# Organic & Biomolecular Chemistry

Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/obc

## ARTICLE



## Stereoselective Synthesis of Spirooxindole Derivatives using an Organocatalyzed Tandem Michael-Michael Reaction

Huicai Huang,<sup>a</sup> Manisha Bihani,<sup>a</sup> and John C.-G. Zhao\*<sup>a</sup>

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

A highly efficient stereoselective method for the synthesis of functionalized spirooxindole derivatives with three stereogenic centers was realized through an organocatalytic tandem Michael-Michael reaction. By employing (5)- $\alpha$ , $\alpha$ -diphenylprolinol trimethylsilyl ether as the catalyst and *N*,*N*'-bis[3,5-bis(trifluoromethyl)phenyl]thiourea as the cocatalyst, the reaction between *N*-tritylisatylidenemalononitriles and (*E*)-7-alkyl-7-oxohept-5-enals yields the desired spirooxindole products in good yields (76-95%) and with excellent diastereoselectivities (up to 97:3 dr) and enantioselectivities (up to 98% ee), which can be stereoselectively converted to the spiro[indoline-3,8'-isoquinoline] derivative through an intramolecular reductive amination reaction.

#### Introduction

Spirocyclic oxindole is a very important structural motif in medicinal chemistry,<sup>1</sup> since it can be found in a variety of biological active natural or synthetic products that exhibit many interesting biological activities, such as anti-HIV, anticancer, antitubercular, and antimalarial activities.<sup>1,2</sup> Among the spirocyclic oxindole derivatives, spirocyclohexane oxindoles are of particular significance. A few examples of natural and synthetic spirocyclohexane oxindole derivatives are collected in Figure 1. (+)-Gelsemine and Gelsevirine are representative examples of many indole alkaloids isolated from the genus Gelsemium that contain the spirocyclohexane oxindole backbone.<sup>3</sup> Recent studies revealed that (+)-Gelsemine has nephroprotective effect against cisplatininduced toxicity<sup>4a</sup> and anti-hyperlipidemic and anti-oxidative effects.<sup>4b</sup> In addition, some of these derivatives show potent cytotoxicity.<sup>3b</sup> (-)-Spindomycin A and (+)-Spindomycin B are two new spirocyclohexane oxindole derivatives isolated from *Streptomyces* sp xzqh-9 recently.<sup>5</sup> Satavaptan is a synthetic vasopressin-2 receptor antagonist undergoing research for the treatment of hyponatremia and ascites.<sup>6</sup> Because of their biological relevance and the unique structural feature (containing a spiro quaternary stereogenic center) that poses a challenge to their asymmetric synthesis, developing highly stereoselective methods for the synthesis of spirocyclic oxindoles have received a lot of attentions in recent years,<sup>7-10</sup> asymmetric synthetic methods, including and many organocatalytic methods, have been reported.<sup>7-10</sup> For the

organocatalytic asymmetric synthesis of spirocyclohexane oxindole derivatives there are also several reports.<sup>10</sup>



The tandem reaction is a powerful tool in organic synthesis as they allow the synthesis of sophisticated structures from relatively simple starting materials.<sup>11</sup> This strategy has been widely used in organocatalysis in recent years,<sup>12</sup> and it is one of the most important methods for the asymmetric synthesis of spirocyclohexane oxindole deriatives.<sup>10</sup> Previously we and others have demonstrated that 7-oxohept-5-enals are excellent substrates for tandem reactions.<sup>13</sup> During our recent study of isatin derivatives,<sup>14</sup> we envisioned that these substrates should be also useful for the synthesis of spirocyclohexane oxindole derivatives. Herein we wish to report a highly stereoselective synthesis of spirocyclohexane oxindole derivatives using 7-oxohept-5-enals and isatylidenemalononitriles via an organocatalyzed tandem Michael-Michael reaction.<sup>15</sup>

<sup>&</sup>lt;sup>a.</sup> Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698. E-mail: cong.zhao@utsa.edu

<sup>+</sup>Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

#### ARTICLE

#### **Results and discussion**

(*E*)-7-Phenyl-7-oxohept-5-enal (**1a**) and *N*-tritylisatylidenemalononitrile (R = Tr, **2a**) were adopted as the model substrates. Several proline derivatives were first screened for their capability in catalyzing the desired tandem Michael-Michael reaction. The results are summarized in Table 1. As shown in Table 1, when L-proline (**4a**) was used as the catalyst in CH<sub>2</sub>Cl<sub>2</sub> at rt, the desired product **3a** was obtained in a high yield of 92% in 48 h; however, the dr and ee value of **3a** were low (entry 1). Under similar conditions, no formation of **3a** was achieved when (*S*)- $\alpha$ , $\alpha$ -diphenylprolinol (**4b**) was used as the catalyst (entry 2). When Jørgensen-Hayashi's catalyst (**4c**) was applied, product **3a** were obtained in 51% yield, 90:10 dr, and 92% ee (entry 3). Slightly better ee values were obtained with similar prolinol silyl ether catalysts **4d** and **4e**; however, their catalytic activities were much lower (entries 4 and 5). Using the most reactive catalyst **4c** as the model catalyst, we next evaluate the additive effects on the reactivities and/or the stereoselectivities of the catalyst. As is evident from the data in Table 1, weak acids, such as benzoic acid (entry 6) and acetic acid (entry 7), slightly improved the catalytic activity; nonetheless, both the dr and ee value of the product dropped. On the other hand, strong acids, such as TFA (entry 8) and

| Table 1 Optimization of the reaction conditions <sup>a</sup> |    |          |                                                       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
|--------------------------------------------------------------|----|----------|-------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Ph $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                   |    |          | t/Additive<br>vent, rt<br>R = Tr; b: R = H; c: R = Bn |                                      | $ \begin{array}{c} & & & \\ & & \\ & & \\ & H \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ |                        | $ \begin{array}{c}  & \begin{array}{c}  & \begin{array}{c}  & \begin{array}{c}  & \begin{array}{c}  & \begin{array}{c}  & \end{array}\\  & \end{array}$ & \begin{array}{c}  & \end{array}\\  & \begin{array}{c}  & \end{array}\\  & \end{array}  & \begin{array}{c}  & \end{array}  & \begin{array}{c}  & \end{array}\\  & \begin{array}{c}  & \end{array}\\  & \end{array}  & \begin{array}{c}  & \end{array}  & \begin{array}{c}  & \end{array}\\  & \end{array}  & \begin{array}{c}  & \end{array}  & \end{array}  & \end{array}  & \begin{array}{c}  & \end{array}  & \end{array}  & \end{array}  & \begin{array}{c}  & \end{array}  & \end{array}  & \end{array}  & \end{array} | ∧r = 3,5-(CF <sub>3</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> - |
| entry                                                        | R  | catalyst | additive                                              | solvent                              | time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yield (%) <sup>b</sup> | dr <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ee (%) <sup>d</sup>                                                      |
| 1                                                            | Tr | 4a       |                                                       | CH <sub>2</sub> Cl <sub>2</sub>      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                     | 66:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                       |
| 2                                                            | Tr | 4b       |                                                       | CH <sub>2</sub> Cl <sub>2</sub>      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 <sup>e</sup>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| 3                                                            | Tr | 4c       |                                                       | CH <sub>2</sub> Cl <sub>2</sub>      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                     | 90:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92                                                                       |
| 4                                                            | Tr | 4d       |                                                       | CH <sub>2</sub> Cl <sub>2</sub>      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                     | 90:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94                                                                       |
| 5                                                            | Tr | 4e       |                                                       | CH <sub>2</sub> Cl <sub>2</sub>      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                     | 91:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                                                                       |
| 6                                                            | Tr | 4c       | PhCO₂H                                                | $CH_2CI_2$                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65                     | 66:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84                                                                       |
| 7                                                            | Tr | 4c       | AcOH                                                  | CH <sub>2</sub> Cl <sub>2</sub>      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65                     | 79:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84                                                                       |
| 8                                                            | Tr | 4c       | PhSO₃H                                                | $CH_2CI_2$                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43                     | 71:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83                                                                       |
| 9                                                            | Tr | 4c       | TFA                                                   | $CH_2CI_2$                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                     | 70:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                       |
| 10                                                           | Tr | 4c       | Et₃N                                                  | $CH_2CI_2$                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                     | 63:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69                                                                       |
| 11                                                           | Tr | 4c       | DIPEA                                                 | $CH_2CI_2$                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     | 62:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77                                                                       |
| 12                                                           | Tr | 4c       | 5                                                     | $CH_2CI_2$                           | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                     | 93:7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95                                                                       |
| 13                                                           | Tr | 4d       | 5                                                     | $CH_2CI_2$                           | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                     | 91:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93                                                                       |
| 14                                                           | Tr | 4c       | 5                                                     | CHCl <sub>3</sub>                    | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                     | 94:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                                                                       |
| 15                                                           | Tr | 4c       | 5                                                     | CICH <sub>2</sub> CH <sub>2</sub> CI | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87                     | 93:7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95                                                                       |
| 16                                                           | Tr | 4c       | 5                                                     | toluene                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                     | 76:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81                                                                       |
| 17                                                           | Tr | 4c       | 5                                                     | THF                                  | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                     | 70:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82                                                                       |
| 18                                                           | Tr | 4c       | 5                                                     | CH₃CN                                | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                     | 81:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                       |
| 19                                                           | Tr | 4c       | 5                                                     | DMSO                                 | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                     | 83:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78                                                                       |
| 20                                                           | Tr | 4c       | 5                                                     | MeOH                                 | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| 21 <sup><i>f</i></sup>                                       | Tr | 4c       | 5                                                     | CHCl₃                                | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                     | 95:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                                                                       |
| 22 <sup>g</sup>                                              | Tr | 4c       | 5                                                     | CHCl₃                                | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85                     | 89:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70                                                                       |
| 23                                                           | Н  | 4c       | 5                                                     | CHCl₃                                | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 <sup>e</sup>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| 24                                                           | Bn | 4c       | 5                                                     | CHCl <sub>3</sub>                    | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72                     | 73:27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54                                                                       |

