Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Journal Name

CO₂Bn

COMMUNICATION

DABCO-catalyzed unusual [4+2] cycloaddition reaction: nonsubstituted allenoate acts as a four-carbon synthon and facile synthesis of spirooxindoles

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

Yufen Liu,^a Yanlong Du,^a Aimin Yu, *^a Haifeng Mu,^b and Xiangtai Meng *^a

www.rsc.org/

A DABCO-catalyzed domino reaction between methyleneoxindoles and allenoate which enables the direct synthesis of spirooxindoles is reported. This is the first example of a non-substituted allenoate to act as a four-carbon synthon in a tertiary amine-catalyzed reaction.

Over the past two decades, organocatalytic domino reactions involving electron-deficient allenoates have been well studied. A number of new allenoate-based reactions with high synthetic potentials have also been developed.¹ The pioneering work of Lu's [3+2] cycloaddition has led to many significant advances in Lewis base-catalyzed annulation reactions.² Many of these reactions are based on phosphine and amine catalysts. The types of phosphine-catalyzed reactions are much more than amine-catalyzed reactions. In amine-catalyzed domino reactions involving allenoates, the allenoates usually act as two-carbon (β , γ or α , β) synthons (Fig. 1a, 1b).³ There is only one example of an α -substituted allenoate acting as a four-carbon synthon in a tertiary aminecatalyzed cycloaddition reaction (Fig. 1c).⁴ To the best of our knowledge, non-substituted allenoates acting as four-carbon synthons in tertiary amine-catalyzed reactions has not been reported before.⁵

Spirooxindoles are ubiquitous motifs of biologically active compounds (Fig. 2). Because of their considerable medicinal potential, researchers have been trying to design efficient synthetic methods for spirooxindole-scaffold systems. In particular, organocatalytic domino reactions have proven effective for constructing spirooxindoles.⁶ However, despite the considerable effort that has been made in this field, more efficient synthetic strategies are required to diversify the

Fig. 1 Tertiary amine-catalyzed domino reactions of allenoates

spirooxindole product library. Herein, we wish to report an unusual DABCO-catalyzed [4+2] cycloaddition reaction between methyleneoxindoles and allenoate (Fig. 1d). To the best of our knowledge, this is the first report of a non-substituted allenoate acting as a four-carbon synthon in a tertiary amine-catalyzed reaction.⁷

During our ongoing investigation of organocatalyzed domino reactions, we synthesized methyleneoxindole **1**.⁸ As shown in Scheme **1**, methyleneoxindole **1** has many reaction sites and is

Fig. 2 Representative examples of pharmaceutical molecules containing a spirooxindole core structure.

^aTianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China. E-mail: aiminyu@tjut.edu.cn (A. Yu); mengxiangtai23@mail.nankai.edu.cn (X. Meng)

^bHebei Morlans Environmental Technology Inc, Shijiazhuang 050000, P. R. China † Electronic Supplementary Information (ESI) available: Experimental details and characterization data for new compounds. CCDC 1418019-1418021. For ESI and crystallographic data in CIF or other electronic format See DOI: 10.1039/x00x00000x

Journal Name

COMMUNICATION

a versatile reaction partner. For example, when $R^3 = H$, the reaction of **1** and allenoate **2** gives tetrahydrofuran derivatives (Scheme 1a). After protecting the enol as an ester, we can control the reaction to obtain pyrano[2,3-b]indol or dihydropyrano[2,3-b]indol derivatives (Scheme 1 b, c). On the basis of these results, we envisioned that tertiary amines might be able to catalyze methyleneoxindole and allenoate to form spirooxindoles by adjusting the N protective groups (Scheme 1d).

