# Organic \& Biomolecular Chemistry 

## Accepted Manuscript



## Organic \& Biomolecular Chemistry



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

# Diastereoselective Synthesis of Substituted Hexahydrobenzo[de]isochromans and their Evaluation as Antileishmanial activity 

Anil K. Saikia, ${ }^{a}{ }^{a}$ Sabera Sultana, ${ }^{\text {a }}$ Ngangbam Renubala Devi, ${ }^{\text {a }}$ Manash J. Deka, ${ }^{\text {a }}$ Kartikeya Tiwari ${ }^{\text {b }}$ Vikash K. Dubey ${ }^{b^{\text {** }}}$<br>Received (in $X X X, X X X$ ) Xth $X X X X X X X X X$ 20XX, Accepted Xth XXXXXXXXX 20XX<br>DOI: 10.1039/b000000x<br>Hexahydrobenzo[de]isochromanes and hexahydropyrano[3,4,5-ij]isoquinolines can be efficiently synthesized via Friedel Crafts and oxa Pictet-Spengler reaction of acrylyl enol ethers mediated by triflic acid in good yields. The reaction is highly stereoselective. Two of the ${ }_{10}$ hexahydrobenzo $[d e]$ isochromanes are found to have moderate antileishmanial activity.

## Introduction

12
${ }_{13}$ Heterocyclic structures are considered as prominent features in 14 synthetic chemistry because of their existence in many natural ${ }_{15}$ products and biologically active molecules. Particularly, oxygen 16 heterocyclic compounds fused with aromatic ring systems such as ${ }_{17}$ chromane ${ }^{1}$ and isochromane ${ }^{2}$ derivatives are reported to be 18 biologically active. As for example excentricine, $N$-methyl ${ }_{19}$ excentricine isolated from Stephania excentrica and 20 stephalooxocanine isolated from Stephania cepharantha are ${ }_{21}$ acetylcholesterase inhibitors. ${ }^{3}$ Owing to their wide range of ${ }_{22}$ biological activities, synthesis of substituted isochromans have ${ }_{23}$ attracted the attention of the synthetic community and various 24 methods have been developed for the functionalization of ${ }_{25}$ isochromane core in recent years. ${ }^{4}$ Therefore, development of ${ }_{26}$ suitable methodology for the synthesis of substituted ${ }_{27}$ isochromans, in a single step, is most desirable. Friedel crafts ${ }^{5}$ 28 and Pictet-Spengler ${ }^{6}$ reactions are two important C-C bond ${ }_{29}$ forming reactions and are demonstrated in the synthesis of ${ }_{30}$ structurally diverse molecules. Herein, we wish to disclose a 3 methodology for the synthesis of 32 hexahydrobenzo $[d e]$ isochromane from aryl and alkene 3 substituted acrylyl enol ethers catalyzed by triflic acid. We
${ }_{4}$ Fig. 1 Biologically important hexahydropyrano[3,4,5${ }_{45}$ ij]isoquinoline derivatives

46
${ }_{47}$ envisioned that treatment of enol ether $\mathbf{1}$ with triflic acid would ${ }_{48}$ provide carbocation A, which after Friedel Crafts reaction will ${ }_{49}$ give enol ether B. The enol ether B will generate oxonium ion so under acidic condition to facilitate the oxa Pictet-Spengler type ${ }_{51}$ reaction to give the tricyclic compound 2 (Scheme 1). 52
${ }_{53}$ Scheme 1. Strategy for isochromane synthesis
54
55


61

## ${ }_{62}$ Results and discussion

63
${ }_{64}$ The reaction of (E)-ethyl 3-((5-methyl-2-phenylhex-4-en-1${ }_{65}$ yl)oxy)acrylate 1b with triflic acid gave ethyl 2-(( $\left.1 S^{*}, 3 a S^{*}\right)$ ${ }_{66}$ 3a,6,6-trimethyl-1,3,3a,4,5,6- hexahydrobenzo[de]isochroman-1${ }_{67} \mathrm{yl}$ )acetate 2b in $75 \%$ yield. The reaction was also performed with ${ }_{68}$ different Bronsted and Lewis acids and the results are shown in ${ }_{69}$ Table 1. The reaction with 1.0 equivalent of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \operatorname{In}(\mathrm{OTf})_{3}$, ${ }_{70} \mathrm{Sc}(\mathrm{OTf})_{2}$, and $\mathrm{InCl}_{3}$ produced no products, but starting material
recovered in all the cases. On the other hand, TMSOTf, $\mathrm{FeCl}_{3}$ and 2 TsOH gave inseparable mixture of products (Table 1). The scope of the reaction is investigated by employing different types of 4 substrates having aliphatic and aromatic substituents at different 5 positions of the acrylyl enol ethers. It was observed from the ${ }_{6}$ Table 1 that, substrates having electron donating groups on the aromatic ring gave products in good yield. The reaction is highly 8 diastereoselective and produced exclusively single diastereomers in most of the cases, and the stereochemistry of compounds is o determined by 2-D nuclear Overhauser effect (NOESY). The products $\mathbf{2 a}, \mathbf{2 h} \mathbf{- j}$, and $\mathbf{2 m}$ where there is no bridgehead methyl group, the hydrogen at $3 \mathrm{Ca}-\mathrm{H}$ and hydrogen at $\mathrm{C} 1-\mathrm{H}$ are in cis configuration, which is determined from the DEPT, HMQC and NOESY experiments of $\mathbf{2 i}$. It showed a clear characteristic NOE

Table 1 Optimization of the reaction condition

|  |  $\begin{gathered} \text { rea } \\ \hline \mathrm{CH}_{2} \mathrm{C} \\ \text { tim } \end{gathered}$ <br> 1b |  <br> 2b | $\mathrm{D}_{2} \mathrm{Et}$ |
| :---: | :---: | :---: | :---: |
| entry | reagent (equiv) | time/min | yield(\%) ${ }^{\text {b }}$ |
| 1 | $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0)$ | 30 | -- $^{\text {c }}$ |
| 2 | $\ln (\mathrm{OTf})_{3}(1.0)$ | 30 | -- ${ }_{24}$ |
| 3 | $\left.\mathrm{Sc}(\mathrm{OTf})_{2} 1.0\right)$ | 30 | --c 25 |
| 4 | $\mathrm{InCl}_{3}(1.0)$ | 30 | --c 26 |
| 5 | TMSOTf (1.0) | 30 | $\begin{array}{r} -\mathrm{d}^{27} \\ 28 \end{array}$ |
| 6 | $\mathrm{FeCl}_{3}(1.0)$ | 30 | --d ${ }_{29}$ |
| 7 | $p$-TsOH (1.0) | 30 | -- ${ }^{\text {d } 30}$ |
| 8 | TfOH (1.0) | 10 | 7532 |
| 9 | TfOH (10 mol\%) | 10 | $75^{33}$ |

 to isolated yield. ${ }^{\text {a }}$ No reaction, starting material was recovered. ${ }^{d}$ complex mixture.
correlation between the hydrogens $3 \mathrm{Ca}-\mathrm{H}$ and $\mathrm{C} 1-\mathrm{H}$ (see SI). Similarly, compounds $\mathbf{2 b}, \mathbf{2 k}$ and $\mathbf{2 o}$ having bridgehead 6 substituents show cis relationship between the substituents at C-1


2b

$\mathbf{2 i}$

$2 q$

Figure 2. NOE of compounds $2 \mathrm{~b}, \mathbf{2 d}, 2 \mathrm{i}$ and $2 q$

53 and C-3a positions. It was confirmed by NOE experiment of the 54 compound $\mathbf{2 b}$. On the other hand, stereochemistry of the products 5 having substitutions at $1,3,3 \mathrm{a}$ and 6 positions is determined by ${ }_{56}$ NOE experiments of $\mathbf{2 d}$. In case of mono substitution at 6${ }_{57}$ position of the products, diastereomeric mixture with different 58 ratios were obtained (entries 11-13, 15). The reaction is mild and 59 substituents such as ester, ether, and halides are not affected in 60 these reaction conditions.
${ }_{11}$ After successful study of this methodology to the synthesis of 62 hexahydrobenzo[de]isochromane, its application to the synthesis 63 of hexahydropyrano[3,4,5-ij]isoquinoline was explored. The ${ }_{64}$ starting material enol ethers $\mathbf{1 p - q}$ (Scheme 2) when treated with
${ }_{66}$ Table 2. Synthesis of Hexahydrobenzo[de]isochromane


This journal is © The Royal Society of Chemistry [year]

${ }^{\text {a }}$ Yields refer to isolated yield. The compounds were characterized by IR, NMR and Mass spectrometry. ${ }^{\mathrm{b}}$ Ratio is determined by ${ }^{1} \mathrm{H}$ NMR.

25 triflic acid under the same reaction conditions gave ethyl 226 ( $\left.7 R^{*}, 9 a S^{*}\right)$-3,3-dimethyl-1-tosyl-1,2,3,7,9,9a hexahydro${ }_{27}$ pyrano[3,4,5-ij]isoquinolin-7-yl)acetate $\mathbf{2 p}$ and ethyl2$28\left(\left(3 S^{*}, 7 R, 9 a S^{*}\right)\right.$-3-methyl-3-phenyl-1-tosyl-1,2,3,7,9,9a-
29 hexahydropyrano[3,4,5- $i j$ ]isoquinolin-7-yl)acetate 2q in $90 \%$ ${ }_{30}$ and $85 \%$ yields, respectively (Scheme 2). The stereochemistry of ${ }_{31} \mathbf{2 p}$ and $\mathbf{2 q}$ is determined by NOE experiment of $\mathbf{2 q}$ (see SI).

