Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Zn/Sc bimetallic relay catalysis: one pot cycloisomerization/carbonylene reaction toward oxazole derivatives

Bin Wang,^a Ying Chen,^a Ling Zhou,^c Jianwu Wang,^{*a} and Zhenghu Xu^{*a,b}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

A novel Zn(II)-catalyzed cycloisomerization and Sc(III)catalyzed carbonyl-ene reaction combined tandem metal relay catalytic system has been successfully developed. By using this unprecedented Zn/Sc bimetallic relay catalysis, a 10 variety of oxazole derivatives were obtained from easily available N-(propargyl)arylamides and aldehydes under mild

- conditions. Oxazole nucleus have attracted intense attentions due to their
- promising biological activities widely spread in the natural ¹⁵ compounds and pharmaceuticals (Figure 1).¹ For example, Dolastain I, which is a cyclic hexapeptide containing an oxazole and oxazoline moiety, displays cytotoxicity against HeLa S₃ cells.² The Bistratamide family also exhibit cytotoxic and antineoplastic activities as well as the possibility of acting as
- ²⁰ metal ion chelating metabolites, such as Bistratamide D, which has been proved to induce sedation in mice when administered by intracerebral injection.³ Bengazole A, as another example, stands out as particular bisoxazoles motif containing a carbohydrate-like polyol side chain, which shows antihelminthic
- ²⁵ activity and also could be potent antifungal agent.⁴ Hennoxazole A is active against herpes simplex type I and presents peripheral analgesic activity comparable with that of indomethacin.⁵ Oxazoles are also important intermediates in organic synthesis and as ligands for catalysis.⁶ Therefore, the development of an ³⁰ efficient and practical approach for the synthesis of oxazole
 - derivatives is highly desirable. Recently, transition-metal-catalyzed cyclization of propargylic amides to prepare oxazole framework has gained considerable attentions and significant progress has been achieved in this area.⁷
- ³⁵ For instance, Broggini and co-workers reported an elegant Pdcatalyzed 5-*exo-dig* oxidative cyclization into 5oxazolecarbaldehydes in 2008.⁸ Later in 2012, Hashmi and coworkers developed a gold(I)-catalyzed protocol to transform

⁴⁰ ^aKey Lab for Colloid and Interface Chemistry of Education Ministry, School of chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China. E-mail: xuzh@sdu.edu.cn, jwwang@sdu.edu.cn

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of 45 Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

^eDepartment of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056

- †Electronic Supplementary Information (ESI) available: Detailed 50 experimental procedures and analytical data. CCDC Number: 1431202
 - for compound **3b**. See DOI: 10.1039/b000000x.

55 Figure 1. Natural products and pharmaceuticals containing oxazole unit.

A. Pi acid-Lewis Acid Relay Catalysis

B. Zn(OTf)₂ as Pi acid & Sc(OTf)₃ as Lewis Acid (this work)

$$= \underbrace{Ph}_{HN} \underbrace{Zn(OTf)_2}_{O} \left[\underbrace{O}_{Ph} \underbrace{I}_{N} \right] \underbrace{ArCHO}_{Sc(OTf)_3} \underbrace{Ph}_{N} \underbrace{O}_{HO} \underbrace{Ar}_{HO} \underbrace{Ar}_{HO} \underbrace{I}_{HO} \underbrace{I}_{$$

Scheme 1. Zn/Sc bimetallic relay catalysis strategy to construct oxazole.

⁶⁰ the propargylic amides to homologous alkylideneoxazolines. ⁹ In 2014, Wan and coworkers reported a novel approach toward functionalized oxazoles by a silver(I)-catalyzed [3,3]-rearrangement/sulfonyl migration tandem reaction of N-sulfonyl propargylamides.¹⁰ In this communication, we report here a ⁶⁵ Zn(II)/Sc(III) bimetallic catalysis approach to construct functionalized oxazole derivatives from easily available propargylic amides and aldehydes.

