0.1 mmol), solvent (1 mL), MW 30W, 10 min. ^{*b*} oil bath 2 h.

^{a.} Address here. Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871

 $[\]dagger Electronic Supplementary Information (ESI) available: Spectroscopic data including minor products.$

Cebted

x Biomolecula

Journal Name

ARTICLE

Next, the reactions were carried out using various α -hydroxy ketones 1 with 1,1-dicyanoalkenes 2 catalyzed by Sn(Oct)₂/MeOH under optimized conditions (Table 2). The 1,1-dicyano alkenes 2a-2g were reactive with 1a to give 3a-3g (entries 1-7). Various functionalities such as methoxy- and halogen substituents could be introduced on the aromatic rings of 2b-e (entries 2-5). Naphtyl- and heterocyclic substituents were also introduced to products 3f and 3g (entries 6 and 7). Besides aromatic alkenes, an aliphatic version 2h was also reactive to give the corresponding adduct **3h** (entry 8). In place of **1a**, the reaction using α -hydroxy acetophenone (1b) gave the corresponding adducts 3i-3k effectively (entries 9-11). These products version of 3 included diastereoisomers, in which transsubstituted versions predominated. When α -hydroxy pinacolone (1c) was used, the corresponding cyclic products 3I-3s were obtained effectively (entries 12-19). It is noteworthy that the transselectivities of **3I-3s** that were derived from **1c** were higher than those of 3a-3k derived from the reactions using 1a and 1b. We tried to use cinnamyl nitrile as a simple Michael acceptor. However, no desired product was obtained. Perhaps doubly activated acceptor was needed.

Table 2 Cycloaddition of 1 with 1,1-dicyanoalkenes 2^a

R^{1} H R^{2} CN R^{2} R	Sn(Oct)2MeOH (0.1 equiv) MeCN, MW 100 ℃ (30 W), 10-20 min.	\mathbb{R}^{1} \mathbb{O} $\mathbb{N}^{H_{2}}$ \mathbb{O} \mathbb{R}^{2} \mathbb{O} \mathbb{O} \mathbb{N}

Entr	y R ¹	R ²	3	$3 (\%)^{f}$	ar (trans:cis)
1	Me $(1a)^{b,c}$	Ph (2a)	a	96	67:33
2		<i>p</i> -ClC ₆ H ₄ (2b)	b	76	87:13
3		p-FC ₆ H ₄ (2c)	с	73	78:22
4		<i>p</i> -Tol (2d)	d	50	69:31
5		PMP (2e)	e	47	70:30
6		Np (2f)	f	91	67:33
7		furyl (2g)	g	64	66:34
8		$PhCH_2CH_2$ (2h)	h	48	83:17
9	Ph (1b) ^c	Ph (2a)	i	99	72:28
10		<i>p</i> -ClC ₆ H ₄ (2b)	j	98	72:28
11		Np (2f)	k	70	70:30
12	t-Bu (1c) ^d	Ph (2a)	1	90	91:9
13		p-ClC ₆ H ₄ (2b)	m	90	92:8
14		<i>p</i> -FC ₆ H ₄ (2c)	n	64	89:11
15		<i>p</i> -Tol (2d)	0	52 ^e	90:10
16		PMP (2e)	р	40^{e}	90:10
17		Np (2f)	q	86	91:9
18		furyl (2g)	r	66	86:14
19		$PhCH_{2}CH_{2}\left(\mathbf{2h}\right)$	s	50	92:8

^{*a*} Reaction conditions: **1** (1 mmol), **2** (1 mmol), MeCN (1 mL), Sn(OCOC₇H₁₇)₂ (0.1 mmol), ^{*b*}**1** (2 mmol), ^{*c*} 10 min, ^{*d*} 20 min, ^{*e*} 160 °C, ^{*f*} Determined by ¹H NMR based on **2**. As shown in Scheme 1, when *tetra*-substituted alkene 2i was used as a substrate, a $Sn(Oct)_2/MeOH$ catalyst afforded no products due to the steric hindrance of 2i. However, $Bu_2Sn(OMe)_2$ was employed as an effective catalyst to give poly-substituted product 3t with a quaternary carbon (eq. 1). Secondary alcohol 1d also reacted effectively under the same conditions to give poly-substituted product 3u with a quaternary carbon (eq. 2). Although the yield was less, even the combination between sterically hindered substrates 1d and 2i was allowed to give poly-substituted product 3v with no protons on the ring (eq. 3).

Scheme 1

Tertiary alcohol **1e**, which has neither α -hydroxymethylene- nor α -hydroxymethine protons, gave no products when catalyzed by Sn(Oct)₂/MeOH. On the contrary, when Bu₂Sn(OMe)₂ was used as a catalyst, a linear type of adduct, **4a**, was obtained by the coupling of the tin enolate derived from an acetyl group of **1e** (Scheme 2). Thus, Bu₂Sn(OMe)₂ bears a higher basicity⁹ than the Sn(Oct)₂/MeOH system which could not abstract acetyl protones.¹⁰ As described in Table 1, in the reaction of **1a**, which possesses two types of acidic protons such as acetyl and α -hydroxymethylene groups, Sn(Oct)₂/MeOH was employed as a highly chemoselective catalyst to react only with α -hydroxymethylene or α -hydroxymethine protons.¹¹