32
${ }_{33}$ Scheme 2. Synthesis of hexahydropyrano[3,4,5-ij]isoquinoline 34



47
48 The mechanism of formation of hexahydrobenzo[de]isochromans 49 can be explained as follows. The enol ether 1 reacts with acid to 50 form carbocation $\mathbf{A}$, which after Friedel-Crafts reaction and 51 subsequent elimination and addition of protons give 52 oxocarbenium ion $\mathbf{C}$. The oxocarbenium ion $\mathbf{C}$ is then attacked 53 by aromatic ring via Pictet-Spengler type reaction to form 54 hexahydrobenzo[de]isochromane 2 (Scheme 3 ).

55
${ }_{56}$ Scheme 3 Plausible mechanism of the reaction


65
${ }_{66}$ Evaluation of antileishmanial activity of $\mathbf{2 f}, \mathbf{2 j}$ and $\mathbf{2 p}$ 67
${ }_{68}$ Leishmania is a dimorphic protozoan parasite, which is ${ }_{69}$ responsible for self healing cutaneous leishmaniasis (CL) and life
70 claiming visceral leishmaniasis (VL), commonly known as kala-


Figure 3. Antileishmanial effect of compounds (A), $\mathbf{2 f}$ (B), $\mathbf{2 j}$ 74 and (C), $\mathbf{2 p}$ on Leishmania donovani promastigote cells. The $\mathrm{IC}_{50}$ 75 values were found out to be $72.5 \mu \mathrm{M}, 98.75 \mu \mathrm{M}$ and $440 \mu \mathrm{M}$, 76 respectively.

1 azar in India. ${ }^{7}$ Due to the high toxicity, high cost and drug 2 resistance of available drugs, there is a need of synthesizing and ${ }_{3}$ evaluation of antileishmanial activity of new compounds. ${ }^{8}$ We 4 have already studied the antileishmanial activity of few 5 oxabicyclo[3.3.1]nonanones and found promising result for one 6 of the compounds. ${ }^{9}$ Encouraged by these results we have 7 undertaken to screen some tricyclic oxygen and nitrogen 8 heterocycles fused with aromatic ring as these ring systems such 9 as chromane ${ }^{1}$ and isochromane ${ }^{2}$ derivatives are reported to be o biologically active. The three compounds were experimentally ${ }_{11}$ assessed for their anti- leishmanial activities. $\mathrm{IC}_{50}$ values for $\mathbf{2 f}$, ${ }_{12} \mathbf{2} \mathbf{j}$ and $\mathbf{2 p}$ were found out to be $72.5 \mu \mathrm{M}, 98.75 \mu \mathrm{M}$ and $440 \mu \mathrm{M}$ 3 respectively. The compounds $\mathbf{2 f}$ and $\mathbf{2 h}$ were found to be most ${ }_{4}$ effective against Leishmania donovani promastigotes with 15 moderate $\mathrm{IC}_{50}$ values, while compound $\mathbf{2 p}$ was found to be least ${ }_{16}$ effective with a high $\mathrm{IC}_{50}$ value (Figure 3). This signifies that ${ }_{17}$ Leishmania donovani promastigotes are more sensitive to 18 compounds $\mathbf{2 f}$ and $\mathbf{2 h}$ as compared to $\mathbf{2 p}$. However, the known 19 potential antileishmanials like mliltefosine has an $\mathrm{IC}_{50}$ value of ${ }_{20} 25 \mu \mathrm{M}$. Thus there is need for further improvement in the efficacy 21 of these compounds. This provides a novel chemical space for 22 further modification for development of highly effective 23 antileishmanial compounds.
${ }^{2} 4$

## Conclusions

26
${ }_{27}$ In conclusion, we have developed a mild and efficient method for 28 the synthesis of hexahydrobenzo[de]isochromane via Friedel ${ }_{29}$ Crafts and oxa Pictet-Spengler type reaction of enol ether in good 30 yields. The same methodology can be used for the synthesis of 31 hexahydropyrano[3,4,5-ij]isoquinoline. The reaction is highly 32 diastereoselective and compatible to functional groups such as 33 ester, halides and ether. This methodology would provide a tool 34 to synthesize tricyclic heterocyclic compounds having a 35 functional group at the bridgehead position. Two of the 36 hexahydrobenzo[de]isochromanes $\mathbf{2 f}, \mathbf{2 h}$ are found to have 37 antileishmanial activity with $\mathrm{IC}_{50}$ values $72.5 \mu \mathrm{M}$ and $98.75 \mu \mathrm{M}$, 38 respectively.

## ${ }_{40}$ Experimental section

41
${ }_{42}$ General Information: General Information: All the reagents ${ }_{43}$ were of reagent grade (AR grade) and were used as purchased 44 without further purification. Silica gel (60-120 mesh size) was 45 used for column chromatography. Reactions were monitored by
${ }_{46} \mathrm{TLC}$ on silica gel GF254 ( 0.25 mm ). Melting points were
${ }_{47}$ recorded in an open capillary tube and are uncorrected. Fourier 48 transform-infra red (FT-IR) spectra were recorded as neat liquid ${ }_{49}$ or KBr pellets. NMR spectra were recorded in $\mathrm{CDCl}_{3}$ with 50 tetramethylsilane as the internal standard for ${ }^{1} \mathrm{H}(600 \mathrm{MHz}, 400$ $\left.{ }_{51} \mathrm{MHz}\right)$ or ${ }^{13} \mathrm{C}(150 \mathrm{MHz}, 100 \mathrm{MHz}) \mathrm{NMR}$. Chemical shifts ( $\delta$ ) are 52 reported in ppm and spin-spin coupling constants $(\mathrm{J})$ are given in ${ }_{53} \mathrm{~Hz}$. HRMS spectra were recorded using Q-TOF mass ${ }_{54}$ spectrometer. The starting material enol ethers $\mathbf{1 a - q}$ is prepared 55 as per literature procedure (see SI).

56
${ }_{57}$ ( $\boldsymbol{E}$ )-Ethyl 3-((5-methyl-2-phenylhex-4-en-1-yl)oxy)acrylate
58 (1a)
${ }_{59}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.50; yield 225 mg , ${ }_{60} 78 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, ${ }_{61} 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.52(\mathrm{~m}$, ${ }_{62} 1 \mathrm{H}$ ), 3.01 (quintet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), ${ }_{63} 4.14$ (q, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J$ $\left.{ }_{64}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 1 \mathrm{H}) 7.28-$ ${ }_{65} 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.{ }_{66} \mathrm{CDCl} 3\right) \delta 14.5,17.9,25.9,31.1,45.5,59.9,74.2,96.6,121.3$, ${ }_{67} 126.9,128.0,128.6,134.0,141.8,162.5,168.0$; IR (KBr, neat) ${ }_{68}$ 2980, 2928, 1712, 1632, 1454, 1319, 1220, 1136, 1041, 770, 692 ${ }_{69} \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 289.1798$ found 70289.1799.

71
72 (E)-Ethyl 3-((2,5-dimethyl-2-phenylhex-4-en-1-yl)oxy)acrylate 73 (1b)
74
${ }_{75}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc, 24:1) 0.50; yield 242 mg , ${ }_{76} 80 \%$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, ${ }_{77} 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2$ $\left.{ }_{78} \mathrm{H}\right), 3.86(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J$ $\left.{ }_{79}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1$ $\left.{ }_{80} \mathrm{H}\right), 7.22(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{~d}, J=12.6$ $\left.{ }_{81} \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 14.6,18.2,22.9,26.1$, ${ }_{82} 37.2,42.4,60.0,78.3,96.5,119.5,126.4,126.5,128.5,134.6$, 83 144.9, 162.8, 168.0; IR (KBr, neat) 2977, 1709, 1625, 1444, ${ }_{84}$ 1326, 1220, 1133, 1048, 760, $685 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for ${ }_{85} \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 303.1955$ found 303.1956.