Previously we combined Au as the π acid and another early transition metal as the σ acid together and developed a series of ⁷⁰ bimetallic relay catalysis. By using this relay catalysis, various biologically important fused or spiroaminals could be efficiently synthesized in one step (Scheme 1A).¹¹ These reactions went through a gold(I)-catalyzed cyclization¹² forming an electron-rich enamide intermediate and subsequent Lewis acid-catalyzed ⁷⁵ inverse-electron-demand hetero-Diels-Alder reactions. We

Page 2 of 4

reasoned that the cyclization of propargylic amide furnished a similar nucleophilic exocyclic double bond. This cyclization could be catalysed by Au(I) or Zn(II) catalyst.⁸ Then another Lewis acid catalyzed carbonyl-ene type reaction¹³ with an ⁵ aldehyde would furnish oxazole derivatives (Scheme 1 B). This carbonyl-ene reaction is a versatile and useful method to construct carbon-carbon bond formation owing to its high atom-economy.

10 Table 1. Optimization of Reaction Conditions^a

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } } \\ T } \\ T \\ T } } \\ T } } \\ T } } } } } } } } } }					
Entry	Catalyst A	Catalyst B	Solvent	T/°C	Yield(%) ^b
1	$Zn(OTf)_2$	In(OTf) ₃	DCM	45	35
2	Zn(OTf) ₂	Ga(OTf) ₃	DCM	45	38
3	$Zn(OTf)_2$	La(OTf) ₃	DCM	45	66
4	Zn(OTf) ₂	Sc(OTf) ₃	DCM	45	81
5	$Zn(OTf)_2$	Y(OTf) ₃	DCM	45	50
6	Zn(OTf) ₂	Bi(OTf) ₃	DCM	45	73
7	In(OTf) ₃	Sc(OTf) ₃	DCM	45	45
8	Ga(OTf) ₃	Sc(OTf) ₃	DCM	45	16
9	AgOTf	Sc(OTf) ₃	DCM	45	30
10	Cu(OTf) ₂	Sc(OTf) ₃	DCM	45	11
11 ^c	$Ph_3PAuNTf_2$	Sc(OTf) ₃	DCM	45	76
12 ^d	Zn(OTf) ₂	-	DCM	45	16
13	-	Sc(OTf) ₃	DCM	45	trace
14	Zn(OTf) ₂	Sc(OTf) ₃	DCM	55	78
15	Zn(OTf) ₂	Sc(OTf) ₃	DCE	60	36
16	$Zn(OTf)_2$	Sc(OTf) ₃	DCE	70	60

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol),Catalyst **A** (10 15 mol%), Catalyst **B** (10 mol%), solvent (2 mL), overnight; ^bisolated yield; ^c5 mol% of PPh₃AuCl catalyst, 10 mol% of Ag(NTf)₂ catalyst.^doxazoline intermediate M¹ was isolated in 41% yield.

At the outset, we initiated our study with N-(prop-2-yn-1yl)benzamide **1a** and *p*-nitrobenzaldehyde **2a** in the presence of $20 \text{ Zn}(\text{OTf})_2$ as π acid¹⁴ and other Lewis acid catalysts. Fortunately, all the tested Lewis acids such as Sc(OTf)₃, Ga(OTf)₃, La(OTf)₃, In(OTf)₃, Y(OTf)₃, and Bi(OTf)₃ could produce the target oxazole products **3a**. In particular, Sc(OTf)₃ gave the best yield (entries 1-6). Then various π acid catalysts were screened together with $25 \text{ Sc}(\text{OTf})_3$. It turned out that other π acid catalysts such as Ag(I) and Au(I) produced much lower yields(entries 7-11). Control experiments confirmed that both the Zn(OTf)₂ and Sc(OTf)₃ catalyst are necessary in this process (entries 12-13). The reaction with only Zn(OTf)₂ catalyst gave product **3a** in 16% yield, 30 together with oxazoline intermediate M¹ in 41% yield. Merely a trace amount of product **3a** could be detected TLC with only $Sc(OTf)_3$ catalyst. Further optimization of solvents and reaction temperatures showed that the reaction with Zn(II) and Sc(III) as catalysts at 45 °C is the best condition (entry 4).

