Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

An Efficient Route to Regioselective Functionalization of Benzo[b]thiophenes via Palladium-Catalyzed Decarboxylative Heck Coupling Reactions: Insights from Experiment and Computation †

Daoshan Yang,[‡]Yuxia, Liu,[‡]Pengfei Sun, Ning Zhang, Wei Wei, Mingyang, Sun, Guang Chen, Siwei Bi, and Hua Wang*

s Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Pd-catalyzed decarboxylative Heck-type couplings of 3chlorobenzo[b]thiophene-2-carboxylic acids with styrenes have been developed as an effecient strategy for the 10 construction of functionalized benzo[b]thiophenes. Theoretical analysis shows that the AgCl generated during the reaction, instead of Pd, π -coordinates with the carboxyl O atom, making easily the rate-determining CO₂ dissociation. The divergent reactivities of the Cl-substituted and H-15 substituted 3-benzo[b]thiophene-2-carboxylic acids are

- mainly due to the presence of the Cl substituent, which reduces the adjacent π - π interplay, thereby significantly contributing to the decarboxylation. Therefore, the presence of both AgCl and the Cl substituent are of key importance in 20 ensuring the occurence of the reaction under the given
- conditions.

Introduction

Seeking efficient methods for the construction of C-C bonds has always been a hot topic in the field of synthetic chemistry.¹

- ²⁵ Undoubtedly, seeking more mild, practical and selective methods for the formation of C-C bonds has stimulated an impressive number of research interest. Typically, there are four methods for the construction of C-C bonds including nucleophilic substitution, nucleophilic additions, Friedel-Crafts-type reactions and Diels-
- ³⁰ Alder reactions.² It is worth noting that, over 40 years ago, Mizorokil and Heck independently discovered the Pd(0)catalyzed arylation and vinylation of aryl halides.³ This developed methodology, known worldwide as the Heck reaction or Mizoroki-Heck reaction, has been emerging as a versatile and
- ³⁵ powerful tool for the C-C bond formation. Excitingly, because of its tremendous achievements in the C-C bonds formation, it won the 2010 Nobel Prize in chemistry.⁴ However, the substrates involved are mainly focus on aryl/vinyl halides or triflates in the Heck-type couplings.⁵ Therefore, the development of alternative ⁴⁰ methods for this elegant transformation has become a challenging

but very attractive target to pursue. Recently, exploring efficient, and highly selectivemethods for the direct functionalization of C-

- ⁵⁰ H bonds has become a hot topic in organic chemistry. Thus, the direct alkenylation of C(sp2)–H bonds should be more economical and practical. In 2009, Gaunt's group developed a mild and efficient aerobic palladium(II) catalyst system for C2 or C3 alkenylation of pyrroles (Scheme 1a).⁶ In the same year,
- ⁵⁵ Carretero and co-workers reported an efficient palladiumcatalyzed regioselecitve C-2 alkenylation of indoles and pyrroles via C-H bond activation (Scheme 1b).⁷ In 2012, Liu et al. demonstrated a convenient and direct palladium-catalyzed olefination of furans and thiopenes by using allylic esters and ⁶⁰ ethers (Scheme 1c).⁸ In 2013, Iitsuka et al. developed an rhodium/silver catalyst system for C3-alkenylation of thiophene and furan-2-carboxylic acids as well as 2-acetylthiophene with acrylates and styrenes (Scheme 1d).⁹ On the other hand,
- carboxylic acid are common and important building blocks, and 65 they are easily prepared from readily available chemicals. As a successful attempt, decarboxylative cross-coupling strategy has been introduced by Gooßen,¹⁰ Myers,¹¹ and other groups¹² as a reliable tool in the C-C bonds formation. Furthermore, decarboxylative cross-coupling reactions containing DFT studies 70 have also been reported.¹³ In 2002, Myers and co-workers initially developed a Pd-catalyzed decarboxylative Heck-type approach for the formation of vinyl arenes.¹⁴ Since then, this new kind of Heck-type coupling reactions have been extensively studied. Nevertheless, investigations on the synthetic strategy 75 using heteroarene carboxylic acids as the coupling partners are limited.¹⁵ Considering the important application of heteroarene compounds in natural products, pharmaceuticals, and material science, it remains a challenge and a high desire to explore new

Heck-type coupling scope for heteroarene carboxylic acids. The benzo[*b*]thiophene skeleton is a key core structure widely found in natural products and drug candidates, and especially promises the extensive applications in material chemistry.¹⁶ Developing novel, efficient and practical methods for the formation or derivatization of benzo[*b*]thiophene motifs is thereby of high ongoing interest.¹⁷ In the present work, we report a new and efficient approach to regioselective alkenylation of benzo[*b*]thiophenes via the palladium-catalyzed decarboxylative Heck-type reactions.

^a The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China. E-mail: huawang afnu@126.com

 ^{45 †} Electronic Supplementary Information (ESI) available: Experimental details. See DOI: 10.1039/b000000x/

⁴Authors with equal contribution.