Scheme 2

This journal is © The Royal Society of Chemistry 20xx

Journal Name

The reaction was monitored using α -hydroxy acetophenone (**1b**) with **2a** (Fig. 1). Products **4b** and **3i** were determined by ¹H NMR. Under the mild conditions at room temperature, the reaction took 360 minutes to attain a quantitative yield of cyclic product **3i**. The starting substrate **1b** decreased gradually with the reaction time and disappeared completely within 180 minutes. At the initial stage, a linear type of adduct, **4b**, was formed, and the yield was increased to 50% in 50 minutes. After 50 minutes, the yield of **4b** decreased. Hence, it was assumed that cyclic **3i** was formed through the linear adduct **4b**. We also confirmed that stirring of the THF solution of isolated **4b** for 6 h without a tin catalyst afforded no **3i**. Therefore, tin-catalysts were essential for the cyclization of **4b** to **3i**. Of course, there is a possibility that cyclic products **3** were formed directly without the passage of linear adducts **4**, particularly under severe conditions such as MW irradiation.

Fig. 1 Reaction profile of 1b with 2a

The cycloadducts of **3** include enamine structures in the ring. Although the products of **3** were isolated as stable compounds, the acid hydrolysis of **3i** easily led to α -cyano- γ -butyrolactone **5** (Scheme 3).^{7g}

Scheme 3

A plausible catalytic cycle forming major products *trans*-**3** is shown in Scheme 4. It is apparent that Sn-O and Sn-N bonds bear highly nucleophilic characteristics.¹² Initially, tin methoxide reacted with α hydroxy ketone **1** to form α -stannoxy ketone **A**¹³ which was in equilibrium with tin enolate **A'**. Next, the enolate carbon of **A'** was added to **1**,1-dicyanoalkene **2** to form adduct **B**. Adduct **B** was protonated by starting α -hydroxy ketone **1**, and a linear adduct **4** was obtained with the regeneration of **A**. During cyclization, **4** was again stannylated by **A** to give tin alkoxide **C**, which was added to the remaining CN group intramolecularly. The Sn–N bond of cyclized product **D** was protonated by the initial **1**. As a result, cyclic product **3** was obtained and rearranged to an enamine structure, and catalytic species **A** was regenerated. Of course, a catalytic cycle without the passage of **4** was possible, in which tin alkoxide **C** was formed by an intramolecular tin-exchange from **B** (dotted line).

Scheme 4

The products of **3** obtained here include diastereoisomers. In the reaction of **1b** with **2a**, the formation of each diastereomer was also monitored (Fig. 2). It was cleared that the formation of *anti*-**4b** followed by *trans*-**3i** is faster than that of *syn*-**4b** to *cis*-**3i**.

The *trans*-selectivity of **3** was dependent upon the substituent R¹ of α -hydroxy ketones **1**. Namely, a bulky R¹ substituent such as a *t*-Bu group underwent highly *trans*-selective reactions (Table 2, entries 10-19). The main diastereomeric product *trans*-**3** was formed *via anti*-**4**. The *anti*-selectivity of **4** was determined during C-C bond formation between tin enolate **A'** and dicyanoalkene **2**. The *in situ*-generated tin enolate **A'** is considered to be the *Z*-form because of the interaction of the tin center with an OH group.¹⁴ In addition, a bulky R¹ group would increase the *Z*-selectivity. A plausible transition

ARTICLE

ARTICLE

state would be an eight-member cyclic transition state (Heathcock's model)^{14,15} (Scheme 5). For the large *t*-Bu group (R¹) on the enolate, a transition structure (I) leading to *anti*-adduct **4** is favored over TS (II) in consideration of steric repulsion between R¹ and R². The effect was significant especially for the case of large R¹ such as *t*-Bu group. After the Michael addition, in the cyclization step, the course from *anti*-**C** to *trans*-**3** is also favored over the *syn*-**C** to *cis*-**3** in consideration of steric repulsion between R¹ and R².

Scheme 5

Conclusions

We demonstrated the catalytic conversion of 2-hydroxy ketones **1** to 2-amino-3-cyano-4-acyl-4,5-dihydrofurans **3** via a 1,3-dipolar cycloaddition. Sn(Oct)₂/MeOH was employed as an effective catalyst. The system employing catalytic tin enolate could be developed without the use of other metal reagents.

Experimental section

General information

Infrared spectra were recorded as thin film on a Nicolet iS5 spectrometer. All ¹H and ¹³C NMR spectra were recorded with a JEOL JMTC-400/54/SS (400 and 100 MHz, respectively) in deuteriochloroform (CDCl₃) containing 0.03% (w/v) of tetramethylsilane as internal standard. Mass spectra were recorded on a JEOL JMS-DS-303 spectrometer. Flash column chromatography was performed by YAMAZEN YFLC-AI-580 using Hi-Flash Silica gel 2L Hi-Flash Column 20-3-mL/min eluted by Hexane/EtOAc with

Di-*n*-butyltin dimethoxide [${}^{n}Bu_{2}Sn(OMe)_{2}$] was prepared according to the reported method using ${}^{n}Bu_{2}SnO$ and dimethyl carbonate.¹⁶ Sn(OCOC₇H₁₇)₂ was purchased from Nakarai Tesque Co., Ltd. Substrates **1a-1e** were commercially available.