³⁵ **Table 2.** Substrate Scope of aromatic aldehyde^a

40 Table 3. Substrate Scope of propargylic amides^a

^aReaction conditions: **1a** (0.2 mmol), **2** (0.24 mmol), $Zn(OTf)_2$ (10 mol%), $Sc(OTf)_3$ (10 mol%), DCM (2 mL), $45^{\circ}C$, overnight, isolated ⁴⁵ yield. ^bat 55 °C.

With the optimized reaction condition established, the scope of various aromatic aldehyde were tested (Table 2). Different substituents at different positions (*p*-, *o*-, *m*-) on the phenyl ring didn't affect this reaction and afford the corresponding product in ⁵⁰ moderate yields (**3a-c**). Various halogens were all tolerated in this reaction giving acceptable yields (**3f-i**), thus allowing further functionalization by cross coupling reaction. Electron-withdrawing groups such as CF₃, CN (**3d**, **3e**) could give the corresponding products in very good yields. Electron rich ⁵⁵ aldehydes were less reactive, however, reasonable yields could be obtained by raising temperature to 55 °C (**3k**, **3l**). The structure of

3b was unambiguously characterized by single X-ray crystallography (Figure 2).

¹⁰ Figure 2. The crystal structure of 3b.

Scheme 3. Proposed reaction mechanism.

- ¹⁵ We then investigated the scope of the reaction with respect to N-(propargyl)arylamides and the results are shown in Table 3. The methyl group at different position of the phenyl ring had no obvious influence on the reaction (**3m-o**). Moreover, irrespective of halogen (**3q, 3r**) or electron-donating (**3p**) substituents on the
- $_{\rm 20}$ phenyl ring could get the desired product in tolerable yield. Heteroaromatic propargylic amide was also suitable substrate in the reaction (**3s**).

Control experiments were conducted to understand the mechanism. The reaction of 1a in the presence of $\text{Zn}(\text{OTf})_2$ could

- ²⁵ form oxazoline M¹ in 70% yield. This intermediate could react with aldehyde **2a** in the presence of Sc(OTf)₃, giving the product **3a** in 63% yield (Scheme 3). Based on aforementioned results, a conceivable mechanism-Zn/Sc bimetallic sequential catalyzed cascade reaction was proposed. Firstly, Zn(OTf)₂ acted as π acid
- ³⁰ to activate the triple bond of **1a** and subsequent intramolecular 5*exo-dig* cyclization forming the oxazoline intermediate **M**¹. On the other side, Sc(OTf)₃ coordinated with the carbonyl group of the aldehyde to form an electrophilic intermediate M². The carbonyl–ene reaction between M¹ and M² would produce the

³⁵ target oxazole product and regenerate Sc(OTf)₃ catalyst. In conclusion, we have demonstrated an atom-economic intermolecular cycloisomerization/carbonyl–ene cascade reaction to construct oxazole derivatives. Such a facile construction of aromatic heterocycles from two easily available acyclic substrates

- ⁴⁰ will find more applications in organic synthesis and also medicinal chemistry. In this bimetallic relay catalytic process, the $Zn(OTf)_2$ catalyst acted as π acid and the $Sc(OTf)_3$ catalyst played a role of σ acid. Application of such bimetallic strategy in other reactions is underway in our laboratory.
- ⁴⁵ We are grateful for financial support from the Natural Science Foundation of China and Shandong province (No. 21572118 & JQ201505), and the fundamental research & subject construction funds of Shandong University (No 2014JC008, 104.205.2.5).