86
87 ( $\boldsymbol{E}$ )-Ethyl 3-((2,5-dimethyl-1,2-diphenylhex-4-en-1$88 \mathbf{y l}) \mathbf{o x y}$ )acrylate (diastereomeric mixture, 4:3, 1c)
89
${ }_{90}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc, 24:1) 0.50 ; yield 306 mg , $181 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18 \quad(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, ${ }_{92}$ major), 1.98 ( $\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.27 ( $\mathrm{s}, 3 \mathrm{H}$, major), ${ }_{3} 1.29(\mathrm{~s}, 3 \mathrm{H}$, minor), 1.56 ( $\mathrm{s}, 3 \mathrm{H}$, major), 1.57 ( $\mathrm{s}, 3 \mathrm{H}$, minor), ${ }_{94} 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{dd}, J=14.4$ and $8.4 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 2.61 $95(\mathrm{dd}, J=14.4$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}$, major), 4.01-4.11 (m, 2 H ), 4.81 (t, ${ }_{96} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.88 ( s , ${ }_{97} 1 \mathrm{H}$, major), $4.95(\mathrm{~s}, 1 \mathrm{H}$, minor), $5.11(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, 98 major), 5.15 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ ${ }_{99} \mathrm{H}$, minor), 6.81 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, major), 7.08-7.26 (m, 8 H ), $7.39(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), $7.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.3,14.5,18.3,18.4$, $18.8,20.9,26.0,26.1,36.3,36.4,46.5,47.0,59.8,59.9,91.0$, ${ }_{103} 91.6,98.4,98.6,119.8,120.2,126.5,126.5,127.6,127.7,127.8$, ${ }_{104} 127.9,128.0,128.1,128.18,128.2,128.4,133.8,134.3,135.6$, ${ }_{105} 136.8,142.8,161.8,162.0,168.0$; IR (KBr, neat) 2981, 2929, 106 1712, 1642, 1446, 1368, 1220, 1130, 1045, $779 \mathrm{~cm}^{-1}$; HRMS 107 (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 379.2268$ found 379.2265 .
108
109 (E)-Ethyl 3-((1-(4-chlorophenyl)-2,5-dimethyl-2-phenylhex-4${ }_{110}$ en-1-yl)oxy)acrylate ( diastereomeric mixture, 3:2, 1d) 111
112 Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.50; yield 293 mg , ${ }_{113} 75 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, 114 major), $1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), $1.26(\mathrm{~s}, 3 \mathrm{H}$, major), 1.27 115 (s, 3 H , minor), 1.57 ( s, 3 H , minor), 1.58 (s, 3 H , major), 1.60 (s, 1163 H , minor), 1.61 (s, 3 H , major), 2.49 (dd, $J=14.4$ and $8.4 \mathrm{~Hz}, 2$


#### Abstract

H, minor), 2.60 (dd, $J=14.4$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H}$, major), 4.02-4.12 $2(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.84 (s, 1 H , major), ${ }_{3} 4.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.92 ( $\mathrm{s}, 1 \mathrm{H}$, minor), $5.09(\mathrm{~d}, J=$ ${ }_{4} 12.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.13 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor ), 6.59 (d, ${ }_{5} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, major), 7.06 (d, ${ }_{6} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.10-7.14 (m, 2 H), 7.19-7.27 (m, 1 H), 7.37 (d, ${ }_{7} J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $7.48\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, minor); ${ }^{13} \mathrm{C}$ ${ }_{8}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 14.5,18.4,18.5,21.1,26.0,26.1$, ${ }_{9} 36.1,36.5,46.5,47.0,59.9,60.1,90.2,90.8,98.8,98.9,119.6$, ${ }_{10} 119.9,126.7,126.8,127.8,127.9,127.9,128.0,128.1,128.3$, ${ }_{11} 129.2,129.7$, $133.8,134.0,134.6,135.4,142.2,142.3,161.5$, 12 161.7, 167.8; IR (KBr, neat) 2980, 2927, 1709, 1628, 1624, 1445, ${ }_{13}$ 1377, 1220, 1130, 1046, 760, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for ${ }_{14} \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClO}_{3}(\mathrm{M}+\mathrm{H})^{+} 413.1878$ found 413.1861 .


 1516 ( $\boldsymbol{E}$ )-Ethyl 3-((2,5-dimethyl-2-phenyl-1-(p-tolyl)hex-4-en-1${ }_{17} \mathbf{y l}$ )oxy)acrylate (diasteromeric mixture, 4:3, 1e) 18
${ }_{19}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 294 mg , ${ }_{20} 75 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, ${ }_{21}$ minor), 1.21 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, major), 1.28 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 221.30 (s, 3 H , major), 1.57 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 1.58 ( $\mathrm{s}, 3 \mathrm{H}$, major), ${ }_{23} 1.61(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}$, major), $2.29(\mathrm{~s}, 3 \mathrm{H}$, minor), 2.46 (dd, ${ }_{24} J=14.4$ and $8.4 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 2.61-2.63 (m, 2 H , major), 25 4.04-4.10 (m, 2 H ), $4.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.87(\mathrm{~s}, 1 \mathrm{H}$, 26 minor), $4.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.93 ( $\mathrm{s}, 1 \mathrm{H}$, major ), ${ }_{27} 5.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.16(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, 28 major), 6.61 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, major), 6.71 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, 29 minor), 6.91 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, 30 major), 7.15 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.20-7.36 (m, 1 H ), 7.38 (d, $J=$ ${ }_{31} 12.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $7.49\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, minor); ${ }^{13} \mathrm{C}$ 32 NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,18.3,18.4,20.9,21.2,21.3$, ${ }_{33} 26.0,26.1,36.3,36.4,46.5,47.0,59.8,59.8,91.0,91.6,98.3$, ${ }_{34} 98.4,119.9,120.2,126.4,126.5,127.8,127.9,128.0,128.1$, $35128.2,128.25,128.3,128.4,128.5,133.7,133.8,134.2,137.5$, ${ }_{36} 137.9,142.8,142.9,161.9,162.2,168.0$; IR (KBr, neat) 2978, ${ }_{37} 1707,1622,1444,1220,1130,1038,854,758 \mathrm{~cm}^{-1}$; HRMS (ESI) 38 calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 393.2424$ found 393.2425.

40 (E)-Ethyl 3-((1-(4-methoxyphenyl)-2,5-dimethyl-2-phenylhex${ }_{41}$ 4-en-1-yl)oxy)acrylate (diasteromeric mixture, 3:2, 1f) 42
${ }_{43}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 238 mg , $4470 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, ${ }_{45}$ major), $1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.26 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 1.29 46 ( $\mathrm{s}, 3 \mathrm{H}$, major), 1.55 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 1.56 ( $\mathrm{s}, 3 \mathrm{H}$, major), 1.60 (s, ${ }_{47} 3 \mathrm{H}$, major), 1.61 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 2.44 (dd, $J=15.0$ and $8.4 \mathrm{~Hz}, 2$ ${ }_{48} \mathrm{H}$, minor), 2.56-2.66 (m, 2 H , major), 3.73 ( $\mathrm{s}, 3 \mathrm{H}$, major), 3.76 49 (s, 3 H, minor), 4.03-4.10 (m, 2 H ), $4.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ${ }_{50}$ major), $4.83(\mathrm{~s}, 1 \mathrm{H}$, minor), $4.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), ${ }_{51} 4.90(\mathrm{~s}, 1 \mathrm{H}$, major), $5.10(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.15 (d, $J$ $5_{52}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $6.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, major), $6.71(\mathrm{~d}$, ${ }_{53} J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, minor), $6.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.26 (m, $\left.{ }_{54} 3 \mathrm{H}\right), 7.35-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor $), 7.48$ ${ }_{55}\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $5614.5,18.2,18.3,18.4,18.9,20.9,26.0,26.1,36.3,36.3,46.6$, ${ }_{57} 47.0,55.1,55.2,59.7,59.8,90.7,91.3,98.3,98.4,112.9,113.1$, $58119.8,120.2,126.4,126.5,127.8,127.9,128.0,128.1,128.3$,
${ }_{59} 128.8,129.1,129.2,129.6,133.7,134.2,142.7,142.8,159.1$, ${ }_{60} 159.4,161.9,162.1,168.0$; IR (KBr, neat) 2980, 2930, 1708, ${ }_{61} 1641,1622,1514,1445,1376,1220,1176,1037,830,763,685$ ${ }_{62} \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 431.2193$ ${ }_{63}$ found 431.2180.
${ }_{65}$ (E)-Ethyl 3-((1-(3-methoxyphenyl)-2,5-dimethyl-2-phenylhex${ }_{66}$ 4-en-1-yl)oxy)acrylate (diasteromeric mixture, 3:2, 1g)

67
${ }_{68}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield $199 \mathrm{mg}, 49$ ${ }_{69} \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.57(\mathrm{~s}, 6$ ${ }_{70} \mathrm{H}$, major), 1.63 ( $\mathrm{s}, 6 \mathrm{H}$, minor), 2.47 (dd, $J=16.0$ and $9.6 \mathrm{~Hz}, 1$ $\left.{ }_{71} \mathrm{H}\right), 2.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}$, major), $3.56(\mathrm{~s}, 3 \mathrm{H}$, 72 minor), 4.04-4.17 (m, 2 H), $4.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.84 ${ }_{73}(\mathrm{~s}, 1 \mathrm{H}$, minor), $4.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $4.92(\mathrm{~s}, 1 \mathrm{H}$, 74 major), 5.15 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.16 (d, $J=12.0 \mathrm{~Hz}, 1$ ${ }_{75} \mathrm{H}$, major), 6.10 (s, 1 H , major), 6.17 ( $\mathrm{s}, 1 \mathrm{H}$, minor), 6.38 ( $\mathrm{d}, J=$ ${ }_{76} 8.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.51 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 6.69 (d, $J=$ $\left.{ }_{77} 8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.75(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $78(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 7.15 ( d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 7.16${ }_{79} 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $7.50(\mathrm{~d}, J=12 \mathrm{~Hz}$, ${ }_{80} 1 \mathrm{H}$, major); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.4,14.5,18.3$, ${ }_{81} 18.4,18.9,21.2,26.1,26.2,30.0,36.5,47.0,58.2,59.9,60.0$, ${ }_{82} 91.0,91.4,98.5,98.6,113.1,113.4,114.0,114.3,120.1,120.4$, $83128.0,128.2,128.4,133.9,134.4,138.3,142.8,142.8,158.8$, ${ }_{84}$ 159.0, 161.8, 162.1, 168.0. IR (KBr, neat) 2975, 2948, 1706, ${ }_{85} 1650,1620,1511,1425,1370,1210,1100,1031,755,690 \mathrm{~cm}^{-1}$; ${ }_{86}$ HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 431.2193$ found ${ }_{87} 431.2195$.
${ }_{92}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 275 mg , ${ }_{93} 71 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, ${ }_{94} 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.26$ (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.45 95 (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.95 (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.92-3.94 $96(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ ${ }_{97}(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4$ $\left.{ }_{98} \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(150 \mathrm{MHz}$, $\left.{ }_{99} \mathrm{CDCl}_{3}\right) \delta 14.5,18.0,25.9,31.0,45.1,60.0,73.9,96.9,120.8$, ${ }_{100} 120.9,129.8,131.7,134.4,140.8,162.3,167.9$; IR (KBr, neat) ${ }_{101} 2977,2929,1709,1625,1489,1327,1220,1137,1048,821,758$, $102685 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 103389.0723 found 389.0726 . 104