<sup>a</sup>Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2** (0.12 mmol), the catalyst (10 mol %), and the additive (10 mol %) in the specified solvent (0.5 mL) at rt. <sup>b</sup>Yield of the isolated product after column chromatography. <sup>c</sup>Determined by <sup>1</sup>H NMR analysis of the crude reaction product. <sup>d</sup>Determined by HPLC analysis using a ChiralPak IC column. <sup>e</sup>No reaction. <sup>f</sup>The reaction temperature was 0 °C. <sup>g</sup>The reaction temperature was 50 °C.

benzenesulfonic acid (entry 9), diminished both the catalytic activity and the stereoselectivity. Similarly, basic additives, such as Et<sub>3</sub>N and DIEPA, did not work, either (entries 10 and 11). Next the achiral thiourea 5<sup>16</sup> was added, and to our pleasure, much improved product yield (84%) and slightly improved dr and ee value were obtained, although the reaction needed longer time to complete (72 h). Slightly lower yield, dr, and ee value of 3a was achieved when catalyst 4d was used together with 5 (entry 13). Thus, the combination of 4c and 5 was identified as the best catalytic system for this reaction. The solvent was then screened with this combination. Chlorinated solvents, such as CH<sub>2</sub>Cl<sub>2</sub> (entry 12), CHCl<sub>3</sub> (entry 14), and ClCH<sub>2</sub>CH<sub>2</sub>Cl (entry 15), yielded very good results, and among them CHCl<sub>3</sub> gave the best yield, dr, and ee value of 3a (entry 14). In contrast, lower product yields and/or stereoselectivities were achieved in nonchlorinated solvents, such as toluene, THF, CH<sub>3</sub>CN, DMSO, and MeOH (entries 16-20). Among these solvent, MeOH is an especially poor solvent, as almost no product could be obtained (entry 20). When the reaction temperature was lowered to 0 °C, the product yield diminished without any improvement in the stereoselectivities (entry 21). On the other hand, when the reaction temperature was raised to 50 °C, the reaction time could be shortened to 48 h, but the stereoselectivity became much worse (entry 22). Finally, the effects of the N-substituent on 2 were evaluated under the optimized conditions, and it was found that the Ntrityl group is essential<sup>17</sup> for both the reactivity and the stereoselectivity of this reaction, since much worse results were obtained with the N-unsubstituted 2b (R = H, entry 23) and the N-benzyl substituted 2c (R = Bn, entry 24).

Once the reaction conditions were optimized, the substrate scope of this reaction then studied. The results are collected in Table 2. Firstly, using 7-oxohept-5-enal **1a**, we evaluated several substituted *N*-tritylisatylidenemalononitriles **2**. As the results in Table 2 show, the electronic nature and the position of the substituent on the isatin ring have almost no influence on the product dr and ee values, as well as the product yields (entries 1-8), except that a slightly lower yield was obtained for the 5-methoxy derivative (entry 7). Similarly, with 7-aryl-7-oxohept-5-enals **1**, the electronic nature and the position of the substituent on the phenyl ring have almost no influence on the product yields, dr, and ee values (entries 1, 9-14). Finally, a 7-*tert*-butyl-substitued 7-oxohept-5-enal also gave the expected product **3q** in high yield, dr, and ee value (entry 15).

The spirooxindole derivatives obtained in this study is very useful for the synthesis other spirooxindole derivatives. For example, when product **3e** was reduced by NaBH<sub>4</sub> at -78 °C, an unexpected spiro[indoline-3,8'-isoquinoline] derivative **6** was obtained as an essentially pure enantiomer of a single diastereomer (>99% ee, Eq. 1). This product contains a novel spirooxindole skeleton with five stereogenic centers. Compound **6** was most likely formed through an unusual reductive amination of the  $\gamma$ -cyanoketone moiety via the amide intermediate **7** and the imine intermediate **8** formed in situ from **3e** (Scheme 1). While this reaction is unprecedented in the literature, formation of imine intermediates similar to **8** 

from  $\gamma$ -cyanoketones under oxidative conditions is known.<sup>18</sup> The absolute structure of **6** was determined by X-ray crystallography.<sup>19</sup> On the basis of the absolute stereochemistry of **6**, the absolute stereochemistry of the reaction products was assigned as 1*R*,3*S*,6*R*.





<sup>a</sup>All reactions were carried out with **1** (0.20 mmol), **2** (0.24 mmol) in CHCl<sub>3</sub> (1.0 mL) at rt using catalyst **4c** and additive **5** (10 mol % each). <sup>b</sup>Yield of the isolated product after column chromatography. <sup>c</sup>Determined by <sup>1</sup>H NMR analysis of the crude reaction product. <sup>d</sup>Determined by HPLC analysis using a ChiralPak IC column.

On the basis of the absolute stereochemistry of **3a**, a plausible transition state model is proposed. As shown in Scheme 2, hydrogen-bonded with **5**, substrate **2a** approaches from the backside of the enamine to minimize the steric interactions. The attack of the enamine onto the *Si* face of isatylidenemalononitrile to yield intermediate **7**, which then cyclizes through a six-membered ring transition state **8** to give the expected product **3a**. The fact that MeOH, which can disrupt the hydrogen bonding, can totally inhibit this reaction (vide supra) supports the proposed hydrogen bonding between **2a** and **5**. Additionally, **5** may also facilitate the

second Michael reaction through hydrogen bonding, as shown in **8**, although there is no direct evidence for this.