Notes and references

- (a) I. J. Turchi and M. J. S. Dewar, *Chem. Rev.*, 1975, **75**, 389; (b) P. Wipf, *Chem. Rev.*, 1995, **95**, 2115; (c) Z. Jin, *Nat. Prod. Rep.*, 2003, **20**, 584; (d) Z. Jin, *Nat. Prod. Rep.*, 2009, **26**, 382; (e) D. K. Dalvie, A. S. Kalgutkar, S. C. Khojasteh-Bakht, R. S. Obach and J. P. O'Donnell, *Chem. Res. Toxicol.*, 2002, **15**, 269.
- (a) H. Sone, H. Kigoshi and K. Yamada, *Tetrahedron*, 1997, 53, 8149;
 (b) C. Boss, P. H. Rasmussen, A. R. Wartini and S. R. Waldvogel, *Tetrahedron Letters*, 2000, 41, 6327.
- 3 (a) S. V. Downing, E. Aguilar and A. I. Meyers, J. Org. Chem., 1999, 64, 826; (b) L. J. Perez and D. J. Faulkner, J. Nat. Prod., 2003, 66, 247; (c) M. P. Foster, G. P. Concepcion, G. B. Caraan and C. M. Ireland, J. Org. Chem., 1992, 57, 6671; (d) Y.-L. Liu, F.-M. Liao, Y.-F. Niu and J. Zhou, Org. Chem. Front., 2014, 1, 742.
- 4 (a) R. J. Mulder, C. M. Shafer and T. F. Molinski, *J. Org. Chem.*, 1999, 64, 4995; (b) G. R. Pettit, F. Hogan, J. Xu, R. Tan, T. Nogawa, Z. Cichacz, R. K. Pettit, J. Du, Q. Ye, G. M. Cragg, C. L. Herald, M. S. Hoard, A. Goswami, J. Searcy, L. Tackett, D. L. Doubek, L. Williams, J. N. A. Hooper, J. M. Schmidt, J. C. Chapuis, D. N. Tackett and F. Craciunescu, *J. Nat. Prod.*, 2008, 71, 438; (c) M. Adamczeski, E. Quinoa and P. Crew, *J. Am. Chem. Soc.*, 1998, 110, 1598.
- (a) T. Ichiba, W. Y. Yoshiba, P. J. Scheuer, T. Higa and D. G. Gravalos, *J. Am. Chem. Soc.*, 1991, 113, 3173; (b) T. E. Smith, W-H. Kuo, E. P. Balskus, V. D. Bock, J. L. Roizen, A. B. Theberge, K. A.
- Carroll, T. Kurihara and J. D. Wessler, *J. Org. Chem.*, 2008, 73, 142;
 (c) T. E. Smith, W-H. Kuo, V. D. Bock, J. L. Roizen, E. P. Balskus and A. B. Theberge, *Org. Lett.*, 2007, 9, 1153;
 (d) C. Chen and X. Tong, *Org. Chem. Front.*, 2014, 1, 439;
 (e) D. R. Williams, D. A. Brooks and M. A. Berliner, *J. Am. Chem. Soc.*, 1999, 121, 4924.
- 80 6 For example: A. Gissibl, M. G. Finn and O. Reiser, *Org. Lett.*, 2005, 7, 2325.
 - 7 (a) Y. Hu, X. Xin and B. Wan, *Tetrahedron Letters*, 2015, 56, 32; (b)
 H. Peng, N. G. Akhmedov, Y. Liang, N. Jiao and X. Shi, *J. Am. Chem. Soc.*, 2015, 137, 8912; (c) A. Alhalib and W. J. Moran, *Org. Biomol. Chem.*, 2014, 12, 795; (d) G. C. Senadi, W. Hu, J. Hsiao, J. K. Vandavasi, C. Chen and J. Wang, *Org. Lett.*, 2012, 14, 4478; (e)