105 ( $\boldsymbol{E}$ )-Ethyl 3-((5-methyl-2-(p-tolyl)hex-4-en-1-yl)oxy)acrylate 106 (1i)
${ }_{107}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 211 mg , $10870 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.26$ ( $\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1091.57 (s, 3 H ), $1.66(\mathrm{~s}, 3 \mathrm{H}), 2.29$ (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (s, 1103 H ), 2.48 (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.96 (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1113.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{t}, J=$ $1127.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1137.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $114150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,18.0,21.2,25.9,31.1,45.1,59.9,74.4$, 115 96.6, 121.4, 127.8, 129.3, 133.8, 136.5, 138.7, 162.6, 168.0; IR $116(\mathrm{KBr}$, neat) $2977,2928,1710,1625,1447,1325,1219$, , 1136,
${ }_{1}$ 1048, 816, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 2303.1955 found 303.1952 .

4 (E)-Ethyl 3-((2-(4-methoxyphenyl)-5-methylhex-4-en-1$\left.{ }_{5} \mathbf{y l}\right) \mathbf{o x y}$ )acrylate (1j)
${ }_{7}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 239 mg , $875 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), ${ }_{9} 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.26$ (quint, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.46$ 10 (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.95 (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.79(\mathrm{~s}, 3$ $\left.{ }_{11} \mathrm{H}\right), 3.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{t}, J$ $\left.{ }_{12}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.17(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2$ $\left.{ }_{13} \mathrm{H}\right), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ${ }_{14} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.5,18.0,25.9,31.2,44.7,55.4$, ${ }_{15} 59.9,74.5,96.6,114.1,121.4,128.9,133.7,133.8,158.6,162.6$, 16 168.0; IR (KBr, neat) 2928, 1710, 1625, 1463, 1325, 1220, 1136, ${ }_{17}$ 1040, 829, $772 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$ 18319.1904 found 319.1907 .

19
20 ( $\boldsymbol{E})$-Ethyl 3-(( $\boldsymbol{E}$ )-2-methyl-2,5-diphenylpent-4-en-1${ }_{21} \mathbf{y l}$ )oxy)acrylate (1k)
22
${ }_{23}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc $24: 1$ ) 0.48 ; yield 245 mg , ${ }^{4} 70 \%$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=14.0$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=$ 14.0 and $6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.93(\mathrm{dd}, J=12.8$ and $9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.15$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (quint, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 14.5,22.9,42.3,42.5,60.0,78.4$, 96.7, 125.7, 126.3, 126.5, 126.8, 127.4, 128.7, 133.5, 137.5, 144.3, 162.7, 168.0; IR (KBr, neat) 2975, 2928, 1707, 1629, 1455, 1399, 1210, 1132, 1040, 964, 770, $680 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 351.1955$ found 351.1950.

36 ( $\boldsymbol{E}$ )-Ethyl 3-(( $(\boldsymbol{E})$-1-(4-chlorophenyl)-2-methyl-2,5-diphenylpent-4-en-1-yl)oxy)acrylate (diastereomerc ratio 2:1, 38 11)
39
${ }_{40}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 313 mg , ${ }_{41} 68 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 1.18-2.26(\mathrm{~m}, 3 \mathrm{H}$, major \& minor), 421.32 (s, 3 H , major), 1.34 ( $\mathrm{s}, 3 \mathrm{H}$, minor), 2.56 ( dd, $J=14.0$ and ${ }_{43} 9.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 2.71 (dd, $J=14.4$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), ${ }_{44} 2.95$ (ddd, $J=13.6,5.6$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}$, major \& minor), 4.02${ }_{45} 4.13$ ( $\mathrm{m}, 2 \mathrm{H}$, major \& minor), 4.87 ( $\mathrm{s}, 1 \mathrm{H}$, minor), 4.98 (s, 1 H , ${ }_{46}$ major), 5.12 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.16(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1$ ${ }_{47} \mathrm{H}$, major), 5.78-5.87 (m, 1 H , major), 5.89-5.95 ( $\mathrm{m}, 1 \mathrm{H}$, minor), ${ }_{48} 6.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, major \& minor), $6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ ${ }_{49} \mathrm{H}$, major), $6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 7.07-7.19 (m, 12 H , ${ }_{50}$ major \& minor), $7.39(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $7.49(\mathrm{~d}, J=$ ${ }_{51} 12.4 \mathrm{~Hz}, 1 \mathrm{H}$, major); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,18.6$, ${ }_{52} 21.3,41.3,42.1,46.4,46.9,59.9,60.0,90.4,90.7,98.9$, 99.1, ${ }_{53} 125.8,126.1,126.2,126.3,126.9,127.0,127.2$, 127.3, 127.9, ${ }_{54}$ 128.0, 128.1, 128.4, 128.5, 128.6, 129.2, 129.7, 133.3, 133.7, ${ }_{55} 133.9,135.1,137.6,141.8,142.0,161.3,161.6,167.7$; IR (KBr, 56 neat) $2979,1707,1642,1492,1321,1220,1131,1048,761,686$ $57 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{ClO}_{3}(\mathrm{M}+\mathrm{H})^{+} 461.1878$ ${ }_{58}$ found 461.1885 .
${ }_{60}(\boldsymbol{E})$-Ethyl 3-(( $(\boldsymbol{E})$-2-(4-bromophenyl)-5-phenylpent-4-en-1$\left.{ }_{61} \mathbf{~ y l}\right)$ oxy)acrylate (1m)
62
${ }_{63}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 298 mg , ${ }_{64} 72 \% ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, ${ }_{65} 2.54$ (quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.67 (quint, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.11 ${ }_{66}$ (quint, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=$ ${ }_{67} 7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $5.18(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (quint, $J=7.6 \mathrm{~Hz}$, $\left.{ }_{8} 1 \mathrm{H}\right), 6.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-$ ${ }_{69} 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ ${ }_{70}(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,35.9$, 145.0, 60.0, 73.8, 97.1, 121.1, 126.3, 126.7, 127.5, 128.7, 129.8, 2 131.9, 132.8, 137.3, 140.1, 162.2, 167.8; IR (KBr, neat) 2979, ${ }_{3} 2933,1706,1631,1485,1325,1219,1136,1043,963,771,683$ ${ }_{74} \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} 415.0903$ 5 found 415.0900.

7 (E)-Ethyl 3-((4,7-dimethyl-4-phenyloct-6-en-3-yl)oxy)acrylate 8 (diaestereomeric ratio 3:1, 1n)
79
${ }_{80}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 270 mg , ${ }^{3} 182 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, ${ }_{82}$ major), $0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.24-1.30(m, 6 H$)$, 83 1.31-1.41 (m, 2H), $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=7.2$ ${ }_{4} \mathrm{~Hz}, 2 \mathrm{H}$, major), $2.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $3.52(\mathrm{~d}, J=9.6$ ${ }_{85} \mathrm{~Hz}, 1 \mathrm{H}$, minor), $3.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.16(\mathrm{q}, J=7.2$ $\left.{ }_{86} \mathrm{~Hz}, 2 \mathrm{H}\right), 4.71(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.85(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1$ ${ }_{87} \mathrm{H}$, minor), $5.33(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.38$ (m, 5 H , major, 8 minor), $7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor) $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ${ }^{\text {s }}$ major) ; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 11.4,11.9,14.6,18.25$, 18.3, 19.5, 23.8, 24.7, 26.0, 26.1, 36.6, 37.8, 46.8, 59.8, 81.3, 95.5, 96.5, 119.8, 120.8, 126.2, 126.4, 127.2, 127.6, 128.3, 128.4, 134.1, 144.2, 165.3, 168.7; IR (KBr, neat) 2974, 2926, 1706, ${ }_{3} 1635,1455,1378,1233,1133,1045,814,701 \mathrm{~cm}^{-1}$; HRMS (ESI) ${ }_{44}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 331.2268$ found 331.2257.