All reactions were carried out under dry nitrogen. Microwave assisted reactions were carried out using a focused microwave unit (CEM Discover microwave). The instrument consists of a continuous focused microwave power delivery system with operator selectable power output from 0-300 W. In all experiments, a constant power was applied to ensure reproducibility. Reactions were performed in glass vessels (10 mL) sealed with a septum. Pressure experiment is accomplished by a non-invasive sensor integrated into the cavity lid, which measures the deformation of the Teflon seal of the vessels (maximal 20 bar). Temperature controlled is achieved by means of an IR sensor and the indicated temperature corresponds to the maximal temperature reached during each experiment. The specified reaction time corresponds to the total irradiation time. Efficient cooling is accomplished by means of a pressurized air during the entire experiment.

General procedure for the preparation of product 3 under microwave irradiation. (Table 1, entry 8)

A 5 mL of vial was dried by flame under reduced pressure. After nitrogen was filled, Tin catalyst Sn(OCOC₇H₁₇)₂ (0.0405 g, 0.1 mmol), MeOH (0.0064 g, 0.2 mmol), MeCN (1.0 mL), -hydroxy acetone (1a) (0.148g, 2 mmol) and benzalmalononitrile (2a) (0.154g, 1 mmol) were added. The vial was sealed with a septum and was set in microwave reactor. The mixture was stirred under microwave irradiation at 30W for 10 min. The reaction temperature was measured by an IR sensor. After the reaction, the mixture was quenched by H₂O (0.5 mL), diluted with ether (10 mL) and the layers were quickly separated. The aqueous phase was further extracted with ether (5 mL x3), and the combined extracts were dried over sodium sulfate and concentrated. The yield of 3a and the trans:cis selectivity was determined by ¹H NMR (0.110 g, 96%, trans:cis= 67:33). The crude product was then purified by flash column chromatography eluted by Hexane/EtOAc with gradation mode changing from 9/1 to 5/5. The desired product was obtained at Hexane/EtOAc=7:3. Spectral data for major products (trans-3) are listed as follows. Other minor products such as cis-3 isomers are in ESI.

(4S*,5S*)-5-Acetyl-2-amino-4-phenyl-4,5-dihydrofuran-3carbonitrile (*trans*-3a)

Light brown solid, mp: 81-85 °C; IR (KBr) 3441, 2188, 1662 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.23 (s, 3H), 4.31 (d, J = 5.3 Hz, 1H), 4.72 (d, J = 5.3 Hz, 1H), 5.43 (s, 2H), 7.26-7.36 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 50.4, 55.9, 92.0, 118.1, 127.0, 127.9, 129.0, 140.8, 166.9, 204.4; MS (CI, m/z) 229 (M⁺+1, 100); HRMS (CI, m/z) calcd for C₁₃H₁₃N₂O₂ [M+H]⁺ 229.0977, found 229.0978.

(4*S**,5*S**)-5-Acetyl-2-amino-4-(4-chlorophenyl)-4,5-dihydrofuran-3-carbonitrile (*trans*-3b)

Journal Name

ARTICLE

Journal Name

Pale yellow wax, R_f= 0.33 (in hexane:ethyl acetate = 4:6); IR (neat) 3343, 2190, 1663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.26 (s, 3H), 4.33 (d, *J* = 5.3 Hz, 1H), 4.66 (d, *J* = 5.3 Hz, 1H), 5.46 (s, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 26.1, 49.9, 55.9, 91.9, 117.7, 128.5, 129.2, 133.7, 139.4, 166.9, 204.3; MS (CI, *m*/*z*) 263(M⁺+1, 100); HRMS (CI, *m*/*z*) calcd for C₁₃H₁₂ClN₂O₂ [M+H]⁺ 263.0587, found 263.0580.

(4*S**,5*S**)-5-Acetyl-2-amino-4-(4-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (*trans*-3c)

Pale yellow wax, R_f = 0.66 (in hexane/ethyl acetate = 2:8); IR (neat) 3347, 2190, 1665) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H), 4.34 (d, *J* = 5.3 Hz, 1H), 4.67 (d, *J* = 5.3 Hz, 1H), 5.40 (s, 2H), 7.05 (t, *J* = 8.7 Hz, 2H), 7.27 (dd, *J* = 8.7, 5.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 49.8, 56.2, 92.1, 116.0 (d, *J* = 22.1 Hz), 117.8, 128.8 (d, *J* = 8.2 Hz), 136.6 (d, *J* = 3.3 Hz), 162.4 (d, *J* = 246.6 Hz), 166.8, 204.4; MS (CI, *m/z*) 247 (M⁺+1, 100); HRMS (CI, *m/z*) calcd for C₁₃H₁₂FN₂O₂ [M+H]⁺ 247.0883, found 247.0881.

(*S**,5*S**)-5-Acetyl-2-amino-4-(p-tolyl)-4,5-dihydrofuran-3-carbonitrile (*trans*-3d)

Pale yellow wax, R_f = 0.75 (in hexane/ethyl acetate = 2:8); IR (neat) 3346, 2189, 1663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 3H), 2.33 (s, 3H), 4.28 (d, *J* = 5.6 Hz, 1H), 4.70 (d, *J* = 5.6 Hz, 1H), 5.33 (s, 2H), 7.10-7.25 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 26.0, 50.3, 56.5, 92.3, 117.9, 127.0, 129.7, 137.6, 137.8, 166.8, 204.3; MS (CI, *m/z*) 243(M⁺+1, 100); HRMS (CI, *m/z*) calcd for C₁₄H₁₅N₂O₂ [M+H]⁺ 243.1134, found 243.1137.