 O. A. Egorova, H. Seo, Y. Kim, D. Moon, Y. M. Rhee and K. H. Ahn, *Angew. Chem. Int. Ed.*, 2011, 50, 11446; (f) A. S. K. Hashmi, A. M. Schuster, M. Schmuck and F. Rominger, *Eur. J. Org. Chem.*,
 - A. M. Schuster, M. Schmuck and F. Rominger, Eur. J. Org. Chem., 2011, 4595; (g) J. P. Weyrauch, A. S. K. Hashmi, A. Schuster, T. Hengst, S. Schetter, A. Littmann, M. Rudolph, M. Hamzic, J. Visus, F. Rominger, W. Frey and J. W. Bats, Chem. Eur. J., 2010, 16, 956; (h) A. Arcadi, S. Cacchi, L. Cascia. G. Fabrizi and F. Marinelli, Org. Lett., 2001, 3, 2501; (i) S. Yasuhara, M. Sasa, T. kusakabe, H. Takayama, M. Kimura, T. Mochida and K. Kato, Angew. Chem. Int. Ed. 2011, 50, 3912; (j) S. Zhang, Y. Chen, J. Wang, Y. Pan, Z. Xu and C.-H. Tung, Org. Chem. Front., 2015, 2, 578; (k) C. Song, Y. Sun, J. Wang, H. Chen, J. Yao, C.-H. Tung and Z. Xu, Org. Chem. Front., 2015, 2, 1366.
- 100 8 E. M. Beccalli, E. Borsini, G. Broggini, G. Palmisano and S. Sottocornola, J. Org. Chem., 2008, 73, 4746.
- (a) A. S. K. Hashmi, M. C. B. Jaimes, A. M. Schuster and F. Rominger, *J. Org. Chem.*, 2012, **77**, 6394; (b) A. S. K. Hashmi, M. C. B. Jaimes, A. M. Schuster and F. Rominger, *J. Org. Chem.*, 2012, **77**, 6394; (c) A. S. K. Hashmi and A. Littmann, *Chem. Asian J.* 2012, **7**, 1435; (d) A. S. K. Hashmi, A. M. Schuster, S. Gaillard, L. Cavallo, A. Poater and S. P. Nolan, Organometallics 2011, **30**, 6328; (e) A. S. K. Hashmi, A. M. Schuster and F. Rominger, *Angew. Chem. Int. Ed.*, 2009, **48**, 8247; (f) A. S. K. Hashmi, M. Rudolph, S. Schymura, J. Visus and W. Frey, *Eur. J. Org. Chem.*, 2006, 4905; (g) A. S. K. Hashmi, J. P. Weyrauch, W. Frey and J. W. Bats, *Org. Lett.*, 2004, **6**, 4391.
- 10 Y. Hu, R. Yi, F. Wu and B. Wan, J. Org. Chem., 2014, **79**, 3052.
- (a) X. Wang, S. Dong, Z. Yao, L. Feng, P. Daka, H. Wang and Z. Xu, Org. Lett., 2014, 16, 22; (b) X. Wang, Z. Yao, S. Dong, F. Wei, H. Wang and Z. Xu, Org. Lett., 2013, 15, 2234; (c) S. Zhang, Z. Xu, J. Jia, C.-H. Tung and Z. Xu, Chem. Commun., 2014, 50, 12084; (d) (d) S. Zhang, F. Wei, C. Song, J. Jia and Z. Xu, Chin. J. Chem. 2014,