95
96 (E)-Ethyl 3-(( $(E)$-2-methyl-2-phenylhex-4-en-1-
${ }_{97} \mathbf{y l}$ )oxy)acrylate (10)
98
Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 196 mg , $68 \%$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=13.6$ and $2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=13.6$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.11-$ $5.16(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.55(\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.24 (m, 1 H$), 7.25-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.6,18.2,22.8,41.9,42.1$, 59.9, 78.4, 96.5, 126.2, 126.5, 126.5, 128.5, 128.9, 144.7, 162.8, 168.1; IR (KBr, neat) 2926, 1708, 1630, 1454, 1323, 1205, 1131, 1042, $964,749,701 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+$ $\mathrm{H})^{+} 28^{9} .1798$ found 289.1790 .
(E)-Ethyl

3-(2-(4-methyl-N-(2-
${ }_{3}$ methylallyl)phenylsulfonamido)-2-phenylethoxy)acrylate (1p) 114
${ }_{5}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 17:3) 0.40; yield 244 mg , $55 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}, \quad J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$,
11.56 ( s, 3 H ), 2.45 ( s, 3 H ), 3.35 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.84 (d, $J$ $\left.{ }_{2}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.14-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.32-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~s}$, $\left.{ }_{3} 1 \mathrm{H}\right), 4.85(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 2 \mathrm{H})$, ${ }_{4} 7.24-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4$ ${ }_{5} \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,20.0,21.7,51.5$, ${ }_{6} 59.4,60.1,69.6,97.4,114.7,127.7,128.6,128.7,128.8,129.7$, 7 134.7, 137.9, 142.3, 143.7, 161.4, 167.7; IR (KBr, neat) 2920, ${ }_{8}$ 1725, 1632, 1443, 1219, 1039, 928, 772, $680 \mathrm{~cm}^{-1}$; HRMS (ESI) ${ }_{9}$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 444.1839$ found 444.1839. ${ }^{10}$
${ }^{11}($ E $)$-Ethyl 3 -(2-(4-methyl- $N$-(2-
${ }_{12}$ phenylallyl)phenylsulfonamido)-2-phenylethoxy)acrylate (1q) 13
${ }_{14}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 17:3) 0.40; yield 288 mg , ${ }_{15} 57 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $162.44(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.2$ and ${ }_{17} 3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.15 (q, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.28$ (dd, $J=10.2$ and 1.8 $\left.{ }_{18} \mathrm{~Hz}, 1 \mathrm{H}\right), 4.39(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{19} 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $\left.{ }_{20} 7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.20-7.32(\mathrm{~m}, 12 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ${ }_{21}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.6,21.7,49.6,59.2,60.1,69.9$, 22 97.4, 116.8, 126.8, 127.8, 128.3, 128.6 (2C), 128.7 (2C), 129.7, ${ }_{23} 134.6,137.6,138.7,143.7,144.5,161.3,167.7$; IR (KBr, neat) ${ }_{24}$ 2931, 1707, 1632, 1332, 1145, 1042, $732 \mathrm{~cm}^{-1}$; HRMS (ESI) ${ }_{25}$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 506.1996$ found 506.2000. 26
${ }_{27}$ General Procedure for the Synthesis of cyclized product 2a-q: 28
${ }_{29}$ To a solution of enol ether ( 1.0 mmol ) in dry dichloromethane ( 1 ${ }_{30} \mathrm{~mL}$ ) at $0{ }^{\circ} \mathrm{C}$ was added trifluoromethanesulfonic acid ( $10 \mathrm{~mol} \%$ ) ${ }_{31}$ under a $\mathrm{N}_{2}$ atmosphere.. The reaction mixture was stirred for 10 ${ }_{32}$ minutes. The progress of the reaction was monitored by TLC 33 with ethyl acetate and hexane (EtOAc/hexane 24:1) as eluents. ${ }_{34}$ After the completion of the reaction, the solvent was removed on ${ }_{35}$ a rotary evaporator and quenched with a saturated solution of ${ }_{36} \mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The product was extracted with ethyl acetate ${ }_{37}(10 \mathrm{~mL})$ and then washed with brine solution ( 3 mL ). The organic ${ }_{38}$ layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give the crude ${ }_{39}$ product, which was purified by column chromatography over ${ }_{40}$ silica gel giving corresponding products $\mathbf{2 a} \mathbf{- q}$.

45 Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 219 mg , ${ }_{46} 76 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2$ $\left.{ }_{47} \mathrm{~Hz}, 3 \mathrm{H}\right), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.77(\mathrm{~m}, 2 \mathrm{H})$, $482.72(\mathrm{dd}, J=15.2$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.2$ and 8.0 Hz , $\left.{ }_{49} 1 \mathrm{H}\right), 2.92(\mathrm{dd}, J=12.0$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=11.2$ and $\left.{ }_{50} 10.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{dd}, J=10.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=$ $\left.{ }_{51} 7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{52} 6.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 ${ }_{53} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.4,21.6,31.9 .32 .8,34.5,36.6,38.3,43.3$, ${ }_{54} 60.5,69.6,74.1,122.8,125.2,126.2,133.8,135.1,145.8,171.3$; ${ }_{55}$ IR (KBr, neat) 2926, 2858, 1735, 1445, 1373, 1220, 1180, 1029, ${ }_{56} 855,761 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$ ${ }_{57} 289.1798$ found 289.1799.

## ${ }_{59}$ Ethyl <br> 2-((1S $\left.{ }^{*}, \mathbf{3 a S}{ }^{*}\right)$-3a,6,6-trimethyl-1,3,3a,4,5,6- <br> ${ }_{60}$ hexahydrobenzo[de]isochroman-1-yl)acetate (2b)


${ }_{62}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 227 mg , ${ }_{63} 75 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2$ ${ }_{64} \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.33(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{dt}, J=12.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40$ $65(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{dt}, J=13.2$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dt}, J=13.8$ ${ }_{66}$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.11(\mathrm{dt}, J=14.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J$ ${ }_{67}=15.0$ and $\left.9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94(\mathrm{dd}, J=15.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ ${ }_{68}(\mathrm{~d}, J=10.8,1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.8,1 \mathrm{H}), 4.20-4.24(\mathrm{~m}, 2 \mathrm{H})$, ${ }_{69} 5.32(\mathrm{dd}, J=9.6$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 ${ }_{71} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.4,27.1,28.9,32.4,33.9,34.0,34.1,34.6$, 72 43.7, 60.8, 74.1, 75.3, 122.2, 125.9, 126.4, 134.6, 138.0, 144.3, ${ }_{73}$ 171.7; IR (KBr, neat) 2961, 2866, 1737, 1472, 1286, 1220, 1159, ${ }_{74}$ 1097, 1032, $765 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$ ${ }_{55} 303.1955$ found 303.1955 .
${ }_{77}$ Ethyl 2-( $\left(1 S^{*}, \mathbf{3 R}\right.$ *, $\left.3 a S^{*}\right)$-3a,6,6-trimethyl-3-phenyl${ }_{78} \mathbf{1 , 3 , 3 a , 4 , 5 , 6}$-hexahydrobenzo[de]iso-chroman-1-yl)acetate (2c) 79
${ }_{80}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 246 mg , ${ }_{81} 65 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$, ${ }_{82} 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{dt}, J=15.0$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ ${ }_{83}(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dt}, J=13.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dt}, J=13.8$ and $\left.{ }_{84} 2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.92(\mathrm{dt}, J=14.4$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=$ ${ }_{85} 14.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.98 (dd, $J=14.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.16-$ ${ }_{86} 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=$ ${ }_{87} 9.6$ and $\left.4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8$ $\left.{ }_{88} \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J$ $\left.{ }_{89}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.2,22.4,29.7$, ${ }_{90}$ 32.4. 33.8, 34.1, 34.3, 37.7, 44.3, 60.8, 74.7, 87.2, 122.4, 126.2, ${ }_{91} 126.5,127.5,128.2,134.7,135.6,138.8,139.0,144.7,171.6$; IR ${ }_{92}$ (KBr, neat) 2960, 1717, 1622, 1447, 1369, 1220, 1123, 1094, ${ }_{93} 1029,854,165,703 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{3}(\mathrm{M}+$ $\left.{ }_{94} \mathrm{H}\right)^{+} 379.2268$ found 379.2267.
${ }_{96}$ Ethyl 2-(( $\left.1 S^{*}, \mathbf{3 R} R^{*}, 3 a S^{*}\right)$-3-(4-chlorophenyl)-3a,6,6-trimethyl${ }_{97} \mathbf{1 , 3 , 3 a}, 4,5,6$-hexahydro-benzo[de]isochroman-1-yl)acetate (2d) 98
99 Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 313 mg , ${ }^{100} 76 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, ${ }_{101} 1.26-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dt}, J=13.8$ and $3.0 \mathrm{~Hz}, 1$ $102 \mathrm{H}), 1.65(\mathrm{dt}, J=13.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=13.8$ and 2.4 ${ }_{03} \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.91 (dd, $J=14.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.98 (dd, $J=14.4$ o4 and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~s}$, $\left.{ }_{0} 1 \mathrm{H}\right), 5.49(\mathrm{dd}, J=9.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1$ ${ }_{106} \mathrm{H}$ ), $7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 $\left.{ }_{107} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.5,22.3,29.7,32.4 .33 .8,34.0,34.3,37.6$, ios $44.2,60.9,74.8,82.9,122.4,126.3,126.6,127.7,129.5,133.3$, 109 134.5, 137.3, 138.7, 144.7, 171.5; IR (KBr, neat) 2929, 1734, ${ }_{110} 1448,1375,1220,1168,1088,1028,930,771,680 \mathrm{~cm}^{-1}$; HRMS 111 (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClO}_{3}(\mathrm{M}+\mathrm{H})^{+} 413.1878$ found 413.1884 .