Scheme 1 Proposed Formation of 6



Scheme 2. Proposed Transition State Model

#### Conclusions

In summary, we have developed a highly stereoselective method for the synthesis of functionalized spirooxindole derivatives containing three stereogenic centers. Using a prolinol silyl ether catalyst together with an achiral thiourea cocatalyst, the corresponding spirooxindole derivatives may be obtained in good yields, high dr (up to 97:3), and high ee values (up to 98% ee). The product can be stereoselectively converted to the spiro[indoline-3,8'-isoquinoline] derivative through a novel intramolecular reductive amination reaction of the  $\gamma$ -cyanoketone moiety.

#### Experimental

#### **General information**

Unless otherwise noted, all reactions were carried out in closed vial. <sup>1</sup>H NMR spectra was recorded on a 500 MHz spectrometer (125 MHz for <sup>13</sup>C). The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m). TLC was performed with silica gel GF254 precoated on aluminum plates and spots were visualized with UV. Flash column chromatography was performed on silica gel. HPLC analysis was performed on an HPLC instrument equipped with a UV-Vis detector. Solvents were freshly distilled under nitrogen atmosphere before use using the normal protocols. (*E*)-7-Oxo-7-phenylhept-5-enal<sup>13a,20</sup> and isatylidene malononitriles derivatives<sup>21</sup> were prepared according to reported methods. All the other reagents were purchased from commercial sources and used as received.

General procedure for the tandem Michael-Michael addition: Aldehyde 1 (0.20 mmol), catalyst 4c (6.5 mg, 0.02 mmol), achiral thiourea 5 (10 mg, 0.02 mmol) and isatylidene malononitriles 2 (0.24 mmol) were dissolved in  $CHCl_3$  (1.0 ml). The reaction mixture was stirred at rt for 72 h, and then subjected to column chromatography (eluted with EtOAc/hexane) to afford product aldehyde 3. The enantiomeric ratio was determined by HPLC analysis on chiral column.

#### (1R,3S,6R)-6-Formyl-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3a). White solid, 117.5 mg, 92% yield; mp: > 240 °C; [α]<sub>D</sub><sup>24</sup> = -35.1 (c 1.0, CHCl<sub>3</sub>, 94:6 dr, 97% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.50 (s, 1H), 8.05 (d, J = 8.0 Hz, 2H), 7.70 – 7.65 (m, 7H), 7.58 – 7.55 (m, 3H), 7.34 – 7.30 (m, 6H), 7.28 - 7.25 (m, 3H), 7.18 - 7.14 (m, 1H), 7.10 - 7.02 (m, 1H), 6.68 (d, J = 8.0 Hz, 1H), 3.52 - 3.42 (m, 3H), 3.28 (dd, J = 4.5, 13.5 Hz, 1H), 2.43 (d, J = 14 Hz, 1H), 2.27 – 2.24 (m, 1H), 2.13 – 2.04 (m, 1H), 1.78 – 1.73 (m, 1H);  $^{13}$ C NMR (125 MHz, CDCl3)  $\delta$  196.8, 195.8, 173.5, 144.0, 141.4, 136.1, 134.1, 129.5, 128.9, 128.8, 127.9, 127.1, 125.9, 124.3, 123.1, 116.9, 113.6, 110.8, 75.9, 52.2, 51.1, 46.1, 41.2, 36.1, 26.3, 20.3; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1723, 1682, 1598, 1477, 1460, 1448, 1276, 1215; HRMS (ESI): m/z calcd for C<sub>43</sub>H<sub>33</sub>N<sub>3</sub>O<sub>3</sub> ([M]) 639.2527, found 639.2542; Enantiomeric excess of 3a was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R = 8.2$  min, minor enantiomer:  $t_R = 26.7$ min.

#### (1R,3S,6R)-1'-Benzyl-6-formyl-2'-oxo-3-(2-oxo-2-

phenylethyl)spiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3c). White solid, 35.0 mg, 72% yield; mp: > 240 °C;  $[\alpha]_D^{24} = -10.8$  (c 1.0, CHCl<sub>3</sub>, 73:27 dr, 54% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.18 (s, 1H), 7.93 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.53 (d, J = 7.7Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.24 (t, J = 7.2 Hz, 1H), 7.20 (s, 1H), 7.06 (t, J = 7.7 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 5.03 (q, J = 15.8 Hz, 2H), 3.46 – 3.25 (m, 4H), 2.44 (d, J = 14.5 Hz, 1H), 2.34 (dd, J = 14.4, 2.7 Hz, 1H), 2.13 (qd, J =13.9, 4.3 Hz, 1H), 1.81 – 1.70 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 197.0, 195.6, 172.8, 144.1, 135.9, 134.6, 133.9, 130.8, 128.8, 128.0, 127.9, 127.4, 126.3, 123.4, 123.2, 112.1, 110.9, 110.7, 52.1, 50.9, 46.0, 44.8, 41.0, 35.9, 26.5, 20.4;  $v_{max}$  (neat, cm<sup>-1</sup>): 1726, 1681, 1612, 1490, 1473, 1372, 1286, 1217, 1182; HRMS (ESI): m/z calcd

for  $C_{31}H_{25}N_3O_3$  ([M+Na]<sup>+</sup>) 510.1788, found 510.1777; Enantiomeric excess of **3c** was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (85: 15 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R$  = 12.3 min, minor enantiomer:  $t_R$  = 14.8 min.

#### (1R,3S,6R)-5'-Fluoro-6-formyl-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3d). White solid, 122.1 mg, 93% yield; mp: > 240 °C;  $[\alpha]_{D}^{24}$  = -25.8 (c 1.0, CHCl<sub>3</sub>, 93:7 dr, 96% ee);  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (s, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.69 - 7.66 (m, 1H), 7.63 - 7.61 (m, 6H), 7.57 - 7.54 (m, 2H), 7.33 - 7.24 (m, 10H), 6.88 - 6.84 (m, 1H), 6.62 (dd, J = 4.5, 9.0 Hz, 1H), 3.51 - 3.41 (m, 2H), 3.36 - 3.27 (m, 2H), 2.43 (d, J = 14.5 Hz, 1H), 2.29 - 2.26 (m, 1H), 2.04 - 1.95 (m, 1H), 1.79 - 1.73 (m, 1H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  196.4, 195.5, 173.2, 159.2, 157.2, 141.2, 140.2 (d,  $J_{CF}$  = 2.5 Hz), 136.0, 134.1, 129.0, 128.9, 128.8, 128.2, 128.0, 127.2, 125.7 (d,  $J_{CF}$  = 7.5 Hz), 117.6 (d,  $J_{CF}$  = 7.4 Hz), 115.9 (d,  $J_{CF}$  = 12.5 Hz), 113.8 (d,  $J_{CF}$  = 25.1 Hz), 110.5, 110.0, 76.0, 52.3, 51.1, 45.9, 41.2, 36.2, 26.4, 20.3; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1725, 1683, 1597, 1477, 1447, 1366, 1280, 1349, 1215, 1183; HRMS (ESI): *m*/*z* calcd for C<sub>43</sub>H<sub>32</sub>FN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 657.2433, found 657.2452; Enantiomeric excess of 3d was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 7.1 min, minor enantiomer:  $t_{R} = 25.3$  min.