This journal is © The Royal Society of Chemistry [year]

Scheme 1 Strategies for the direct C2 or C3 alkenylation of heterocycles

5 Results and Discussion

C

Table1Palladium-catalyzedcouplingreactionof3-chlorobenzo[b]thiophene-2-carboxylicacid(1a)with styrene(2a)leadingto(E)-3-chloro-2-styrylbenzo[b]thiophene:optimization of conditions.^a

Ģ

Solvent, temp.					
Entry	Cat.	Base	Solvent	Temp. [°C]	Yield [%] ^b
1	PdCl ₂	Ag ₂ CO ₃	DMSO	110	0
2	PdCl ₂	Ag_2CO_3	DMF	110	20
3	PdCl ₂	Ag_2CO_3	Toluene	110	5
4	PdCl ₂	Ag_2CO_3	DMSO/DMF(1:20)	110	86
5	$Pd(OAc)_2$	Ag_2CO_3	DMSO/DMF(1:20)	110	48
6	Pd(dba) ₂	Ag_2CO_3	DMSO/DMF(1:20)	110	11
7		Ag ₂ CO ₃	DMSO/DMF(1:20)	110	0
8	PdCl ₂	Ag ₂ O	DMSO/DMF(1:20)	110	37
9	PdCl ₂	AgOAc	DMSO/DMF(1:20)	110	33
10	PdCl ₂	Na ₂ CO ₃	DMSO/DMF(1:20)	110	6
11	PdCl ₂	K ₂ CO ₃	DMSO/DMF(1:20)	110	12
12	PdCl ₂	Ag ₂ CO ₃	DMSO/DMF(1:20)	80	52

 a Reaction conditions: 3-chlorobenzo[*b*]thiophene-2-carboxylic acid (1a) (0.25 mmol), styrene (2a) (0.325 mmol), catalyst (0.0125 mmol), base (0.75mmol), solvent (1.0 mL), reaction time (24 h) under nitrogen atmosphere. ^{*b*} Isolated yield.

In order to identify the optimum reaction conditions, the reaction of 3-chlorobenzo[*b*]thiophene-2-carboxylic acid (1a) and styrene (2a) was chosen as the model reaction. As shown in Table 1, four solvents, DMSO, DMF, toluene and DMSO/DMF were investigated at 110 °C by using 0.05 equiv of PdCl₂ as the catalyst, 3 equiv. of Ag₂CO₃ as the base , and 1 mL DMSO/DMF

- ²⁰ $(v_1/v_2=1:20)$ gave the highest yield (20%) (entries 1-4). The common palladium catalysts, PdCl₂, Pd(OAc)₂ and Pd(dba)₂ were tested in DMSO/DMF ($v_1/v_2=1:20$) (entries 4-6) using Ag₂CO₃ as the base at 110 °C, and PdCl₂ was found to be the most effective catalyst in this reaction. Furthermore, the reaction could not ²⁵ proceed in the absence of the catalyst (entry 7). We attempted to
- use different bases (compare entries 4, 7-10), and Ag_2CO_3 was superior to the other bases (entry 4). Moreover, further optimization indicated that 110 °C was more suitable for this

- transformation (entries 4, 11 and 12). After the optimization ³⁰ process of bases, solvents, catalysts and temperature, the benzo[*b*]thiophene derivatives were synthesized under the optimized conditions: 5 mol % PdCl₂ as the catalyst, 3 equiv. of Ag₂CO₃ as the base, and 1 mL DMSO/DMF (v_1/v_2 =1:20) as the solvent at 110°C under nitrogen atmosphere.
- 35 Table 2 Palladium-catalyzed decarboxylative Heck-type couplings of benzo[b]thiophene-2-carboxylic acids (1) and styrenes (2) ^{a, b,}

2 | *Journal Name*, [year], **[vol]**, 00–00

40 (1.5 mmol), H₂O (2 ml), 110°C, 2h, under air atmosphere. ^b Isolated yield.

With the optimized reaction conditions in hand, the scope and

generality of the palladium-catalyzed decarboxylative

alkenylation of 3-chlorobenzo[b]thiophene-2-carboxylic acids

was explored, with the results summarized in Table 2. Generally,

45 3-chlorobenzo[b]thiophene-2-carboxylic acids and styrenes that

bear electron-donating or withdrawing groups on the aryl rings

were compatible with this reaction, and the desired products were

obtained in moderate to good yields (Table 2, 3a-3q).

Additionally, 2-vinylnaphthalene was also used in this

92% and 89% yield. The decarboxylative cross-coupling

reactions could tolerate some functional groups including methyl

50 transformation to give the corresponding product 3d and 3k in

(Table 2, **3b**, **3c**, **3f**, **3h**, **3i**, **3j**, **3m**, **3n** and **3q**), methoxy (Table 2, **3t**), C-Cl bond (Table 2, **3a-3q**), and C-Br bond (Table 2, **3i**, **3p**, **3q**), which could be employed for further modification. Notably, strong electron-withdrawing groups such as nitro and trifluoromethyl were also tolerated in the present transformation, and afforded good yields in 77% and 91% respectively. Although aromatic olefins displayed good reactivity, unfortunately, aliphatic and acrylate ones were poor substrates (Table 2, 3v and 3w). Besides that, (*E*)-prop-1-

- ¹⁰ enylbenzene was not a suitable substrate in the present reaction (Table 2, 3x). Interestingly, 3-bromobenzo[*b*]thiophene-2carboxylic acid also afforded the corresponding product (*E*)-3bromo-2-(2-(naphthalen-2-yl)vinyl)benzo[*b*]thiophene in 44% yield (Table 2, **3u**). It should be pointed out that the above
- ¹⁵ protocol can be well applied to 3-Cl substituted benzo[b]thiophene-2-carboxylic acids but not 3-H substituted ones (Table 2, **3y** and **3z**).