${ }_{113}$ Ethyl 2-((1S $\left.S^{*}, 3 R^{*}, 3 a S^{*}\right)$-3a,6,6-trimethyl-3-(p-tolyl)114 1,3,3a,4,5,6-hexahydro-benzo[de]iso-chroman-1-yl)acetate 115 (2e)

Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 267 mg , ${ }_{2} 68 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, ${ }_{3} 1.25-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dt}, J=10.8$ and $3.0 \mathrm{~Hz}, 1$ $\left.{ }_{4} \mathrm{H}\right), 1.66(\mathrm{dt}, J=12.0$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=13.8$ and 1.8 $\left.{ }_{5} \mathrm{~Hz}, 1 \mathrm{H}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J=14.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ $6(\mathrm{dd}, J=14.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.25(\mathrm{~m}$, $\left.{ }_{7} 1 \mathrm{H}\right), 4.48(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=9.0$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $\left.{ }_{8}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1$ $\left.{ }_{9} \mathrm{H}\right), 7.25-7.26(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5$, 21.3, 22.4, 29.7, 32.4. 33.9, 34.1, 34.3, 37.7, 44.3, 60.8, 74.7, 183.3, 122.4, 126.2, 126.5, 128.1, 128.2, 134.7, 135.9, 137.1, 139.1, 144.7, 171.6; IR (KBr, neat) 2980, 2924, 1709, 1623, 1445, 1376, 1220, 1130, 1046, 944, 760, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) ${ }_{4}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 393.2424$ found 393.2427.

Ethyl 2-((1S*,3R*,3aS*)-3-(4-methoxyphenyl)-3a,6,6-trimethyl-1,3,3a,4,5,6-hexahydro-benzo[de]isochroman-1yl)acetate (2f)

19
${ }_{20}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 306 mg , $75 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, 1.23-1.29 (m, 4 H$), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dt}, J=13.8$ and $3.6 \mathrm{~Hz}, 1$ H), $1.64(\mathrm{dt}, J=13.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=13.8$ and 3.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{dd}, J=10.8$ and $7.2 \mathrm{~Hz}, 1$ H), $4.24(\mathrm{dd}, J=10.8$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J$ $=9.0$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,22.3$, 29.7, 32.4. 33.9, 34.0, 34.3, 37.7, 44.32, 55.42, 60.8, 74.7, 83.1, $113.0,122.4,126.2,126.5,129.2,131.1,134.7,139.1,144.7$, 159.1, 171.6; IR (KBr, neat) 2960, 1735, 1613, 1514, 1370, 1220, 1123, 1035, 930, 759, $685 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 431.2193$ found 431.2186 .

Ethyl 2-((1S*, 3R*,3aS*)-3-(3-methoxyphenyl)-3a,6,67 trimethyl-1,3,3a,4,5,6-hexahydrobenzo[de]isochromen-1$\mathrm{yl})$ acetate ( $\mathbf{2 g}$ )

Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 224 mg , $55 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ) $\delta 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3$ H), 1.23-1.29 (m, 4 H$), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dt}, J=14.0$ and 4.0 $\mathrm{Hz}, 1 \mathrm{H}), 1.64(\mathrm{dt}, J=14.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=14.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=18.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J$ $=12.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.47$ $(\mathrm{s}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=12.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.3,22.9,29.9,32.2,33.9,34.0$, $34.1,37.7,44.3,55.5,60.8,74.8,83.4,112.7,114.3,120.9$, $122.4,126.2,126.5,128.4,134.5,139.5,140.5,144.7,159.1$, 171.6. IR (KBr, neat) 2952, 1729, 1610, 1530, 1365, 1218, 1120, 1030, 925, 765, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NaO}_{4}(\mathrm{M}$ $+\mathrm{Na})^{+} 431.2193$ found 431.2197 .

Ethyl 2-((1S*,3aR*)-8-bromo-6,6-dimethyl-1,3,3a,4,5,6-hexahydrobenzo[de]isochroman-1-yl)acetate (2h)
${ }_{59}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 260 mg , ${ }_{60} 71 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.29(\mathrm{~m}$, $\left.{ }_{61} 4 \mathrm{H}\right), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.76(\mathrm{~m}, 2 \mathrm{H}), 2.71$ ${ }_{62}(\mathrm{dd}, J=15.6$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=$ $\left.{ }_{63} 10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.02(\mathrm{dd}, J=10.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.20(\mathrm{~m}$, $\left.{ }_{64} 2 \mathrm{H}\right), 5.23(\mathrm{dd}, J=9.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.0(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $\left.{ }_{65} 1.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4,21.7,32.1$, ${ }_{66} 33.0,35.1,36.7,38.4,43.3,60.9,69.8,73.9,120.5,125.1,128.7$, ${ }_{67} 133.2,137.9,147.8,171.2$; IR (KBr, neat) 2961, 1736, 1445, ${ }_{68} 1371,1220,1108,1028,931,855,761,685 \mathrm{~cm}^{-1}$; HRMS (ESI) 69 calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NaBrO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 389 . .0723$ found 389.0722. 70

## Ethyl 2-((1S*,3aR*)-6,6,8-trimethyl-1,3,3a,4,5,6-

 ${ }_{2}$ hexahydrobenzo[de]isochroman-1-yl)acetate (2i)73
${ }_{74}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 187 mg , ${ }_{55} 62 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.28(\mathrm{~m}$, $\left.{ }_{76} 4 \mathrm{H}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.30$ $77(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=15.0$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.88(\mathrm{~m}, 2 \mathrm{H})$, $783.32(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=10.8$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{79} 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz} 2 \mathrm{H}), 5.28(\mathrm{dd}, J=10.2$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ ${ }_{80}(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4,21.6$, ${ }_{81} 22.0,32.3,33.1,34.7,36.7,38.7,43.7,60.8,70.0,74.4,122.9$, ${ }_{82} 126.3,131.2,135.4,135.8,145.0,171.7$; IR (KBr, neat) 2925, ${ }_{83} 2858,1736,1612,1465,1374,1220,1168,1109,1031,856,772$ ${ }_{84} \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 303.1955$ found ${ }_{85} 303.1955$.

7 Ethyl 2-((1S*,3aR*)-8-methoxy-6,6-dimethyl-1,3,3a,4,5,688 hexahydro-benzo[de]isochroman-1-yl)acetate (2j)
89
${ }_{90}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48 ; yield 235 mg , $74 \% ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.29(\mathrm{~m}$, $\left.{ }_{22} 4 \mathrm{H}\right), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.72$ $93(\mathrm{t}, J=15.0$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.86(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=10.2$ $\left.{ }_{4} \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $4.00(\mathrm{dd}, J=10.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ ${ }_{5}(\mathrm{q}, J=7.2 \mathrm{~Hz} 2 \mathrm{H}), 5.26(\mathrm{dd}, J=9.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J$ $\left.{ }_{6}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 150 MHz , $\left.{ }_{7} \mathrm{CDCl} 3\right) \delta 14.4,22.0,32.3,33.0,35.1,36.4,38.7,43.6,55.4,60.9$, 70.2, 74.4, 107.4, 111.6, 126.7, 136.8, 146.8, 158.2, 171.6; IR (KBr, neat) 2959, 2858, 1736, 1605, 1471, 1372, 1220, 1174, 1112, 1063, 854, $765 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{M}$ $1+\mathrm{H})^{+} 319.1904$ found 319.1906 .
102
Ethyl 2-((1S*,3aS*)-3a-methyl-6-phenyl-1,3,3a,4,5,6${ }^{4}$ hexahydrobenzo[de]isochroman-1-yl)acetate (diastereomeric mixture, 3:1, 2k)
106
${ }_{107}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 245 mg , $10870 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.22-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}$, 1093 H , minor), $1.49(\mathrm{~s}, 3 \mathrm{H}$, major), 1.52-1.59 (m, 2 H$), 1.81-1.86$ 110 ( $\mathrm{m}, 1 \mathrm{H}$, minor), 2.13-2.20 (m, 1 H , major), 2.56-2.61 (m, 1 H , 111 minor), 2.81-2.89 (m, 1 H , major), 2.94-3.00 (m, 1 H ), 3.55 (d, J ${ }_{112}=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, major $), 3.59(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor $), 3.72($ ${ }_{113} \mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), 3.74 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $1144.06(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.26(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{dd}, J=9.0$ 115 and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.37 (dd, $J=9.6$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}$, 116 minor), $6.69-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1$


#### Abstract

1 H), 6.97-7.04 (m, 1 H$), 7.15-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.29-7.33 (m, 1 H$)$; ${ }_{2}^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.4,14.7,26.9,27.5,27.6,27.8$, ${ }_{3} 29.0,32.0,33.7,43.3,43.4,43.5,46.7,59.5,60.9,74.2,75.3$, ${ }_{4} 75.6,122.5,122.6,126.1,126.3,126.4,128.5,128.7,128.7$, $5128.8,128.9,134.7,137.9,138.1,139.5,148.0,148.6,171.7$; IR ${ }_{6}(\mathrm{KBr}$, neat $) 2926,1736,1449,1220,1096,772,702 \mathrm{~cm}-1$; ${ }_{7}$ HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 351.1955$ found 8351.1953.