#### (1R,3S,6R)-5'-Chloro-6-formyl-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3e). White solid, 122.3 mg, 91% yield; mp: > 240 °C;  $[\alpha]_{D}^{24}$  = -72.9 (c 1.0, CHCl<sub>3</sub>, 94:6 dr, 96% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.65 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.69 - 7.66 (m, 1H), 7.63 - 7.61 (m, 6H), 7.57 - 7.54 (m, 2H), 7.47 - 7.46 (m, 1H), 7.34 - 7.31 (m, 6H), 7.29 - 7.25 (m, 3H), 7.13 - 7.11 (m, 1H), 6.61 (d, J = 8.0 Hz, 1H), 3.53 - 3.42 (m, 2H), 3.36 - 3.27 (m, 2H), 2.47 - 2.44 (m, 1H), 2.31 - 2.28 (m, 1H), 2.07 -1.97 (m, 1H), 1.79 – 1.70 (m, 1H);  $^{13}\text{C}$  NMR (125 MHz, CDCl\_3)  $\delta$ 196.4, 195.5, 173.0, 142.8, 141.1, 136.0, 134.1, 129.4, 128.9, 128.8, 128.5, 128.2, 128.0, 127.2, 126.1, 125.8, 117.6, 113.4, 110.5, 76.0, 52.2, 51.2, 46.0, 41.2, 36.3, 26.4, 20.4; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1726, 1683, 1597, 1470, 1448, 1367, 1260, 1215, 1188; HRMS (ESI): m/z calcd for C<sub>43</sub>H<sub>32</sub>ClN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 673.2138, found 673.2143; Enantiomeric excess of 3e was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 6.7 min, minor enantiomer:  $t_R = 24.3$  min.

#### (1R,3S,6R)-5'-Bromo-6-formyl-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

**tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3f).** White solid, 127.3 mg, 89% yield; mp: > 240 °C;  $[α]_D^{24} = -22.7$  (c 1.0, CHCl<sub>3</sub>, 93:7 dr, 96% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.65 (d, J = 2.0 Hz, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.68 – 7.65 (m, 1H), 7.62 – 7.59 (m, 7H), 7.57 – 7.53 (m, 2H), 7.33 – 7.28 (m, 6H), 7.25 – 7.24 (m, 4H), 6.55 (d, J = 8.0 Hz, 1H), 3.52 – 3.40 (m, 2H), 3.34 – 3.26 (m, 2H), 2.46 – 2.43 (m, 1H), 2.31 – 2.28 (m, 1H), 2.05 – 1.96 (m, 1H), 1.78 – 1.69 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 196.4, 195.5, 173.0, 143.3, 141.1, 136.0, 134.1, 132.3, 128.9, 128.8, 128.4, 128.2, 128.0, 127.2, 126.5, 118.0, 115.9, 113.4, 110.5, 76.0, 52.1, 51.2, 46.0, 41.2, 36.3, 26.4, 20.4; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1725, 1683, 1596, 1468, 1447, 1417, 1369,

1260, 1215, 1188; HRMS (ESI): m/z calcd for  $C_{43}H_{32}BrN_3O_3$  ([M]<sup>-</sup>) 717.1633, found 717.1655; Enantiomeric excess of **3f** was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R$  = 6.9 min, minor enantiomer:  $t_R$  = 25.0 min.

#### (1R,3S,6R)-6-Formyl-5'-nitro-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3g). White solid, 116.1 mg, 85% yield; mp: > 240 °C;  $[\alpha]_D^{25}$  = -71.3 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 97% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.92 (s, 1H), 8.34 -8.33 (m, 1H), 8.08 (d, J = 9.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.68 -7.65 (m, 1H), 7.61 - 7.60 (m, 6H), 7.56 - 7.53 (m, 2H), 7.35 - 7.32 (m, 6H), 7.29 - 7.26 (m, 3H), 6.83 (d, J = 9.0 Hz, 1H), 3.51 - 3.37 (m, 4H), 2.55 - 2.53 (m, 1H), 2.45 - 2.42 (m, 1H), 2.19 - 2.09 (m, 1H), 1.87 – 1.79 (m, 1H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  196.5, 195.3, 173.7, 150.6, 142.9, 140.9, 136.2, 134.4, 129.2, 129.1, 129.0, 128.4, 128.3, 127.7, 127.6, 125.9, 125.7, 120.8, 116.4, 113.5, 110.4, 76.9, 52.0, 51.8, 46.1, 41.4, 36.8, 26.9, 20.8; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1734, 1679, 1597, 1517, 1448, 1337, 1276, 1216, 1185; HRMS (ESI): m/z calcd for C<sub>43</sub>H<sub>32</sub>N<sub>4</sub>O<sub>5</sub> ([M]<sup>-</sup>) 684.2378, found 684.2351; Enantiomeric excess of 3g was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 14.2 min, minor enantiomer:  $t_R = 78.6$  min.

#### (1R,3S,6R)-6-Formyl-5'-methyl-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3h). White solid, 106.9 mg, 82% yield; mp: > 240 °C;  $[\alpha]_D^{25}$  = -64.7 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 97% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.43 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.67 – 7.64 (m, 7H), 7.57 – 7.54 (m, 2H), 7.33 - 7.29 (m, 7H), 7.26 - 7.23 (m, 3H), 6.94 (d, J = 8.5 Hz, 1H), 6.53 (d, J = 8.5 Hz, 1H), 3.51 - 3.40 (m, 3H), 3.24 (d, J = 4.5, 13.5 Hz, 1H), 2.41 (d, J = 13.5 Hz, 1H), 2.32 (s, 3H), 2.24 - 2.20 (m, 1H), 2.10 - 2.01(m, 1H), 1.76 – 1.68 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 196.9, 195.8, 173.5, 141.5, 141.4, 136.1, 134.1, 132.7, 130.1, 128.9, 128.8, 128.2, 127.9, 127.1, 126.5, 124.3, 116.6, 113.7, 110.8, 75.8, 52.3, 51.0, 46.1, 41.3, 36.0, 26.3, 21.2, 20.3; ν<sub>max</sub> (neat, cm<sup>-1</sup>): 1722, 1682, 1594, 1482, 1448, 1368, 1274, 1213; HRMS (ESI): m/z calcd for C44H35N3O3 ([M]) 653.2684, found 653.2663; Enantiomeric excess of 3h was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R = 7.6$  min, minor enantiomer:  $t_R = 25.3$ min.

#### (1*R*,3*S*,6*R*)-6-Formyl-5'-methoxy-2'-oxo-3-(2-oxo-2-phenylethyl)-1'tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3i). White solid, 101.5 mg, 76% yield; mp: > 240 °C; $[\alpha]_D^{25}$ = -136.5 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 98% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) $\delta$ 8.45 (s, 1H), 8.03 (d /= 7.5 Hz, 2H) 7.67 – 7.63 (m, 7H) 7.56 – 7.53 (m, 2H) 7.33

8.03 (d, J = 7.5 Hz, 2H), 7.67 – 7.63 (m, 7H), 7.56 – 7.53 (m, 2H), 7.33 – 7.29 (m, 6H), 7.26 – 7.23 (m, 3H), 7.11 (d, J = 2.5 Hz, 1H), 6.65 (dd, J = 2.5, 9.5 Hz, 1H), 6.55 (d, J = 9.0 Hz, 1H), 3.76 (s, 3H), 3.50 – 3.42 (m, 3H), 3.25 (dd, J = 4.5, 13.5 Hz, 1H), 2.39 (d, J = 13.5 Hz, 1H), 2.24 – 2.20 (m, 1H), 2.06 – 1.98 (m, 1H), 1.76 – 1.67 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  196.8, 195.6, 173.2, 155.3, 141.5, 136.9, 136.1, 134.0, 128.9, 128.8, 128.2, 127.9, 127.1, 125.5, 117.3, 113.9, 113.6, 112.9, 110.8, 75.8, 55.6, 52.3, 51.0, 46.1, 41.2, 35.9, 26.3, 20.3; v max

#### ARTICLE

(neat, cm<sup>-1</sup>): 1721, 1683, 1593, 1480, 1448, 1367, 1281, 1206; HRMS (ESI): *m/z* calcd for C<sub>44</sub>H<sub>35</sub>N<sub>3</sub>O<sub>4</sub> ([M]<sup>-</sup>) 669.2633, found 669.2657; Enantiomeric excess of **3i** was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 9.2 min, minor enantiomer: t<sub>R</sub> = 37.1 min.