(4*S**,5*S**)-5-Acetyl-2-amino-4-(4-methoxyphenyl)-4,5dihydrofuran-3-carbonitrile (*trans*-3e)

Pale yellow wax; R_f = 0.24 (in hexane:ethyl acetate = 4:6); IR (neat) 3347, 2188, 1667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H), 3.81 (s, 3H), 4.29 (d, *J* = 5.6 Hz, 1H), 4.70 (d, *J* = 5.6 Hz, 1H), 5.12 (s, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 7.21 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 50.0, 55.3, 57.2, 92.5, 114.5, 117.7, 128.2, 132.8, 159.3, 166.4, 204.2; MS (CI, *m/z*) 259 (M⁺+1, 100); HRMS (CI, *m/z*) calcd for C₁₃H₁₅N₂O₃ [M+H]⁺ 259.1083, found 259.1079.

(4S*,5S*)-5-Acetyl-2-amino-4-(naphthalen-2-yl)-4,5-

dihydrofuran-3-carbonitrile (trans-3f)

Pale orange solid, mp: 55 °C; IR (KBr) 3341, 2188, 1661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.20 (s, 3H), 4.46 (d, J = 5.3 Hz, 1H), 4.74 (d, J = 5.3 Hz, 1H), 5.48 (s, 2H), 7.37-7.79 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 50.7, 56.1, 91.9, 118.0, 124.7, 126.1, 126.1, 126.4, 127.6, 127.9, 129.2, 132.9, 133.3, 138.1, 167.0, 204.4; MS (Cl, m/z) 279 (M⁺+1, 100); HRMS (Cl, m/z) calcd for C₁₇H₁₅N₂O₂ [M+H]⁺ 279.1134, found 279.1134.

(4*S**,5*S**)-2'-Acetyl-5'-amino-2',3'-dihydro-[2,3'-bifuran]-4'carbonitrile (*trans*-3g)

Pale yellow solid, mp: 123 °C, IR (KBr) 3446, 2189, 1657 cm⁻¹; ¹H NMR (400 MHz) δ 2.28 (s, 3H), 4.43 (d, *J* = 4.8 Hz, 1H), 4.93 (d, *J* = 4.8 Hz, 1H), 5.34 (s, 2H), 6.30 (dd, *J* = 3.4, 0.7 Hz, 1H), 6.34 (dd, *J* = 3.4, 1.9 Hz, 1H), 7.40 (dd, *J* = 1.9, 0.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.9, 43.9, 54.1, 88.8, 107.2, 110.6, 117.5, 142.8, 152.8, 166.9, 203.5; MS (CI, *m/z*) 219(M⁺+1, 100); HRMS (CI, *m/z*) calcd for C₁₁H₁₁N₂O₃ [M+H]⁺ 219.0770, found 229.0771.

(4*S**,*5S**)-5-Acetyl-2-amino-4-phenethyl-4,5-dihydrofuran-3carbonitrile (*trans*-3h)

Pale yellow liquid, R_f = 0.49 (in hexane:ethyl acetate = 4:6); IR (neat) 3342, 2185, 1663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.86-2.06 (m, 2H),

2.20 (s, 3H), 2.75 (t, *J* = 8.0 Hz, 2H), 3.16-3.21 (m, 1H), 4.55 (d, *J* = 4.8 Hz, 1H), 4.98 (s, 2H), 7.15-7.35 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 25.7, 32.2, 37.4, 45.0, 56.3, 89.9, 118.2, 126.1, 128.4, 128.5, 140.8, 166.3, 205.4; MS (EI, *m/z*) 256 (M⁺, 18), 109(100), 91(55), 43(41); HRMS (EI, *m/z*) calcd for C₁₃H₁₆N₂O₂ 256.1212, found 256.1213.

(4*S**,5*S**)-2-Amino-5-benzoyl-4-phenyl-4,5-dihydrofuran-3carbonitrile (*trans*-3i)

Light brown solid, mp: 145-150 °C; IR (KBr) 3432, 2191, 1670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.33 (d, *J* = 4.8 Hz, 1H), 5.46 (s, 2H), 5.68 (d, *J* = 4.8 Hz, 1H), 7.25 (d, *J* = 7.0 Hz, 2H), 7.32-7.36 (m, 3H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 50.9, 56.9, 89.0, 118.1, 127.4, 128.1, 128.8, 128.9, 129.1, 133.1, 134.2, 140.9, 167.2, 193.0; MS (Cl, m/z) 291(M⁺+1, 100); HRMS (Cl, m/z) calcd for C₁₈H₁₅N₂O₂ [M+H]⁺ 291.1134, found 291.1130.

(4*S**,5*S**)-2-Amino-5-benzoyl-4-(4-chlorophenyl)-4,5dihydrofuran-3-carbonitrile (*trans*-3j)

Pale yellow solid, mp: 130-132 °C; IR (KBr) 3396, 2184, 1660 cm⁻¹; ¹H NMR (400 MHz, CDCl₃,) δ 4.39 (d, *J* = 4.8 Hz, 1H), 5.03 (2H, s, g), 5.64 (d, *J* = 4.8 Hz, 1H), 7.22-7.26 (m, 2H), 7.32-7.36 (m, 2H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.62-7.65 (m, 1H), 7.79 (d, *J* = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 50.2, 56.7, 88.8, 117.7, 128.7, 128.8, 128.9, 129.3, 133.1, 133.9, 134.4, 139.3, 167.2, 192.6; MS (CI, m/z) 325(M⁺+1, 100); HRMS (CI, m/z) calcd for C₁₈H₁₄ClN₂O₂ [M+H]⁺ 325.0774, found 325.0776.