9 ${ }_{10}$ Ethyl 2-(( $\left.1 S^{*}, 3 R^{*}, 3 a S^{*}\right)$-3-(4-chlorophenyl)-3a-methyl-6${ }_{11}$ phenyl-1,3,3a,4,5,6-hexahydro-benzo[de]isochroman-1$\left.{ }_{12} \mathbf{y l}\right)$ acetate (diastereomerc mixture, 4:1, 21) 13 ${ }_{14}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 345 mg , ${ }_{15} 75 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.20-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.32-$ ${ }_{16} 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.12$ ${ }_{17}(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.06(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.26(\mathrm{~m}, 3$ $\left.{ }_{18} \mathrm{H}\right), 4.55(\mathrm{~s}, 1 \mathrm{H}$, major), $4.60(\mathrm{~s}, 1 \mathrm{H}$, minor), 5.53 (dd, $J=9.6$ 19 and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $5.57(\mathrm{dd}, J=9.0$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$, 20 minor), 6.77 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), $6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ${ }_{21}$ minor), 6.93 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.97 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, 22 minor), 7.04-7.10 (m, 1 H$), 7.18-7.33(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 ${ }_{23} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,22.2,22.9,27.1,28.0,29.0,29.9,32.1$, ${ }_{24} 32.8,37.4,44.1,46.6,60.9,74.8,74,9,82.9,83.1,122.8,122.9$, ${ }_{25} 126.4,126.5,127.7,127.8,128.5,128.7,128.8,129.3,129.5$, ${ }_{26}$ 129.9, 133.4, 134.6, 137.2, 138.6, 140.1, 147.9, 171.5; IR (KBr, ${ }_{27}$ neat) $2979,1733,1444,1371,1220,1036,931,854,761,685 \mathrm{~cm}^{-}$ ${ }_{28}{ }^{1}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{ClO}_{3}(\mathrm{M}+\mathrm{H})^{+} 461.1878$ found


 29 461.1883.30
${ }_{31}$ Ethyl 2-((1S $\left.S^{*}, 3 a R^{*}\right)$-8-bromo-6-phenyl-1,3,3a,4,5,632 hexahydrobenzo[de]isochroman-1-yl)acetate (diastereomeric 3 mixture, 8:1, 2m)

34
${ }_{35}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 294 mg , $3671 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.22-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.59-$ $371.63(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.83$ $38(\mathrm{~m}, 1 \mathrm{H}), 2.87-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{dt}, J=11.2$ and $10.4 \mathrm{~Hz}, 1$ $\left.{ }_{39} \mathrm{H}\right), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.24(\mathrm{~m}, 2 \mathrm{H})$, ${ }_{40}$ 5.18-5.20 (m, 1 H , minor), 5.26-5.33 (m, 1 H , major), 6.87-6.96 ${ }_{41}(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.08(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 2$ $\left.{ }_{42} \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.3,14.4,22.9,25.1,32.2$, ${ }_{43} 33.6,34.0,35.4,43.2,43.8,61.0,69.8,69.9,73.8,73.9,120.3$, ${ }_{44} 120.5,125.6,125.64,126.5,126.8,128.6,128.7,128.9,129.0$, ${ }_{45} 131.0,131.3,131.6,134.4,137.8,137.9,139.5,140.7,146.6$, ${ }_{46}$ 147.2, 171.1, 171.2; IR (KBr, neat) 2929, 1736, 1619, 1447, ${ }_{47}$ 1372, 1220, 1163, 1094, 768, $685 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for ${ }_{48} \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} 415.0903$ found 415.0894 .

49
${ }_{50}$ Ethyl 2-((1S $\left.S^{*}, 3 R^{*}, 3 a S^{*}\right)$-3-ethyl-3a,6,6-trimethyl-1,3,3a,4,5,6${ }_{51}$ hexahydro-benzo[de]isochroman-1-yl)acetate (2n)
52
${ }_{53}$ Colourless oil, $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 24:1) 0.48; yield 241 mg , ${ }_{54} 73 \%$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, ${ }_{55} 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-$ $561.35(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.55(\mathrm{~m}, 1 \mathrm{H})$, $571.58(\mathrm{dt}, J=13.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dt}, J=13.8$ and 3.0 Hz , $\left.{ }_{58} 1 \mathrm{H}\right), 2.06(\mathrm{dt}, J=13.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=15.0$ and
$\left.{ }_{59} 9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.93(\mathrm{dd}, J=15.6$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=$ ${ }_{60} 12.0$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.16-4.30 (m, 2 H), $5.19(\mathrm{dd}, J=9.6$ and $\left.{ }_{61} 3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{62} 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.7$, $6314.3,20.6,28.5,32.2,33.9,34.3,34.6,37.3,43.5,60.8,61.5$, ${ }_{64} 68.4,82.3,121.8,125.8,125.9,134.7,136.2,145.1,171.8$; IR ${ }_{65}\left(\mathrm{KBr}\right.$, neat) $2927,1738,1637,1372,1220,1127,1038,772 \mathrm{~cm}^{-1}$; ${ }_{66}$ HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 331.2268$ found 67331.2261 .
${ }_{69}$ Ethyl 2-((1S*, 3aS*)-3a,6-dimethyl-1,3,3a,4,5,6${ }_{70}$ hexahydrobenzo[de]isochroman-1-yl)acetate (diastereomerc ${ }_{71}$ ratio 8:5, 20)

72
${ }_{73}$ Colourless oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc, 24:1) 0.48 ; yield 164 mg , ${ }_{74} 57 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, 75 major), 1.24 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.27-39 (m, 6 H ), 1.41${ }_{76} 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.652(\mathrm{~m}, 1 \mathrm{H}$, major), 77 1.77-1.84 (m 1 H , minor), 1.98-2.05 (m, 1 H , major), 2.25-2.33 $78(\mathrm{~m}, 1 \mathrm{H}$, minor), $2.65(\mathrm{dt}, J=15.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 2.80${ }_{79} 3.00(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.05(\mathrm{~m}, 1 \mathrm{H}$, minor), 3.45-3.70(2 H), 4.17${ }_{80} 4.26(\mathrm{~m}, 2 \mathrm{H}), 5.28-5.32(\mathrm{~m}, 1 \mathrm{H}$, minor), $5.47-5.51(\mathrm{~m}, 1 \mathrm{H}$, ${ }_{81}$ major), 6.81-6.86 (m, 1 H$), 7.04-7.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.{ }_{82} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4,19.7,25.1,30.9,33.6,35.4,36.2,41.7$, ${ }_{83} 42.1,43.1,43.8,47.1,61.0,69.7,69.8,72.7,73.8,73.9,120.3$, ${ }_{84} 120.5,126.4,126.7,128.6,128.7,134.5,134.8,137.8,137.9$, ${ }_{85}$ 146.6, 147.2, 171.1; IR (KBr, neat) 2927, 2855, 1734, 1621, ${ }_{86} 1451,1372,1286,1163,1095,1028,805,848,702 \mathrm{~cm}^{-1}$; HRMS 87 (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 289.1798$ found 289.1795.

88
${ }_{89}$ Ethyl 2-((7R*,9aS*)-3,3-dimethyl-1-tosyl-1,2,3,7,9,9a${ }_{90}$ hexahydropyrano[3,4,5-ij]isoquinolin-7-yl)acetate (2p) 91
${ }_{92}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 17:3) 0.48 ; yield 399 mg , ${ }_{93} 90 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2$
$\left.{ }_{94} \mathrm{~Hz}, 3 \mathrm{H}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{dd}, J=15.6$ and 8.8
$\left.{ }_{95} \mathrm{~Hz}, 1 \mathrm{H}\right), 2.80(\mathrm{dd}, J=15.2$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=12.4$
$\left.{ }_{96} \mathrm{~Hz}, 1 \mathrm{H}\right), 3.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }_{97} 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=9.6$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$
$98(\mathrm{dd}, J=10.4$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=8.8$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }_{99}$ 6.87-6.89 (m, 1 H$), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, ${ }_{100} 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4$, ${ }_{101} 21.7,27.3,28.6,36.0,43.1,53.9,57.0,61.0,67.5,74.0,122.9$, 102 123.9, 127.4, 127.6, 130.1, 135.5, 136.7, 143.4, 143.8, 171.1; IR ${ }_{103}(\mathrm{KBr}$, neat) 2971, 1734, 1447, 1337, 1220, 1160, 1103, 1036, 104 927, 771, $679 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+$ $\left.{ }_{105} \mathrm{H}\right)^{+} 444.1839$ found 444.1839 .
106
107 Ethyl 2-((3S*, 7R*,9aS*)-3-methyl-3-phenyl-1-tosyl108 1,2,3,7,9,9a-hexahydropyrano[3,4,5-ij]isoquinolin-7-yl)acetate 109 (2q)
110
${ }_{111}$ Pale yellow oil; $\mathrm{R}_{\mathrm{f}}$ (hexane/ EtOAc 17:3) 0.48; yield 429 mg , ${ }_{112} 85 \%$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$, $1132.40(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=15.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=$ 11415.6 and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=$ $\left.{ }_{115} 10.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2$ $\left.{ }_{116} \mathrm{H}\right), 4.57(\mathrm{dd}, J=10.2$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=10.2$ and 4.2
$\left.{ }_{1} \mathrm{~Hz}, 1 \mathrm{H}\right), 5.32(\mathrm{dd}, J=8.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $21 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $\left.{ }_{3} 8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, ${ }_{4} 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.4$, 5 21.7, 25.4, 43.2, 44.2, 53.2, 56.7, 61.0, 67.2, 74.0, 123.2, 126.8, 6 126.9, 127.3, 127.4, 127.8, 128.4, 129.9, 130.8, 135.5, 137.7, 7 142.6, 143.7, 145.8, 171.1; IR (KBr, neat) 2925, 2854, 1735. \& $1624,1468,1332,1158,1090,1026,830,767 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 506.1996$ found 506.1994 .