#### (1R,3S,6R)-6'-Chloro-6-formyl-2'-oxo-3-(2-oxo-2-phenylethyl)-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3j). White solid, 117.4 mg, 87% yield; mp: > 240 °C;  $[\alpha]_{D}^{23}$  = -27.1 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 96% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.56 (s, 1H), 8.03 (dd, J = 1.0, 8.0 Hz, 2H), 7.68 - 7.65 (m, 1H), 7.63 - 7.61 (m, 6H), 7.57 -7.54 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.35 - 7.32 (m, 6H), 7.28 - 7.25 (m, 3H), 7.05 (dd, J = 2.0, 8.5 Hz, 1H), 6.59 (d, J = 2.0 Hz, 1H), 3.50 -3.41 (m, 2H), 3.38 - 3.32 (m, 1H), 3.26 (dd, J = 4.5, 14.0 Hz, 1H), 2.42 - 2.39 (m, 1H), 2.28 - 2.24 (m, 1H), 2.05 - 1.96 (m, 1H), 1.78 - 1.69 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 196.5, 195.6, 173.4, 145.4, 141.0, 136.0, 135.6, 134.1, 129.0, 128.8, 128.0, 127.3, 126.4, 122.9, 122.8, 117.3, 113.4, 110.6, 76.2, 51.9, 51.1, 46.0, 41.2, 36.2, 26.4, 20.3; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1728, 1683, 1597, 1475, 1448, 1418, 1260, 1215; HRMS (ESI): m/z calcd for C<sub>43</sub>H<sub>32</sub>ClN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 673.2138, found 673.2123; Enantiomeric excess of 3j was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 6.9 min, minor enantiomer:  $t_R = 16.5$  min.

#### (1R,3S,6R)-3-(2-(4-Fluorophenyl)-2-oxoethyl)-6-formyl-2'-oxo-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3k). White solid, 113.2 mg, 86% yield; mp: > 240 °C;  $[\alpha]_D^{24}$  = -44.9 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 97% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.48 (s, 1H), 8.06 (dd, J =5.0, 8.5 Hz, 2H), 7.65 - 7.63 (m, 6H), 7.54 - 7.53 (m, 1H), 7.32 -7.28 (m, 6H), 7.26 - 7.20 (m, 5H), 7.16 - 7.12 (m, 1H), 7.08 - 7.05 (m, 1H), 6.66 (d, J = 8.0 Hz, 1H), 3.47 - 3.38 (m, 3H), 3.26 (dd, J = 4.0, 13.5 Hz, 1H), 2.41 - 2.38 (m, 1H), 2.25 - 2.22 (m, 1H), 2.11 -2.01 (m, 1H), 1.76 – 1.71 (m, 1H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 196.7, 194.1, 173.5, 167.3, 165.3, 144.0, 141.4, 132.5 (d, J<sub>CF</sub> = 3.0 Hz), 130.9 (d, J<sub>CF</sub> = 10.0 Hz), 129.5, 128.8, 128.7, 127.9, 127.1, 125.8, 124.2, 123.1, 116.9, 116.2, 116.1, 113.6, 110.8, 75.9, 52.1, 51.0, 46.1, 41.1, 36.1, 26.4, 20.3; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1723, 1683, 1596, 1460, 1448, 1410, 1277, 1212, 1156; HRMS (ESI): m/z calcd for C<sub>43</sub>H<sub>32</sub>FN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 657.2433, found 657.2448; Enantiomeric excess of 3k was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R = 8.7$  min, minor enantiomer:  $t_R = 29.4$ min.

#### (1R,3S,6R)-3-(2-(4-Chlorophenyl)-2-oxoethyl)-6-formyl-2'-oxo-1'-

**tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3l).** White solid, 127.7 mg, 95% yield; mp: > 240 °C;  $[\alpha]_D^{24} = -92.8$  (c 1.0, CHCl<sub>3</sub>, 94:6 dr, 92% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.48 (s, 1H), 7.97 – 7.95 (m, 2H), 7.64 – 7.62 (m, 6H), 7.53 – 7.50 (m, 3H), 7.32 – 7.28 (m, 6H), 7.25 – 7.22 (m, 3H), 7.15 – 7.12 (m, 1H), 7.07 – 7.04 (m, 1H), 6.66 (d, J = 8.5 Hz, 1H), 3.46 – 3.37 (m, 3H), 3.25 (dd, J = 4.5, 13.5 Hz, 1H), 2.40 – 2.37 (m, 1H), 2.24 – 2.21 (m, 1H), 2.10 – 2.00 (m, 1H), 1.76 – 1.68 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  196.7, 194.6, 173.5, 144.0, 140.7, 134.4, 129.6, 129.3, 128.8, 127.9, 127.1, 125.8, 124.2, 123.1, 116.9, 113.5, 110.7, 75.9, 52.1, 51.0, 46.1, 41.2, 36.1,

## Journal Name

Page 6 of 8

26.3, 20.2; v  $_{max}$  (neat, cm<sup>-1</sup>): 1723, 1683, 1589, 1477, 1460, 1448, 1399, 1276, 1213; HRMS (ESI): m/z calcd for  $C_{43}H_{32}CIN_3O_3$  ([M]<sup>-</sup>) 673.2138, found 673.2157; Enantiomeric excess of **3I** was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R$  = 9.0 min, minor enantiomer:  $t_R$  = 28.9 min.

#### (1R,3S,6R)-3-(2-(4-Bromophenyl)-2-oxoethyl)-6-formyl-2'-oxo-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3m). White solid, 130.7 mg, 91% yield; mp: > 240 °C;  $[\alpha]_{D}^{24}$  = -94.7 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 96% ee);  $^1\text{H}$  NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (s, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H), 7.64 - 7.62 (m, 6H), 7.52 (d, J = 7.5 Hz, 1H), 7.32 – 7.28 (m, 6H), 7.25 – 7.22 (m, 3H), 7.15 - 7.12 (m, 1H), 7.08 - 7.05 (m, 1H), 6.65 (d, J = 8.0 Hz, 1H), 3.45 -3.36 (m, 3H), 3.25 (dd, J = 4.5, 13.5 Hz, 1H), 2.38 (d, J = 13.5 Hz, 1H), 2.25 – 2.22 (m, 1H), 2.10 – 2.01 (m, 1H), 1.76 – 1.68 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 196.7, 194.8, 173.5, 144.0, 141.4, 134.7, 132.3, 129.6, 129.5, 129.4, 128.8, 127.9, 127.1, 125.8, 124.2, 123.1, 116.9, 113.5, 110.7, 75.9, 52.1, 51.0, 46.1, 41.2, 36.1, 26.3, 20.2; v <sub>max</sub> (neat, cm<sup>-1</sup>): 1724, 1683, 1584, 1477, 1460, 1448, 1366, 1275, 1215; HRMS (ESI): *m/z* calcd for C<sub>43</sub>H<sub>32</sub>BrN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 717.1633, found 717.1653; Enantiomeric excess of 3m was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R = 9.7$  min, minor enantiomer:  $t_R = 29.9$  min.