105

85

90

95

110

115

32, 937; (e) F. Wei, X. Wang, S. Peng, Q. Jia, C. Jiang, S. Liu and Z. Xu, *Synthesis*, 2014, **46**, 2168; (f) C. Song, J. Wang and Z. Xu, *Org. Biomol. Chem.*, 2014, **12**, 5802; (g) C. Song, D. Sun, X. Peng, J. Bai, R. Zhang, S. Hou, J. Wang, and Z. Xu, *Chem. Commun.* 2013, **49**,

- S. Hou, J. Wang, and Z. Xu, Chem. Commut. 2015, 49, 9167; (h) C. Song, L. Ju, M. Wang, P. Liu, Y. Zhang, J. Wang and Z. Xu, Chem. Eur. J. 2013, 19, 3584. (i) C. Song, S. Dong, L. Feng, X. Peng, M. Wang, J. Wang and Z. Xu, Org. Biomol. Chem. 2013, 11, 6258.
- 12 (a) A. S. K. Hashmi and M. Rudolph, *Chem. Soc. Rev.*, 2008, 37,
 10 1766; (b) M. Rudolph and A. S. K. Hashmi, *Chem. Soc. Rev.*, 2012,
 41, 2448; (c) A. S. K. Hashmi and G. J. Hutchings, *Angew. Chem. Int. Ed.*, 2006, 45, 7896; (d) D. Ma, J. Dai, Y. Qiu, C. Fu and S. Ma, *Org. Chem. Front.*, 2014, 1, 782; (e) F. Wei, C. Song, Y. Ma, L. Zhou, C.-H. Tung and Z. Xu, *Sci. Bull.* 2015, 60, 1749.
- ¹⁵ 13 (a) J.-F. Zhao, H.-Y. Tsui, P.-J. Wu, J. Lu and T.-P. Loh, *J. Am. Chem. Soc.*, 2008, **130**, 16492; (b) J.-F. Zhao, T.-B. Tjan, B.-H. Tan and T.-P. Loh, *Org. Lett.*, 2009, **11**, 5714; (c) W. Luo, J. Zhao, J. Jie, L. Lin, X. Liu, H. Mei and X. Feng, *Chem. Commun.*, 2015, **51**, 10042; (d) X. Zhang, M. Wang, R. Ding, Y.-H. Xu, T.-P. Loh, *Org.*
- Lett., 2015, 17, 2736; (e) G. Liang, D. T. Sharum, T. Lam and N. T. Totah, Org. Lett., 2013, 15, 5974; (f) X. Liu and Z. Gu, Org. Chem. Front., 2015, 2, 778; (g) P. M. Truong, P. Y. Zavalij and M. P. Doyle, Angew. Chem. Int. Ed., 2014, 53, 6468;
- 14 (a) A. Sarkar, S. Santra, S. K. Kundu, N. C. Ghosal, A. Hajra and A.
 ²⁵ Majee, *Sythesis*, 2015, **47**, 1379; (b) A. M. Jadhav, V. V. Pagar, D.
 B. Huple and R. S. Liu, *Angew. Chem. Int. Ed.*, 2015, **54**, 3812; (c)
 L. Li, B. Zhou, Y. Wang, C. Shu, Y.-F. Pan, X. Lu and L.-W. Ye, *Angew. Chem. Int. Ed.*, 2015, **54**, 8245; (d) M. J. González, J.
 González, L. A. López and R. Vicente, *Angew. Chem. Int. Ed.*,
- 2015, 54, DOI: 10.1002/anie.201505954; (e) C. Cheng, S. Liu and G. Zhu, Org. Lett. 2015, 17, 1581; (f) M. J. González, L. A. López and R. Vicente, Org. Lett. 2014, 16, 5780; (g) Y. Liang, Y. Liang and N. Jiao, Org. Chem. Front., 2015, 2, 403; (h) J. González, L. A. López and R. Vicente, Chem. Commun. 2014, 50, 8536; (i) B. Song,
- L.-H. Li, X.-R. Song, Y.-F. Qiu, M.-J. Zhong, P.-X. Zhou and Y.-M. Liang, *Chem. Eur. J.* 2014, **20**, 5910; (j) R. Vicente, J. González, L. Riesgo, J. González and L. A. López, *Angew. Chem. Int. Ed.* 2012, **51**, 8063. (k) K. Alex, A. Tillack, N. Schwarz and M. Beller, *Angew. Chem. Int. Ed.*, 2008, **47**, 2304.

40