In order to test our postulation, we synthesized a series of N-non-protected substrates 1,⁹ and studied their reactivity with allenoate. We selected 1a and 2a as model substrates and the results are summarized in Table 1. When 1a (0.5 mmol), 2a (1 mmol) and DABCO (1,4-diazabicyclo[2.2.2]octane) (30 mol%) were stirred in MeOH (2 mL) at room temperature, the new product 3a was obtained in 18% yield as a single diastereomer, and 76% 1a was recovered. After purification by column chromatography, 3a was characterized by ¹H NMR, ¹³C NMR, HRMS, and conclusive evidence for the structure and stereochemistry was obtained by single crystal X-ray analysis (Fig. 3).⁹ Multiple events were involved in this reaction, including: (1) spirooxindoles were obtained via a DABCOcatalyzed domino reaction, (2) two C-C bonds and one C-O bond were formed, (3) non-substituted allenoate 2a acted as a four-carbon synthon, and (4) the methoxy group acted as a nucleophilic reagent and appeared in the final product.

The new reactivity we observed prompted us to optimize reaction conditions to improve yield. Results can be found in Table 1. We found that performing the reaction at 60 $^{\circ}$ C in MeOH improved the yield to 43% (entry 2). Changing the solvent from MeOH to CHCl₃ gave **3a-OBn** in 30% yield (entry 3).¹⁰ When toluene was selected as solvent, **3a-OBn** was obtained in 40% (entry 4). MeOH plays an important role in

this reaction as carrying out the reaction in other solvents such as CH₃CN, THF, dioxane, DMF, DMSO gave no desired product (entries 5-8). In order to continue improving the yield, we tested mixed solvent systems. Using toluene and MeOH as solvent (v:v = 1:1.5) yielded only 36% 3a (entry 9). To our surprise, using a 1:1.5 volume solution of CHCl₃ and MeOH gave an improved yield of 47% (entry 10). It is important to note that for all cases, the reaction did not proceed to full conversion even after an extended reaction time. To further improve conversion, using CHCl₃ and MeOH as the solvent (v:v = 1:1.5), and adding DABCO (12 mol% per batch) and 2a (1 eq. per batch) in three batches led to an improved yield of 53% (entry 11). Other ratios of CHCl₃/CH₃OH or using methyl buta-2,3-dienoateinstead of 2a did not produce better results (entries 12-15). Other Lewis bases such as DMAP (4dimethylaminopyridine), DBU (1,8-diazabicyclo[5.4.0]undec-7ene), NEt₃, and PPh₃ were examined but were all inefficient

7^d

8^d

9^d

DABCO

DABCO

DABCO

DMF

DMSO

Journal Name

COMMUNICATION

 Table 2. Scope of the DABCO-catalyzed domino reaction of non-protected substrates^a

7

7

6

5

7

7

7

7

7

7

7

3f

3g

3h

3i

3i

3k

31

3m

3n

30

3p

77

68

67

64

66

33

76

84

86

88

66

0

0

36

6

7

5-Br (1f)

5-I (1g)

6

6

7

10 ^u	DABCO	$CHCl_3/CH_3OH$ (1:1.5)	7	47	8	5-OCF ₃ (1h)
11 ^e	DABCO	CHCl ₃ /CH ₃ OH (1:1.5)	7	53	0	
12 ^e	DABCO	CHCl ₃ /CH ₃ OH (1:1)	7	39	9	$5 - NO_2(11)$
13 ^e	DABCO	CHCl ₃ /CH ₃ OH (1:2)	7	36.5	10	6-F (1j)
14 ^e	DABCO	$CHCl_3/CH_3OH$ (1:3)	7	37	11	6-CI (1 k)
15^{f}	DABCO	CHCl ₃ /CH ₃ OH (1:1.5)	7	51	11	0-01 (1K)
16 ^e	DMAP	CHCl ₃ /CH ₃ OH (1:1.5)	7	17	12	6-Br (1I)
17 ^e	DBU	CHCl ₃ /CH ₃ OH (1:1.5)	7	trace	13	7-F (1m)
18 ^e	Et₃N	CHCl ₃ /CH ₃ OH (1:1.5)	7	0	-	
19 ^e	PPh ₃	CHCl ₃ /CH ₃ OH (1:1.5)	7	0	14	7-Cl (1n)
20 ^g	(DHQ)₂PHAL	CHCl ₃ /CH ₃ OH (1:1.5)	7	32	15	7-Br (1o)
^a React	ion conditions: 1a	16	5,6-di-F (1p)			

toluene/CH₃OH (1:1.5)