(4*S**,5*S**)-2-Amino-5-benzoyl-4-(naphthalen-2-yl)-4,5dihydrofuran-3-carbonitrile (*trans*-3k)

Pale yellow solid, mp: 140-142°C; IR (KBr) 3325, 2180, 1656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.54 (d, *J* = 4.8 Hz, 1H), 5.02 (s, 2H), 5.81 (d, *J* = 4.8 Hz, 1H), 7.41-7.59 (m, 5H), 7.59-7.67 (m, 2H), 7.80-7.92 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 51.1, 56.8, 88.7, 118.1, 124.7, 126.1, 126.3, 126.5, 127.6, 127.8, 128.7, 128.8, 128.9, 129.3 133.0, 133.2, 134.1, 138.0, 167.3, 193.0; MS (CI, m/z) 341(M⁺+1, 100); HRMS (CI, m/z) calcd for C₂₂H₁₇N₂O₂ [M+H]⁺ 341.1290, found: 341.1291.

(4*S**,5*S**)-2-Amino-4-phenyl-5-pivaloyl-4,5-dihydrofuran-3carbonitrile (*trans*-3l)

White solid, mp: 199-202 °C; IR (neat) 3420, 2196, 1672 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (s, 9H), 4.30 (d, *J* = 5.3 Hz, 1H), 4.94 (s, 2H), 5.18 (d, *J* = 5.3 Hz, 1H), 7.26-7.39 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 43.5, 51.0, 58.11, 87.9, 117.8, 127.3, 128.0, 129.1, 140.8, 166.5, 208.6; MS (CI, *m/z*) 271(M⁺+1, 100); HRMS (CI, *m/z*) calcd for C₁₆H₁₉N₂O₂ [M+H]⁺ 271.1447, found 271.1448.

(4*S**,5*S**)-2-Amino-4-(4-chlorophenyl)-5-pivaloyl-4,5dihydrofuran-3-carbonitrile (*trans*-3m)

White solid, mp: 145-148°C; IR (neat) 3337, 2187, 1659 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (s, 9H), 4.31 (d, *J* = 5.3 Hz, 1H), 5.09 (d, *J* = 5.3 Hz, 1H), 5.48 (s, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.8, 43.5, 50.2, 56.4, 87.7, 118.0, 128.7, 129.1, 133.5, 139.5, 167.0, 208.8; MS (EI, *m/z*) 304 (M⁺, 4), 247 (100), 57 (35); HRMS (EI, *m/z*) calcd for C₁₆H₁₇ClN₂O₂ 304.0979, found 304.0973.

(4*S**,5*S**)-2-Amino-4-(4-fluorophenyl)-5-pivaloyl-4,5dihydrofuran-3-carbonitrile (*trans*-3n)

White solid, mp: 206-207 °C; IR (neat) 3419, 2195, 1672 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.15 (s, 9H), 4.33 (d, *J* = 5.6 Hz, 1H), 4.92 (s, 2H), 5.11 (d, *J* = 5.6 Hz, 1H), 7.06 (t, *J* = 8.7 Hz, 2H), 7.25 (dd, *J* = 8.7, 5.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.9, 43.6, 50.3, 58.1, 88.0,

Journal Name

ARTICLE

116.0 (d, J = 22.1 Hz), 117.5, 129.0 (d, J = 8.2 Hz), 136.5 (d, J = 3.3 Hz), 161.2, 166.4, 208.5; MS (EI, m/z) 288 (M⁺, 6), 231 (100); HRMS (EI, m/z) calcd for C₁₆H₁₇FN₂O₃ 288.1274, found 288.1273.

(4*S**,5*S**)-2-Amino-5-pivaloyl-4-(p-tolyl)-4,5-dihydrofuran-3carbonitrile (*trans*-3o)

White solid, mp: 143-145 °C; IR (neat) 3428, 2186, 1666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (s, 9H), 2.34 (s, 3H), 4.25 (d, *J* = 5.3 Hz, 1H), 5.07 (s, 2H), 5.15 (d, *J* = 5.3 Hz, 1H), 7.16-7.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 26.0, 43.5, 50.7, 57.9, 87.9, 118.0, 127.2, 129.7, 137.6, 137.9, 166.7, 208.8; MS (EI, *m/z*) 284 (M⁺, 5), 227 (100), 57 (28), 43 (26); HRMS (EI, *m/z*) calcd for C₁₇H₂₀N₂O₂ 284.1525, found 284.1521.

(4*S**,5*S**)-2-Amino-4-(4-methoxyphenyl)-5-pivaloyl-4,5dihydrofuran-3-carbonitrile (*trans*-3p)

White solid, mp: 162-163 °C; IR (neat) 3423, 2193, 1670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (s, 9H), 3.81 (s, 3H), 4.26 (d, *J* = 5.6 Hz, 1H), 4.91 (s, 2H), 5.14 (d, *J* = 5.6 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 2H), 7.19 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 43.5, 50.5, 55.3, 58.4, 88.0, 114.4, 117.8, 128.5, 132.8, 159.3, 166.4, 208.7; MS (EI, *m/z*) 300 (M⁺, 5), 243 (100), 57 (29); HRMS (EI, *m/z*) calcd for C₁₇H₂₀N₂O₃ 300.1474, found: 300.1476.