## Antileishmanial activity assay

13
${ }_{14}$ Leishmania donovani (MHOM/IN/2010/BHU 1081) strain was 5 obtained from Dr. Shyam Sundar, Banaras Hindu University, ${ }_{6}$ Varanasi and cultivated in M199 liquid media supplemented with $15 \%$ heat-inactivated fetal bovine serum (FBS), 100 U penicillin and $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$ streptomycin was used for assessing the antileishmanial activity of $\mathbf{2 f}, \mathbf{2} \mathbf{j}$ and $\mathbf{2 p}$. The anti-leishmanial effect 20 was checked using methods reported earlier. ${ }^{9 \mathrm{a}, 10,11}$ MTT [ 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was employed to check the antileishmanial efficacy of the compounds. Exponential phase promastigote cells $\left(2.5 \times 10^{6}\right)$ 2 were seeded in a 96 well plate and treated with varying 5 concentrations of compounds and incubated at $25^{\circ} \mathrm{C}$ for 24 hours. Cells were centrifuged and resuspended in MTT $(0.5 \mathrm{mg} / \mathrm{ml})$ and 27 again incubated at $25^{\circ} \mathrm{C}$ for 4 hours. Cells were again centrifuged 28 and DMSO was added to dissolve the formazon pellet and ${ }_{29}$ absorbance taken at 570 nm . Miltefosine $\left(\mathrm{IC}_{50}-25 \mu \mathrm{M}\right)$, a potent
30 antileishmanial compound was used as a positive control.

## Acknowledgements

34

35 Authors are grateful to Council of Scientific and Industrial ${ }_{36}$ Research (CSIR), New Delhi, (Grant No. 02/0159/13/EMR-II) 37 and Centre of Excellence (CoE), MHRD, New Delhi, for 38 financial support. Authors are also thankful to Central Instrument ${ }_{39}$ Facility (CIF) of IIT Guwahati for NMR and HRMS facilities. SS 40 and NRD are grateful to MHRD, New Delhi for their fellowship, ${ }_{41}$ respectively.

## ${ }_{42}$ Notes and references

$43{ }^{a}$ Department of Chemistry, Indian Institute of Technology Guwaqhati, 44 Guwahati 781039, Assam, India. Fax: +91 361269 0762; Tel: +91 361
45258 2316; E-mail: asaikia@iitg.ernet.in
$46{ }^{b}$ Department of Bioscience and Bioengineering, Indian Institute of
47 Technology Guwaqhati, Guwahati 781039, Assam, India. Tel: +91 361
48258 2203; E-mail: vdubey@iitg.ernet.in
$49 \dagger$ Electronic Supplementary Information (ESI) available: [details of any 50 supplementary information available should be included here]. See ${ }_{51}$ DOI: $10.1039 / \mathrm{b} 000000 \mathrm{x} /$
52
531 (a) I. B. Masesane and Z. Y. Desta, Beilstein J. Org. Chem. 2012, 8, 2166-2175; (b) E. Corradini, P. Fogila, P . Giansanti, R. Gubbiotti, R. 55 Samperi and A. Lagana, Nat. Prod. Res. 2011, 25, 469-495; (c) R . 56 Saxena,. V. Chandra, M. Manohar, K. Hajela, U. Debnath, Y. S. 57 Prabhakar, K. S. Saini, R. Konwar, S. Kumar, K. Megu, B. G. Roy 58 and A. Dwivedi, PLoS One 2013, 8, e66246.

[^0]
[^0]:    592 (a) E. C. Taylor and A. Weissberger, The Chemistry of Heterocyclic 50 Compounds: John Wiley \& Sons: New Work, 1981, 1990, 1995, Vol. 61 38, Parts 1-3; (b) P. S. Charifson, Drugs Future 1989, 14, 1179; (c) B. ${ }_{62}$ Hoffman, S. J. Cho, W. Zheng, S. Wyrick, D. E. Nichols, R. B. 63 Mailman and A. Tropsha, J. Med. Chem. 1999, 42, 3217-3226; (d) M. 64 P DeNinno, R. Schoenleber, R. J. Perner, L. Lijewski, K. E. Asin, D. 65 R.Britton, R. MacKenzie and J.W. Kebabian, J. Med. Chem. 1991, 34, 6 2561-2569; (e) A. Evidente, B. Punzo, A. Andolifi, A. Berestetskiy and A. Motta, J. Agric. Food. Chem. 2009, 57, 6656-6660.

    683 (a) J. Z Deng, S. -X. Zhao and Z.-Ch. Miao, Nat. Prod. Lett. 1993, 2, 283-286. (b) J. Z. Deng and S.-X. Zhao, J. Nat. Prod. 1997, 60, 294295. (c) D. A .Bianchi, G. S. Hirschmann, C. Theoduloz, A.B. J. Bracca and T. S. Kaufman, Bioorg. Med. Chem. Lett. 2005, 15, 2711-2715.
    4 (a) M. Sickert, H. Weinstabl, B. Peters, X. Hou and M. Lautens, Angew. Chem. Int. Eds. 2014, 53, 5147-5151; (b) W. Muramatsu, K. Nakano and C.-J. Li, Org. Lett. 2013, 15, 3650-3653; (c) Z. Meng, S. Sun, H. Yuan, H. Lou and L. Liu, Angew. Chem. Int. Ed. Engl. 2014, 53, 543-547; (d) W. Muramatsu and K. Nakano, Org. Lett. 2014, 16, 2042-2045; (e) X. Pan, Q. Hu, W. Chen, X. Liu, B. Sun, Z. Huang, Z. Zeng, L. Wang, D. Zhao, M. Ji, L. Liu, and H. Lou, Tetrahedron 2014, 70, 3447-3451; (f) C. Huo, M. Wu, F. Chen, X. Jia, Y. Yuan and H. Xie, Chem. Comuun. 2015, 51, 4708-4711; (g) W. Muramatsu and K. Nakano,. Org. Lett. 2015, 17, 1549-1552.

    5 (a) P. H. Gore, Chem. Rev. 1955, 55, 229-281; (b) K. W. Anderson and 3 J. J Tepe, Tetrahedron 2002, 58, 8475-8481; (c) M. H. Sarvari and H. 4 Sharghi, Synthesis 2004, 2165-2168; (d) F. Effenberger and G. Epple, Angew. Chem. Int. Ed. Engl. 1972, 11, 300-301; (e) L. Boiaryna, M. S Azizi, A. E1. Bouakher,; B. Picard, C. Taillier, M. Othman, M. 87 Trabelsi-Ayadi and V. Dalla, Org. Lett. 2015, 17, 2130-2133; (f) K. Indukuri, R. Unnava, M. J. Deka and A. K . Saikia, J. Org. Chem. 2013, 78, 10629-10641; (g) U. C. Reddy, S. Bondalapati and A. K. Saikia, J. Org. Chem. 2009, 74, 2605-2608.
    16 (a) E. D. Cox and J. M. Cook, Chem. Rev. 1995, 95, 1797-1842; (b) E. L. Larghi and T. S. Kaufman, Synthesis 2006, 187-220; (c) J. Stöckigt, A.P. Antonchick, F.-R.Wu, H. Waldmann, Angew. Chem. Int. Ed. Engl. 2011, 50, 8538-8564; (d) E. L. Larghi and T. S. Kaufman, Eur. J. Org. Chem. 2011, 5195-5231.
    67 (a) H. W. Murray, J. D. Berman, C. R. Davies, N. G. Saravia, Lancet 2005, 366, 1561-1577.
    88 S. I. Croft, S. Sundar and A. H. Fairlamb, Clin. Microbiol. Rev. 2006, 19, 111-126.
    90 (a) P. Saudagar, P. Saha, A.K. Saikia and V. K. Dubey, Eur. J. Pharma. Biopharma, 2013, 85, 569-577. (b) P. Saudagar, L. Mudavath, P. Saha, A. K. Saikia, S. Sundar, and V. K. Dubey, Lett. Drug Design. Discovery, 2014, 11, 937-939.
    10 A. K. Shukla, S. Patra and V. K. Dubey, Mol Cell Biochem. 2011, 352, 261-270.
    11 M. Das, P. Saudagar, S. Sundar and V. K. Dubey, FEBS J. 2013, 280, 4807-4815.