## (1R,3S,6R)-3-(2-(4-Cyanophenyl)-2-oxoethyl)-6-formyl-2'-oxo-1'-

tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3n). White solid, 123.3 mg, 93% yield; mp: > 220 °C;  $[\alpha]_{D}^{24}$  = -74.5 (c 1.0, CHCl<sub>3</sub>, 95:5 dr, 96% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.48 (s, 1H), 8.12 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 8.5 Hz, 2H), 7.64 - 7.63 (m, 6H), 7.52 (d, J = 7.5 Hz, 1H), 7.32 - 7.29 (m, 6H), 7.25 - 7.22 (m, 3H), 7.16 - 7.13 (m, 1H), 7.09 - 7.06 (m, 1H), 6.67 (d, J = 8.5 Hz, 1H), 3.53 -3.39 (m, 3H), 3.26 (dd, J = 4.5, 13.5 Hz, 1H), 2.39 (d, J = 13.5 Hz, 1H), 2.27 – 2.23 (m, 1H), 2.12 – 2.03 (m, 1H), 1.79 – 1.70 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 196.6, 194.6, 173.4, 144.0, 141.4, 138.8, 132.8, 129.6, 128.8, 128.6, 127.9, 127.2, 125.7, 124.1, 123.1, 117.7, 117.3,117.0, 113.5, 110.7, 75.9, 52.1, 51.0, 46.0, 41.6, 36.0, 26.3, 20.2; v <sub>max</sub> (neat, cm<sup>-1</sup>): 1723, 1691, 1600, 1477, 1460, 1448, 1403, 1261, 1213; HRMS (ESI): *m/z* calcd for C<sub>44</sub>H<sub>32</sub>N<sub>4</sub>O<sub>3</sub> ([M]<sup>-</sup>) 664.2480, found 664.2461; Enantiomeric excess of 3n was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (60:40 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer:  $t_R = 18.6$  min, minor enantiomer:  $t_R = 70.1$  min.

#### (1R,3S,6R)-3-(2-(2-Chlorophenyl)-2-oxoethyl)-6-formyl-2'-oxo-1'tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (30).

White solid, 114.1 mg, 85% yield; mp: > 240 °C;  $[\alpha]_D^{25} = -193.2$  (c 1.0, CHCl<sub>3</sub>, 94:6 dr, 98% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.48 (s, 1H), 7.65 – 7.63 (m, 6H), 7.56 – 7.48 (m, 4H), 7.42 – 7.39 (m, 1H), 7.33 – 7.29 (m, 6H), 7.26 – 7.23 (m, 3H), 7.16 – 7.13 (m, 1H), 7.09 – 7.106 (m, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 3.50 – 3.39 (m, 3H), 3.26 (dd, *J* = 4.5, 13.5 Hz, 1H), 2.45 – 2.42 (m, 1H), 2.27 – 2.23 (m, 1H), 2.10 – 2.01 (m, 1H), 1.83 – 1.74 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 198.8, 196.7, 173.5, 144.0, 141.4, 138.0, 132.6, 131.2, 131.0, 129.5, 129.1, 128.9, 128.8, 127.9, 127.3, 127.1, 125.8, 124.2, 123.1, 116.9,

113.5, 110.6, 75.9, 52.1, 51.0, 45.9, 45.5, 36.2, 26.1, 20.3; v<sub>max</sub> (neat, cm<sup>-1</sup>): 1720, 1599, 1478, 1450, 1432, 1406, 1375, 1297, 1209, 1120; HRMS (ESI): *m/z* calcd for C<sub>43</sub>H<sub>32</sub>ClN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 673.2138, found 673.2162; Enantiomeric excess of **30** was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/*i*-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 8.3 min, minor enantiomer: t<sub>R</sub> = 24.2 min.

#### (1R,3S,6R)-3-(2-(3-Bromophenyl)-2-oxoethyl)-6-formyl-2'-oxo-1'tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3p).

White solid, 124.5 mg, 87% yield; mp: > 240 °C;  $[\alpha]_{D}^{25}$  = -53.0 (c 1.0, CHCl\_3, 95:5 dr, 94% ee);  $^1\text{H}$  NMR (500 MHz, CDCl\_3)  $\delta$  8.50 (s, 1H), 8.17 - 8.16 (m, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.67 - 7.65 (m, 6H), 7.56 - 7.54 (m, 1H), 7.45 - 7.42 (m, 1H), 7.34 -7.30 (m, 6H), 7.27 - 7.24 (m, 3H), 7.17 - 7.14 (m, 1H), 7.10 - 7.07 (m, 1H), 6.68 (d, J = 8.5 Hz, 1H), 3.49 - 3.40 (m, 3H), 3.28 (dd, J = 4.5, 13.5 Hz, 1H), 2.41 - 2.38 (m, 1H), 2.27 - 2.23 (m, 1H), 2.12 -2.03 (m, 1H), 1.79 – 1.71 (m, 1H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 196.8, 194.5, 173.5, 144.0, 141.4, 137.7, 136.9, 131.2, 130.6, 129.5, 128.9, 128.0, 127.9, 127.2, 126.7, 125.8, 124.2, 123.1, 116.9, 113.6, 110.8, 75.9, 52.2, 51.0, 46.1, 41.4, 36.1, 26.4, 20.3;  $v_{max}$  (neat, cm<sup>-1</sup>): 1721, 1686, 1589, 1497, 1446, 1366, 1279, 1205; HRMS (ESI): m/z calcd for C<sub>43</sub>H<sub>32</sub>BrN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 717.1633, found 717.1649; Enantiomeric excess of 3p was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 8.8 min, minor enantiomer:  $t_R = 28.9$  min.

(1R,3S,6R)-5'-Chloro-3-(3,3-dimethyl-2-oxobutyl)-6-formyl-2'-oxo-1'-tritylspiro[cyclohexane-1,3'-indoline]-2,2-dicarbonitrile (3q). White solid, 102.9 mg, 83% yield; mp: 160-161 °C;  $[\alpha]_{D}^{24} = -76.6$  (c 1.0, CHCl<sub>3</sub>, 93:7 dr, 93% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.59 (s, 1H), 7.58 - 7.56 (m, 6H), 7.39 - 7.38 (m, 1H), 7.29 - 7.26 (m, 6H), 7.23 - 7.21 (m, 3H), 7.08 - 7.06 (m, 1H), 6.55 (d, J = 8.5 Hz, 1H), 3.21 (dd, J = 4.0, 14.0 Hz, 1H), 3.14 - 3.09 (m, 1H), 2.97 - 2.87 (m, 2H), 2.23 - 2.19 (m, 2H), 1.95 - 1.91 (m, 1H), 1.64 - 1.59 (m, 1H), 1.21 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 211.5, 196.2, 172.9, 142..7, 141.1, 129.4, 128.8, 128.4, 127.9, 127.2, 126.0, 125.8, 117.6, 113.3, 110.4, 76.0, 52.1, 51.1, 45.8, 44.4, 39.4, 35.8, 26.2, 26.1, 20.2; v <sub>max</sub> (neat, cm<sup>-1</sup>): 1728, 1585, 1470, 1449, 1425, 1367, 1290, 1189; HRMS (ESI): *m*/*z* calcd for C<sub>41</sub>H<sub>36</sub>ClN<sub>3</sub>O<sub>3</sub> ([M]<sup>-</sup>) 653.2451, found 653.2463; Enantiomeric excess of 3q was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (80:20 hexanes/i-PrOH at 1.0 mL/min,  $\lambda$  = 254 nm), major enantiomer: t<sub>R</sub> = 4.8 min, minor enantiomer:  $t_R = 14.5$  min.

#### Synthesis of compound 6

The cyclohexanecarbaldehyde **3e** (134.6 mg, 0.20 mmol) was dissolved in a mixture of dry  $CH_2Cl_2$  (2.0 mL) and dry ethanol (0.5 mL). The reaction mixture was then cooled to -78 °C and NaBH<sub>4</sub> (22.8 mg, 0.60 mmol) was added. The mixture was stirred for 2 h at the same temperature. Excessive NaBH<sub>4</sub> was quenched with acetaldehyde (0.20 mL). Then the reaction temperature was allowed to warm to room temperature. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL) and washed with brine (2 × 10 mL). After drying the solvent was removed under reduced pressure and the crude

product was purified by flash column chromatography get compound **6** as a white solid (59.2 mg, 44% yield).