^{*a*} Reaction conditions: **1a** (0.5 mmol), allenoate **2a** (1 mmol) and catalyst (30 mol%) in 2 mL solvent. ^{*b*} Isolated yields ^{*c*} Run at room temperature. ^{*d*} Run at 60 °C. ^{*e*} Run at 60 °C and added DABCO (12 mol%) and **2a** (1.0 eq) in three batches. ^{*f*} Methyl buta-2,3-dienoate instead of **2a** was used. ^{*g*} (DHQ)₂PHAL is hydroquinine 1,4-phthalazinediyl diether.

^{*a*} Reaction conditions: **1** (0.5 mmol), allenoate **2a** (0.5 mmol× 3), DABCO (12 mol% ×3) in CHCl₃/MeOH (1:1.5, 2 mL) at 60 °C. ^{*b*} Isolated yields. ^{*c*} Allenoate **2a** (0.5 mmol× 5), DABCO (12 mol% ×5), reaction time 10 h.

(entries 16-19). When the chiral tertiary amine $(DHQ)_2PHAL$ (hydroquinine 1,4-phthalazinediyl diether) was used, only a 32% yield and a 5% ee were observed (entry 20).

Having established the optimal reaction conditions, we explored the substrate scope with respect to substitutions on methyleneoxindoles 1. The results are summarized in Table 2. The functionalized methyleneoxindoles 1 bearing diverse electron-withdrawing or electron-donating aryl groups at the C5, C6 or C7 positions were well tolerated and gave the desired product in 33-90% (entries 1-16). Methyleneoxindoles with electron-withdrawing groups were transformed in higher yield, while methyleneoxindoles with electron-donating groups gave lower yields. For example, 5-halo substituted methyleneoxindoles reacted with 2a to afford the corresponding 3d-3g in 68-90% yield (entries 4-7). Reaction with 1d (5-F) and 1e (5-Cl) especially led to high yields. On the other hand, reaction with 1b (5-CH₃) and 1c (5-CH₃O) gave 3b and 3c in 42% and 40% yield, respectively (entries 2-3). In order to improve these reaction yields, we added DABCO and 2a in five batches; this produced good yields (entries 1-3). It is important to note that the tolerance of the iodo- and

bromo- group on the phenyl ring is especially synthetically useful and this provides an opportunity for further functionalization (entries 6-7). For substrate 1i bearing a strong electron-withdrawing group (-NO₂), the reaction also gave the desired product 3i in 64% yield (entry 9). In addition, when trifluoromethoxy group (1h) was installed at the C5 position of 1, the desired product 3h was obtained in moderate yield (entry 8). A range of C7-substituted 1 was also investigated. The methyleneoxindoles 1m (7-F), 1n (7-Cl) and 10 (7-Br) reacted and produced good yields (entries 13-15). Moreover, when C6 substituted substrates were used in the reaction, equally excellent results were obtained except for 1k that only led to 33% yield (entries 10-12). Furthermore, substrate 1p (5,7-difluoro) also afforded product 3p in 66% yield (entry 16). It is important to note that C4-substituted methyleneoxindoles were unreactive for this domino reaction under identical reaction conditions. This is likely due to steric hindrance.

The scope of this domino reaction with regard to Nprotected **1** was then explored. The results are shown in Table 3. The -CH₃, -Bn, -Boc, and -CH₂OEt protected substrates gave

COMMUNICATION

 Table 3. Scope of the DABCO catalyzed domino reaction of N-protected substrates^a

Entry	P ¹	R ²	Time (h)	2	Vield(%) ^b
Liitiy	n	n	nne (n)	3	neiu(76)
1	Н (1q)	CH_3	7	3q	68
2	5-Cl (1r)	CH_3	6	3r	82
3	5-Br (1s)	CH ₃	7	3s	80
4	H (1t)	Bn	7	3t	77
5	5-Cl (1u)	Bn	4	3u	90
6	5-Br (1v)	Bn	4	3v	90
7	H (1w)	Вос	7	3w	62
8	H (1x)	CH ₂ OEt	6	3x	81

 a Reaction conditions: 1 (0.5 mmol), allenoate 2a (0.5 mmol×3), DABCO (12 mol% × 3) in CHCl₃/MeOH (1:1.5, 2 mL) at 60 °C. b Isolated yields.