(44*S**,5*S**)-2-Amino-4-(naphthalen-2-yl)-5-pivaloyl-4,5dihydrofuran-3-carbonitrile (*trans*-3q)

Pale yellow solid, mp: 169-173 °C; IR (neat) 3418 (NH₂), 2197 (CN), 1665 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (s, 9H), 4.47 (d, *J* = 5.3 Hz, 1H), 5.21 (s, 2H), 5.25 (d, *J* = 5.3 Hz, 1H), 7.40 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.46-7.49 (m, 2H), 7.70 (d, *J* = 1.7 Hz, 1H), 7.82 (m, 2H), 7.86 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.9, 43.5, 51.2, 57.5, 87.7, 118.0, 124.8, 126.1, 126.4, 126.4, 127.7, 127.9, 129.2, 133.0, 133.3, 138.1, 166.8, 208.8; MS (EI, *m*/z) 320(M⁺, 4), 263(48), 57(28), 43(100); HRMS (EI, *m*/z) calcd for C₂₀H₂₀N₂O₂ 320.1525, found 320.1523.

(4*S**,5*S**)-5'-Amino-2'-pivaloyl-2',3'-dihydro-[2,3'-bifuran]-4'carbonitrile (*trans*-3r)

White solid, mp: 114-117 °C; IR (neat) 3327, 2181, 1656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.19 (s, 9H), 4.40 (d, *J* = 5.1 Hz, 1H), 5.35 (d, *J* = 5.1 Hz, 1H), 5.40 (s, 2H), 6.28 (dd, *J* = 3.1, 1.0 Hz, 1H), 6.34 (dd, *J* = 3.1, 1.9 Hz, 1H), 7.39 (dd, *J* = 1.9, 1.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.9, 43.5, 44.2, 53.8, 84.1, 107.3, 110.5, 117.9, 142.5, 152.9, 167.3, 208.5; MS (EI, *m/z*) 271 (M⁺, 4), 203 (100), 57 (81); HRMS (EI, *m/z*) calcd for C₁₆H₁₉N₂O₂ 260.1161, found 260.1160.

(4*S**,5*S**)-2-Amino-4-phenethyl-5-pivaloyl-4,5-dihydrofuran-3carbonitrile (*trans*-3s)

White solid, mp: 120-122 °C; IR (neat) 3403, 2183, 1668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.15 (s, 9H), 1.89-2.05 (m, 2H), 2.66-2.85 (m, 2H), 3.20 (dt, *J* = 7.0, 4.8 Hz, 1H), 4.90 (d, *J* = 4.8 Hz, 1H), 5.16 (s, 2H), 7.16-7.30 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 26.1, 32.0, 37.2, 43.4, 44.5, 55.3, 86.3, 118.9, 126.0, 128.4, 128.4, 141.0, 167.0, 209.2; MS (EI, *m/z*) 298 (M⁺, 25), 241 (92), 130 (27), 109 (42), 91 (97), 57 (100); HRMS (EI, *m/z*) calcd for C₁₈H₂₂N₂O₂ 298.1681, found 298.1683.

2-Amino-5-benzoyl-4,4-dimethyl-4,5-dihydrofuran-3-carbonitrile (3t)

White solid, mp: 191-194 °C; IR (KBr) 3401, 2173, 1661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.99 (s, 3H), 1.46 (s, 3H), 4.86 (s, 2H), 5.64 (s, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.65 (t, *J* = 7.7 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.0, 28.7, 46.6, 54.1, 90.8, 117.4, 128.4, 129.0, 134.1, 135.9, 164.9, 194.3; MS (EI, *m/z*) 242(M⁺, 9), 227 (10),

137 (10), 105 (100), 77 (22); HRMS (EI, m/z) calcd for $C_{14}H_{14}N_2O_2$ 242.1055, found 242.1056.

(4*S**,5*S**)-5-Acetyl-2-amino-5-methyl-4-phenyl-4,5-dihydrofuran-3-carbonitrile (*trans*-3u)

Pale yellow wax, R_f = 0.45 (in hexane/ethyl acetate = 5:5); IR (neat) 3345, 2190, 1662 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (s, 3H), 2.26 (s, 3H), 4.41 (s, 1H), 5.68 (s, 2H), 7.19-7.37 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 24.9, 52.6, 55.0, 95.1, 118.5, 127.7, 128.4, 128.4, 137.2, 166.8, 209.8; MS (EI, *m/z*) 242 (M⁺, 100); HRMS (EI, *m/z*) calcd for C₁₄H₁₄N₂O₂ 242.1055, found 242.1054.

5-Acetyl-2-amino-4,4,5-trimethyl-4,5-dihydrofuran-3-carbonitrile (3v)

White solid, mp: 177-178 °C; IR (KBr) 3398, 2175, 1653 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (s, 3H), 1.26 (s, 3H), 1.39 (s, 3H), 2.28 (s, 3H), 4.70 (s, 2H); MS (EI, *m/z*) 194 (M⁺,28), 179 (27), 151 (38), 137 (100), 43 (37); HRMS (EI, *m/z*) calcd for C₁₀H₁₄N₂O₂ 194.1055, found 194.1054.

2-((1*R**,2*S**)-2-Hydroxy-3-oxo-1,3-diphenylpropyl)malononitrile (4b Major)

This product was isolated from the reaction mixture by flash column chromatography eluted by Hexane/EtOAc= 7/3. Further purfication was performed by GPC eluted with CHCl₃.