#### (3R,3'S,4a'S,7'R,8a'S)-5-Chloro-7'-(hydroxymethyl)-1',2-dioxo-3'-

phenyl-1-trityl-1',2',3',4',4a',5',6',7'-octahydro-8a'H-spiro[indoline-3,8'-isoquinoline]-8a'-carbonitrile (6). White solid, 59.2 mg, 44% yield; mp: 228-229 °C;  $[\alpha]_{D}^{23}$  = -96.2 (c 0.5, CHCl<sub>3</sub>, >99% ee); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.84 (s, 1H), 7.65 – 7.63 (m, 6H), 7.41 – 7.40 (m, 4H), 7.35 - 7.34 (m, 1H), 7.24 - 7.21 (m, 6H), 7.17 - 7.14 (m, 3H), 6.95 (dd, J = 2.5, 9.0 Hz, 1H), 6.31 (d, J = 9.0 Hz, 1H), 5.03 (dd, J = 3.0, 12.0 Hz, 1H), 2.85 - 2.79 (m, 1H), 2.46 - 2.38 (m, 2H), 2.11 -2.07 (m, 3H), 1.94 – 1.88 (m, 2H), 1.62 – 1.53 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 175.3, 159.2, 142.8, 138.9, 129.7, 128.9, 128.8, 127.6, 126.8, 126.7, 124.8, 116.4, 115.5, 82.1, 75.6, 61.6, 51.9, 51.3, 46.6, 37.3, 36.3, 27.9, 22.9; v<sub>max</sub> (neat, cm<sup>-1</sup>): 3061, 2933, 1723, 1671, 1598, 1492, 1468, 1450, 1421, 1328, 1290, 1214; HRMS (ESI): m/z calcd for  $C_{43}H_{36}CIN_3O_3$  ([M]) 677.2445, found 677.2457. Enantiomeric excess of 6 was determined by chiral stationary phase HPLC analysis using a ChiralPak IC column (95:5 hexanes/i-PrOH at 0.8 mL/min,  $\lambda$  = 220 nm), major enantiomer: t<sub>R</sub> = 30.9 min, minor enantiomer:  $t_R = 38.7$  min.

#### Acknowledgements

The research was financially supported by the Welch Foundation (grant No. AX-1593), for which the authors are most grateful. The authors also thank Dr. Hadi Arman for the X-ray crystallographic analysis of compound **6** and Dr. Wendell Griffith for help with the HRMS analysis.

#### Notes and references

- 1 For reviews, see: (a) S. Peddibhotla, *Curr. Bioact. Compd.* 2009, **5**, 20-38. (b) C. V. Galliford and K. A. Scheidt, *Angew. Chem. Int. Ed.* 2007, **46**, 8748–8758.
- (a) T. J. Greshock, A. W. Grubbs, P. Jiao, D. T. Wicklow, J. B. Gloer and R. M. Williams, *Angew. Chem. Int. Ed.* 2008, 48, 3573-3577.
   (b) M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, *Science* 2010, 329, 1175-1180.
- 3 (a) Y.-K. Xu, S.-P. Yang, S.-G. Liao, H. Zhang, L.-P. Lin, J. Ding and J.-M. Yue, *J. Nat. Prod.* 2006, **69**, 1347-1350. (b) M. Kitajima, T. Nakamura, N. Kogure, M. Ogawa, Y. Mitsuno, K. Ono, S. Yano, N. Aimi and H. Takayama, *J. Nat. Prod.* 2006, **69**, 715-718.
- 4 (a) L. Lin, J. Zheng, W. Zhu and N. Jia, *Cell Biochem. Biophys.* 2015, **71**, 535-541. (b) T. Wu, G. Chen, X. Chen, Q. Wang and G. Wang, *Cell Biochem. Biophys.* 2015, **71**, 337-344.
- 5 K. Guo, T. Fang, J. Wang, A.-a. Wu, Y. Wang, J. Jiang, X. Wu, S. Song, W. Su, Q. Xu and X. Deng, *Bioorg. Med. Chem. Lett.* 2014, **24**, 4995-4998.
- 6 (a) A. Soupart, P. Gross, J. Legros, S. Alfoldi, D. Annane, H. M. Heshmati and G. Decaux, *Clin. J. Am. Soc. Nephrol.* 2006, 1, 1154-1160. (b) P. Ginès, F. Wong, H. Watson, S. Milutinovic, L. R. del Arbol and D. Olteanu, *Hepatology*, 2008, 48, 204-213.
- 7 For reviews, see: (a) F. Zhou, Y.-L. Liu and J. Zhou, A. Adv. Synth. Catal. 2010, **352**, 1381-1407. (b) D. Cheng, Y. Ishihara,

B. Tan and C. F. Barbas III, ACS Catal. 2014, 4, 743-762. (c) L.
Hong and R. Wang, Adv. Syn. Catal. 2013, 355, 1023-1052.
(d) R. Dalpozzo, G. Bartoli and G. Bencivenni, Chem. Soc. Rev., 2012, 41, 7247-7290. (e) A. Moyano and R. Rios, Chem. Rev. 2011, 111, 4703-4832. (f) R. Rios, Chem. Soc. Rev. 2012, 41, 1060-1074.