Scheme 2. Chemical transformations of 3.

the corresponding products. The results showed that the electronic nature of substituents on the methyleneoxindoles had a pronounced effect on the efficiency of this domino reaction. For example, substrates 1 containing chloro- or bromo- group at the C5 position was converted more effectively (entries 2, 3, 5, 6). Furthermore, among these Nprotective substrates, N-Bn substrates 1t, 1u and 1v were converted more efficiently than the corresponding $N\text{-}CH_3$ substrates. We were also intrigued to find that substrate 1w (N-tert-butoxycarbonyl) and 1x (N-ethoxymethyl group) exhibited good performance and gave the corresponding product 3w and 3x in 62% and 81% yield, respectively (entries 7-8). It should be noted that the N-protected substrates were more efficiently converted than the non-protected substrates (Table 3 vs Table 2). The structure of product 3s was unambiguously assigned by X-ray diffraction.⁵

All of the test reactions were performed at small scale but scale-up was easily accomplished. For example, the desired spirooxindole **3e** was obtained in 88% yield when the reaction was scaled up to 500 mg of **1e** under the optimized reaction conditions. Furthermore, the resulting highly functionalized spirooxindoles offer many opportunities for chemical transformations. For example (Scheme 2), the bromination reaction of **3a** was easily conducted with NBS in CCl₄ and

Scheme 3. Possible mechanism of this domino reaction.

afforded **4a** in 27% yield. The Suzuki coupling reaction of **3g** with phenylboronic acid and naphthalen-2-ylboronic acid gave the desired products **5g-Ph** and **5g-Naph** in 56% and 77% yields, respectively.

Although the mechanism of the above cyclization reaction has not been unequivocally established, one reasonable pathway is outlined in Scheme 3. DABCO acts as a nucleophilic trigger and attacks the β carbon of the allenoate to produce intermediates **A** and **A'**. The allylic carbanion **A** then subsequently attacks substrate **1** to give intermediate **B**. Through intramolecular addition, **B** becomes intermediate **C**. Finally, the nucleophilic reagent (CH₃O⁻) attacks **C** to give the desired product and regenerate DABCO.

In conclusion, we have developed the first example of an amine-catalyzed [4+2] cycloaddition reaction in which nonsubstituted allenoate acted as a four-carbon synthon. This domino reaction afforded an efficient method for the synthesis of spirooxindoles bearing the 3-alkyloxycyclohex-2-en-1-one moiety. Further investigations of an asymmetric version and its applications in the synthesis of biologically interesting molecules are underway, and the results will be reported in due course.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Grant No. 21403154), Natural Science Foundation of Tianjin (Grant No. 13JCYBJC38700), Tianjin Municipal Education Commission (Grant No. 20120502). X. M is grateful for the support from 131 talents program of Tianjin.

Notes and references

For selected reviews, see: (a) A. Voituriez, A. Marinetti and M. Gicquel, Synlett, 2015, 26, 142-166; (b) Y. Xiao, Z. Sun, H. Guo and O. Kwon, Beilstein J. Org. Chem., 2014, 10, 2089-2121; (c) Y. Wei and M. Shi, Chem. Asina J., 2014, 9, 2720-2734; (d) Z. Wang, X. Xu and O. Kwon, Chem. Soc. Rev., 2014, 43, 2927-2940; (e) Y. C. Fan and O. Kwon, Chem. Commun., 2013, 49, 11588-11619; (f) Q. Y. Zhao, Z. Lian, Y. Wei and M. Shi, Chem. Commun., 2012, 48, 1724-1732; (g)

Journal Name

Journal Name

L.-W. Ye, J. Jian and Y. Tang, *Chem. Soc. Rev.*, 2008, **37**, 1140-1152; (h) J. L. Methot and W. R. Roush, *Adv. Synth.Catal.*, 2004, **346**, 1035-1050; (i) X. Lu, C. Zhang and Z. Xu, *Acc. Chem. Res.*, 2001, **34**, 535-544.