White wax, R_f = 0.45 (in hexane:ethyl acetate = 8:2); IR (neat) 2189, 1687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.77 (dd, J = 11.6, 2.7 Hz, 1H), 4.05 (d, J = 6.0 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H), 5.63 (dd, J = 6.0, 2.7 Hz, 1H), 6.84 (d, J = 7.4 Hz, 2H), 7.23 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.5 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.77 (d, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 26.1, 50.7, 72.2, 111.5, 112.3, 128.1, 128.4, 129.0, 129.4, 129.6, 130.9, 133.1, 134.9, 197.2; MS (EI, m/z) 290 (M⁺, 4), 225 (10), 105 (100), 77 (24); HRMS (EI, m/z) calcd. for C₁₈H₁₄N₂O₂ 290.1055, found 290.1050.

5-Benzoyl-2-oxo-4-phenyltetrahydrofuran-3-carbonitrile (diastereomers mixture) (**5**)

THF (1 mL) solution of **3i** (0.087g, 0.3 mmol) with 1M HCl (2 mL) was stirred at 25 °C for 1 h. After the reaction, the mixture was extracted with ether (5 mL x3), and the combined extracts were dried over sodium sulfate and concentrated. The yield of **5** was determined by ¹H NMR (0.061 g, 70%). The crude product was then purified by flash column chromatography eluted by Hexane/EtOAc with gradation mode changing from 9/1 to 5/5. The desired product was obtained at Hexane/EtOAc=5:5.

Clear wax; R_f = 0.69 (in hexane:ethyl acetate = 5:5); IR (neat), 2257, 1794, 1693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) (Major) δ 4.07 (d, *J* = 10.9 Hz, 1H), 4.39 (dd, *J* = 10.9, 8.5 Hz, 1H), 5.75 (d, *J* = 8.5 Hz, 1H), 7.32-7.93 (m, 10H). (Minor) δ 4.10 (dd, *J* = 1.2, 8.7 Hz, 1H), 4.27 (d, *J* = 8.7 Hz, 1H), 6.04 (d, *J* = 1.2 Hz, 1H), 7.32-7.93 (m, 10H); ¹³C-NMR (100 MHz, CDCl₃) δ 37.8, 39.7, 46.2, 47.8, 82.1, 82.7, 112.3, 113.7, 127.1, 127.3, 128.8, 129.0, 129.2, 129.3, 129.4, 129.6, 129.7, 129.9, 132.5, 133.7, 134.2, 134.8, 135.3, 135.5, 165.9, 167.5, 190.7, 192.3; MS (CI, *m/z*) 292 (M⁺ + 1, 100); HRMS (CI, *m/z*) calcd for C₁₈H₁₄NO₃ [M+H]⁺ 292.0974, found 292.0976.