ARTICLE

- (8) For some selected recent examples on the synthesis of spiroheterocyclic oxindole derivatives, see: (a) S. Zhao, J. B. Lin, Y. Y. Zhao, Y. M. Liang and P. F. Xu, Org. Lett. 2014, 16, 1802-1805. (b) J. Xu, L. D. Shao, D. Li, X. Deng, Y. C. Liu, Q. S. Zhao and C. Xia, J. Am. Chem. Soc. 2014, 136, 17962-17965. (c) Y. Shi, A. Lin, H. Mao, Z. Mao, W. Li, H. Hu, C. Zhu and Y. Cheng, Chem. Eur. J. 2013, 19, 1914-1918. (d) Y. M. Cao, F. F. Shen, F. T. Zhang and R. Wang, Chem. Eur. J. 2013, 19, 1184-1188. (e) C. Zheng, W. Yao, Y. Zhang and C. Ma, Org. Lett. 2014, 16, 5028-5031. (f) Y. Zhang, Y. Lu, W. Tang, T. Lu and D. Du, Org. Biomol. Chem. 2014, 12, 3009-3015. (g) F.-L. Hu, Y. Wei and M. Shi, Chem. Commun. 2014, 50, 8912-8914. (h) T. P. Gao, J. B. Lin, X. Q. Hu and P. F. Xu, Chem. Commun. 2014, 50, 8934-8936. (i) D. Du, Z. Hu, J. Jin, Y. Lu, W. Tang, B. Wang and T. Lu, Org. Lett. 2012, 14, 1274-1277. (j) X. N. Wang, Y. Y. Zhang and S. Ye, Adv. Synth. Catal. 2010, 352, 1892-1895. (k) H. Wu, L.-L. Zhang, Z.-Q. Tian, Y.-D. Huang and Y.-M. Wang, Chem. Eur. J. 2013, 19, 1747-1753. (I) J. J. Badillo, C. J. Ribeiro, M. M. Olmstead and A. K. Franz, Org. Lett. 2014, 16, 6270-6273. (m) X.-H. Chen, Q. Wei, S.-W. Luo, H. Xiao and L.-Z. Gong, J. Am. Chem. Soc. 2009, 131, 13819-13825. (n) A. P. Antonchick, C. Gerding-Reimers, M. Catarinella, M. Schurmann, H. Preut, S. Ziegler, D. Rauh and H. Waldmann, Nat. Chem. 2010, 2, 735-740. (o) H.-B. Yang, Y.-Z. Zhao, R. Sang, Y. Wei and M. Shi, Adv. Synth. Catal. 2014, 356, 3799-3808. (p) H. Zheng, X. Liu, C. Xu, Y. Xia, L. Lin and X. Feng, Angew. Chem. Int. Ed. 2015, 55, 10958-10962.
- For some selected examples synthesis of of spirocyclopentane oxindole derivatives, see: (a) Κ. Albertshofer, K. E. Anderson and C. F. Barbas III, Org. Lett. 2012, 14, 5968-5971. (b) S. Afewerki, G. Ma, I. Ibrahem, L. Liu, J. Sun and A. Córdova, ACS Catal. 2015, 5, 1266-1272. (c) B. Zhou, Z. Luo and Y. Li, Chem. Eur. J. 2013, 19, 4428-4431. (d) K. Albertshofer, B. Tan and C. F. Barbas III, Org. Lett. 2012, 14, 1834-1837. (e) B. Tan, N. R. Candeias and C. F. Barbas III, Nat. Chem. 2011, 3, 473-477. (f) A. Noole, K. Ilmarinen, I. Järving, M. Lopp and T. Kanger, J. Org. Chem. 2013, 78, 8117-8122. (g) F. Zhong, X. Han, Y. Wang and Y. Lu, Angew. Chem. Int. Ed. 2011, 50, 7837-7841. (h) A. Voituriez, N. Pinto, M. Neel, P. Retailleau and A. Marinetti, Chem. Eur. J. 2010, 16, 12541–12544. (i) B. M. Trost, N. Cramer and S. M. Silverman, J. Am. Chem. Soc. 2007, 129, 12396-12397.
- 10 For some selected examples of synthesis of spirocyclohexane oxindole derivatives, see: (a) G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli, M.-P. Song, G. Bartoli and P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7200-7203. (b) X. Companyó, A. Zea, A.-N. R. Alba, A. Mazzanti, A. Moyanoa and R. Rios Chem. Commun. 2010, 46, 6953-6955. (c) Q.-S. Sun, X.-Y. Chen, H. Zhu, H. Lin, X.-W. Sun and G.-Q. Lin, Org. Chem. Front. 2015, 2, 110-113. (d) A. K. Ghosh and B. Zhou, Tetrahedron Lett. 2013, 54, 2311-2314. (e) B. Wu, J. Chen, M.-Q. Li, J.-X. Zhang, X.-P. Xu, S.-J. Ji and X.-W. Wang, Eur. J. Org. Chem. 2012, 1318-1327. (f) Y.-B. Lan, H. Zhao, Z.-M. Liu, G.-G. Liu, J.-C. Tao and X.-W. Wang, Org. Lett. 2011, 13, 4866-4869. (g) K. Jiang, Z.-J. Jia, S. Chen, L. Wu and Y.-C. Chen, Chem. Eur. J. 2010, 16, 2852-2856. (h) K. Jiang, Z.-J. Jia, X. Yin, L. Wu and Y.-C. Chen, Org. Lett. 2010, 12, 2766-2769. (i) Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen and K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053-5061. (j) Y.Liu, M. Nappi, E. Arceo, S. Vera and P. Melchiorre, J. Am. Chem. Soc. 2011, 133, 15212-15218. (k) F. Zhong, X. Han, Y. Wang and Y. Lu, Chem. Sci.

2012, **3**, 1231-1234. (I) B. Tan, G. Hernández-Torres and C. F. Barbas III, *J. Am. Chem. Soc.* 2011, **133**, 12354-12357. (m) G. Li, T. Liang, L. Wojtas and J. C. Antilla, *Angew. Chem. Int. Ed.* 2013, **52**, 4628-4632. (n) B. Zhou, Y. Yang, J. Shi, Z. Luo and Y. Li, *J. Org. Chem.* 2013, **78**, 2897-2907. (o) M. Monari, E. Montroni, A. Nitti, M. Lombardo, C. Trombini and A. Quintavalla, *Chem. Eur. J.* 2015, **21**, 11038-11049. (p) Y. Li, X. Su, W. Zhou, W. Li and J. Zhang, *Chem. Eur. J.* 2015, **21**, 4224-4228. (q) J. Stiller, D. Kowalczyk, H. Jiang, K. A. Jørgensen and Ł. Albrecht, *Chem. Eur. J.* 2014, **20**, 13108-13112.

- 11 For a review, see: L. F. Tietze, Chem. Rev. 1996, 96, 115-136.
- 12 For reviews, see: (a) C. Grondal, M. Jeanty and D. Enders, Nat. Chem. 2010, 2, 167-178. (b) A.-N. Alba, X. Companyo, M. Viciano and R. Rios, Curr. Org. Chem. 2009, 13, 1432-1474. (c) B. List, Chem. Rev. 2007, 107, 5413-5415.
- 13 (a) E. L. Richards, P. J. Murphy, F. Dinon, S. Fratucello, P. M. Brown, T. Gelbrich and M. B. Hursthouse, *Tetrahedron* 2001, **57**, 7771-7784. (b) K. Yagi, T. Turitani, H. Shinokubo and K. Oshima, *Org. Lett.* 2002, **4**, 3111-3114. (c) P. M. Brown, N. Kaeppel, P. J. Murphy, S. J. Coles and M. B. Hursthouse, *Tetrahedron* 2007, **63**, 1100-1106. (d) Q. Dai, H. Arman and J. C.-G. Zhao, *Chem. Eur. J.* 2013, **19**, 1666-1671. (e) Q. Dai, H. Huang and J. C.-G. Zhao, *J. Org. Chem.* 2013, **78**, 4153-4157. (f) Q. Dai, N. K. Rana and J. C.-G. Zhao, *Org. Lett.* 2013, **15**, 2922-2925. (g) N. K. Rana, H. Huang and J. C.-G. Zhao, *Angew. Chem. Int. Ed.* 2014, **53**, 7619-7623.
- 14 (a) Q. Guo, M. Bhanushali and C.-G. Zhao, Angew. Chem. Int. Ed. 2010, 49, 9460-9464. (b) J. Guang, Q. S. Guo and J. C.-G. Zhao, Org. Lett. 2012, 14, 3174-3177. (c) J. Guang, and C.-G. Zhao, Tetrahedron: Asymmetry 2011, 22, 1205-1211. (d) N. Ramireddy and J. C.-G. Zhao, Tetrahedron Lett. 2014, 55, 706-709. (e) S. Abbaraju and J. C.-G. Zhao, Adv. Synth. Catal. 2014, 356, 237-241. (f) S. Abbaraju, N. Reddy, N. K. Rana, H. Arman and J. C.-G. Zhao, Adv. Synth. Catal. 2015, 357, 2633-2638.
- 15 For reviews, see: (a) C. Bhanja, S. Jena, S. Nayak and S. Mohapatra, *Beilstein J. Org. Chem.* 2012, **8**, 1668-1694. (b) C. Grondal, M. Jeanty and D. Enders, *Nat. Chem.* 2010, **2**, 167-178.
- 16 (a) S. Lin, L. Deiana, G. Zhao, J. Sun and A. Cordova, Angew. Chem. Int. Ed. 2011, 50, 7624-7630. (b) G. Ma, A. Bartoszewicz, I. Ibrahem and A. Córdova, Adv. Synth. Catal. 2011, 353, 3114-3122.
- 17 Similar effects were also observed in our previous studies: see references 14a, b, and f.
- 18 A. Citterio, E. Carnevali, A. Farina, V. Meillet, S. Minitt and L. Cotarcatt, Org. Prep. Proc. Int. 1997, 29, 465-470.
- 19 For details, please see the Supporting Information.
- 20 G. Black, F. Dinon, S. Fratucello, P. Murphy, M. Nielsen, H. Williams and N. Walshe, *Tetrahedron Lett.* 1997, **38**, 8561.
- 21 S. J. Garden, C. R. W. Guimarães, M. B. Correá, C. A. F. de Oliveira, A. Da Cunha Pinto and R. B. de Alencastro, *J. Org. Chem.* 2003, **68**, 8815-8822.