- 2 C. Zhang and X. Lu, J. Org. Chem., 1995, 60, 2906-2908.
- 3 (a) Y. Gu, F. Li, P. Hu, D. Liao and X. Tong, Org. Lett., 2015, 17, 1106-1109; (b) L.-J. Yang, S. Li, S. Wang, J. Nie and J.-A. Ma, J. Org. Chem., 2014, 79, 3547-3558; (c) C.-K. Pei, Y. Jianga and M. Shi, Org. Biomol. Chem., 2012, 10, 4355-4361; (d) C.-K. Pei, L. Wu, Z. Lian and M. Shi, Org. Biomol. Chem., 2012, 10, 171-180; (e) C.-K. Pei, Y. Jiang, Y. Wei and M. Shi, Angew. Chem. Int. Ed., 2012, 51, 11328-11332; (f) C.-K. Pei, M. Shi, Chem. Eur. J., 2012, 18, 6712-6716; (g) X. Wang, T. Fang, X. Tong, Angew. Chem. Int. Ed., 2011, 50, 5361-5364; (h) G.-L. Zhao, J.-W. Huang, M. Shi, Org. Lett., 2003, 5, 4737-4739; (i) Y.-L. Shi, M. Shi, Org. Lett., 2005, 7, 4527-4530.
- 4 M. Cheng, J.-K. Liu, X. Tong, P. Tian, *Tetrahedron Lett.*, 2015, **56**, 3864-3867.
- 5 Phosphine-catalyzed non-substituted allenoate acted as a four-carbon synthon: (a) G. S. Creech and O. Kwon, Org. Lett., 2008, **10**, 429-432; (b) X.-F. Zhu, A.-P. Schaffner, R. C. Li and O. Kwon, Org. Lett., 2005, **7**, 2977-2980; (c) G. S. Greech, X.-F. Zhu, B. Fonovic, T. Dudding and O. Kwon, Tetrahedron, 2008, **64**, 6935-6942.
- For selected reviews, see: (a) D. Cheng, Y. Ishihara, B. Tan, and C. F. III. Barbas, ACS Catal., 2014, 4, 743-762; (b) M. M. M. Santos, Tetrahedron, 2014, 70, 9735-9757; (c) B. Yu, D.-Q. Yu and H.-M. Eur. Liu, J. Med. Chem., 2015, 97, 673-698; (d) B. Yu, Z. Yu, P.-P. Qi, D.-Q. Yu and H.-M. Eur. Liu, J. Med. Chem., 2015, 97, 35-40; (e) R. Narayan, M. Potowski, Z.-J. Jia, A. P. Antonchick and H. Waldmann, Acc. Chem. Res., 2014, 47, 1296-1310; (f) M. Xia, and R.-Z. J. Ma, Heterocycl. Chem., 2014, 51, 539-554.
- 7 During the preparation of this manuscript, Li reported a Lewis acid (AlCl₃, 1.5 eq.) promoted domino reaction in which allenoate acted as a four-carbon synthon. S. Xu, C. Li, X. Jia and J. Li, *Org. Chem.*, 2014, **79**, 11161-11169.
- 8 (a) Y. Liu, Q. Zhang, Y. Du, A. Yu, K. Zhang and X. Meng, *RSC Adv.*, 2014, 4, 52629-52632; (b) Y. Du, Y. Liu, A. Yu, D. Qin, K. Zhang and X. Meng, *Asian J. Org. Chem.*, 2015, 4, 630-637; (c) Y. Liu, Y. Du, A. Yu, D. Qin and X. Meng, *Tetrahedron*, 2015, 71, 7706-7716.
- 9 CCDC: 1418019 (1h), 1418021 (3a), and 1418020 (3s).
- 10 The structure of **3a-OBn** is similar to **3a** with a methoxyl group substituted by a benzyloxy group.