Journal Name

Notes and references

- For reviews of organotin enolates, see: (a) I. Shibata and A. Baba, Org. Prep. Proc. Inc., 1994, 26, 85; (b) A. Baba, I. Shibata and M. Yasuda, in Comprehensive Organometallic Chemistry III, Vol. 9, Chapter 8 (Ed. P. Knochel), Elsevier, Oxford, 2007, pp. 341-380; (c) M. Pereyre, P. J. Quintard and A. Rahm, in Tin in Organic Synthesis, Butterworth, London, 1987, pp. 261-285; (d) A. G. Davies, in Organotin Chemistry, VCH: Weinhelm, 1997, pp. 166-193; (e) B. Jousseaume, Science of Synthesis 2003, 5, 369.
- 2 For catalytic employment of organotin enolates, see: Pdcombined system: (a) J. Tsuji, I. Minami and I. Shimizu, Tetrahedron Lett., 1983, 24, 4713; (b) J. Tsuji, I. Minami and I. Shimizu, Tetrahedron Lett., 1983, 24, 5639; Only tin used system: (c) A. Yanagisawa, N. Kushihara, T. Sugita, M. Horiguchi, K. Ida and K. Yoshida, Synlett, 2015, 26, 2541; (d) A. Yanagisawa, T. Fujinami, Y. Oyokawa, T. Sugita and K. Yoshida, Org. Lett., 2012, 14, 2434; (e) A. Yanagisawa, A. Izumiseki, T. Sugita, N. Kushihara and K. Yoshida, Synlett, 2012, 23, 107; (f) A. Yanagisawa, Y. Izumi and S. Takeshita, Synlett, 2009, 716; (g) A. Yanagisawa, H. Saito, M. Harada and T. Arai, Adv. Synth. Catal., 2005, 347, 1517; (h) A. Yanagisawa and T. Sekiguchi, Tetrahedron Lett., 2003, 44, 7163; (i) A. Yanagisawa, N. Kushihara, T. Sugita and K. Yoshida, Synlett, 2012, 23, 1783; (j) A. Yanagisawa, N. Kushihara and K. Yoshida, Org. Lett., 2011, 13, 1576; (k) A. Yanagisawa, T. Satou, A. Izumitani, Y. Tanaka, M. Miyagi, T. Arai and K. Yoshida, Chem. Eur. J., 2009, 15, 11450; Catalytic employment of organotin enamine (/) H. Takahashi, S. Yasui, S. Tsunoi and I. Shibata, Org. Lett. 2014, 16, 1102.
- 3 (a) I. Shibata, T. Suwa, K. Ryu and A. Baba, J. Org. Chem., 2001,
 66, 8690; (b) I. Shibata, S. Tsunoi, K. Sakabe, S. Miyamoto, H. Kato, H. Namajima, M. Yasuda and A. Baba, Chem. Eur. J., 2010, 16, 13335.
- 4 D. Du, Z. Hu, W. Tang, B. Wang and T. Lu, *Tetrahedron Lett.*, 2012, **53**, 453.
- 5 (a) H. R. Kricheldorf, I. Kreiser-Saunders and A. Stricker, *Macromolecules*, **2000**, *33*, 702; (b) A. Kowalski, A. Duda and S. Penczek, *Macromolecules*, 2000, **33**, 7359.
- 6 (a) C. González-Romero, P. Bernal, F. Jiménez, M. del C. Cruz, A. Fuentes-Benites, A. Benavides, R. Bautista and J. Tamariz, *Pure Appl. Chem.*, 2007, **79**, 181; (b) B. M. Santoyo, C. González-Romero, O. Merino, R. Martínez-Palou, A. Fuentes-Benites, H. A. Jiménez-Vázquez, F. Delgado and J. Tamariz, *Eur. J. Org. Chem.*, **2009**, 2505; (c) O. Merino, B. M. Santoyo, L. E. Montiel, H. A. Jiménez-Vázquez, L. G. Zepeda and J. Tamariz, *Tetrahedron Lett.*, 2010, **51**, 3738; (d) D. Zarate-Zarate, R. Aguilar, R. I. Hernandez-Benitez, E. M. Labarrios, F. Delgado and J. Tamariz, *Tetrahedron*, 2015, **71**, 6961-6978; (e) R. Kojima, S. Sawamoto, A. Okamura, H. Takahashi, S. Tsunoi and I. Shibata, *Eur. J. Org. Chem.*, **2011**, 7255.
- 7 (a) E. Campaigne and M. Bradford, J. Heterocycl. Chem., 1970, 7, 257; (b) H. Wamhoff and H.-A. Thiemig, Chem. Ber., 1986, 119, 1070; (c) H. Maruoka, F. Okabe and K. Yamagata, J. Heterocycl. Chem., 2008, 45, 541; (d) V. J. Aran, M. A. Perez and J. L. Soto, J. Chem. Soc. Perkin Trans. 1, 1984, 2009; (e) K. Yamagata, F. Okabe, H. Maruoka and Y. Tagawa, J. Heterocycl. Chem., 2005, 42, 543; (f) H. Maruoka, M. Yamazaki and Y. Tomioka, J. Heterocycl. Chem., 2002, 39, 743; (g) S. Morgenlie, Acta Chem. Scand., 1970, 24, 365.
- 8 (a) E. Campaigne, R. L. Ellis and M. Bradford, *J. Heterocycl. Chem.*, 1969, 6, 159; (b) K. Higashiyama, H. Nagase, R. Yamaguchi, K.-I. Kawai and H. Otomasu, *Chem. Pharm. Bull.* 1985, *33*, 544-550;

(c) T. Matsuda, K. Yamagata and Y. Tomioka, *Chem. Pharm. Bull.*, **1985**, *33*, 937; (d) A. Sera, T. Tsuzuki, E. Satoh and K. Itoh, *Bull. Chem. Soc. Jpn.*, 1992, **65**, 3068; (e) X. Xu and Y. Zhang, *Synth. Commun.*, 2003, **33**, 2643; (f) D. Matiadis, K. C. Prousis and O. Igglessi-Markopoulou, *Molecules*, 2009, **14**, 3914; (g) S. M. Al-Mousawi, M. S. Moustafa, H. Meier, H. Kolshorn and M. H. Elnagdi, *Molecules*, 2009, **14**, 798.

- Bu₂Sn(OMe)₂ forms dimeric structure in which apical Sn-OMe bonds of 5-doordinated tin have high bacicity. A. G. Davies and P. G. Harrison, *J. Chem. Soc. (C)*, **1967**, 298.
- 10 In the Sn(Oct)₂/MeOH system, the active catalytic species is 4coordinated tin without alkyl substituents on tin. Compared with Bu₂Sn(OMe)₂, the Sn-O bonds in the Sn(Oct)₂ system bear weak bacicity: O. D.-Cabaret, B. M.-Vaca and D. Bourissou, *Chem. Rev.*, 2004, **104**, 6147.
- Use of Sn(Oct)₂/MeOH as a chemoselective catalyst. S. Tsunoi,
 H. Takahashi, Y. Takano, A. Okamura and I. Shibata, *RSC Adv.*, 2012, 2, 6140.
- 12 Sn–O and Sn–N bonds bear high nucleophilicity. In some cases, their nucleophilicity is higher than that of the corresponding free alcohols and amines: E. W. Abel, D. A. Armitage and D. B. Brady, *Trans. Faraday Soc.*, 1966, **62**, 3459.
- 13 In the reaction of **1** with isocyanates, α -stannoxy ketone **A** was employed as an active catalytic species.^{6e}
- 14 I. Shibata, K. Yasuda, Y. Tanaka, M. Yasuda and A. Baba, *J. Org. Chem.*, 1998, **63**, 1334.
- 15 For eight membered cyclic transition state: D. A. Oare and C. H. Heathcock, *J. Org. Chem.*, 1990, **55**, 157.
- 16 A. G. Davies, D. C. Kleinschmidt, P. R. Palan and S. C. Vasishtha, *J. Chem. Soc. (C)* **1971**, 3972.