To gain deeper insight into the reaction mechanisms for Pdcatalyzed decarboxylative couplings of styrenes with Cl- and H-20 substituted substrates, **A**, and H-**A**, respectively, DFT

- ²⁰ substituted substitutes, A, and H-A, respectively, DFT calculations were carried out using the M06 methods.¹⁸ In this section, we presented a mechanism, which featured the involvement of a AgCl molecule generated during the reaction process. And all other possible pathways were collected into ²⁵ Supporting Information.
- For the Cl-substituted system, the formation of product **P** (i.e. product **3** in Table 2) involves four key steps in sequence (Figure 1): metalation-depronation ($\mathbf{A} \rightarrow \mathbf{IM2}$), decarboxylation ($\mathbf{IM2} \rightarrow \mathbf{IM7}$), olefin insertion ($\mathbf{IM7} \rightarrow \mathbf{IM9}$), and β -hydride
- ²⁰ elimination (**IM9** \rightarrow **P**). In details, as shown in Figure 1, upon the Pd center coordination with hydroxyl O in **A**, the concerted metalation-depronation was initiated via four-membered transition state **TS1**, affording **IM2** with the exclusion of HCl. The excluded HCl is believed to immediately react with Ag₂CO₃
- to give AgCl, which assisted the following processes. It needed to be pointed out here that, once formed, AgCl would smoothly achieve the metalation-depronation process with a relative free energy of only 17.3 kcal/mol (**IM11** in Figure 2), which is substantially lower than that for the transformation $A \rightarrow IM2$

Figure 1 Calculated free energy profiles in DMF solution for the formation of P from the reaction of the Cl-substituted substrate A ⁴⁵ with styrene as well as schematic structures of intermediates and transition states involved (L =DMSO). The relative free energies

are given in kcal/mol. a $TS2^{\, \prime}$ is a decarboxylation transition state with no involvement of AgCl, corresponding to TS2

Therefore, in the following catalytic cycles, the metalation-50 depronation route with the involvement of AgCl in Figure 2 $(A \rightarrow IM11)$ was considered to be the favored one. The decarboxylation step started with the coordination of AgCl to the carbonyl O atom of IM2 and forms IM3. To facilitate the subsequent π -coordination of Pd with C1=C2 double bond, IM3 55 isomerized into slightly more stable IM4 by rotating the Pd-O single bond along the C3-O(Pd) σ -bond. The tandem dissociation and association of one DMSO ligand is then followed to get an energy-rich intermediate IM6. From IM6, the reaction underwent the dissociation of CO_2 through **TS2** with an energy demand of 60 3.7 kcal/mol and generated a 16-electron species IM7, which lay 5.6 kcal/mol below the reaction entrance. After the dissociation of one DMSO ligand from IM7, the styrene occupied the site left by the dissociated DMSO ligand to give slightly more stable species IM8, with the π -coordination of the phenylethylene C=C 65 bond moiety with the Pd center. And next, the olefine insertion into the Pd-C2 bond occurs via transition state TS3, giving rise to intermediate IM9. The barrier involved in this olefine insertion step was calculated to be 11.2 kcal/mol. Through TS4 with a small barrier of 2.4 kcal/mol, the β-hydride elimination takes 70 place by the migration of one H(CC2) atom to the Pd atom, resulting in product **P**, from which L_2PdHCl (L = DMSO) and AgCl was simultaneously liberated. In order to initiate the Pd catalyst regeneration (IM14 \rightarrow L₂PdCl₂) for the next reaction procedures, as indicated in Scheme 2, the reductive elimination of

⁷⁵ HL in **IM14** occured with a barrier of 20.1 kcal/mol to become Pd(0) intermediate **IM15**, that was then oxidized by the oxidant Ag_2CO_3 in the presence of HCl to form L_2PdCl_2 .

Scheme 2 The Pd catalyst regeneration pathway. The relative free ⁸⁰ energies in are given in kcal/mol.

According to the results above, it was seen that the decarboxylation had an overall barrier of 30.4 kcal/mol, in contrast to 29.1 kcal/mol of metalation-depronation, 11.2 kcal/mol of olefine insertion, 2.4 kcal/mol of B-hydride 85 elimination, and 20.1 kcal/mol of catalyst regeneration. Therefore, the decarboxylation with the involvement of AgCl is the ratedetermining step along the reaction coordinate, consistent with that of the direct decarboxylation pathway with no assistor.¹⁸⁻²⁰ However, the energy barrier value calculated for the former (30.4 was apparently much lower than that for the latter in Figure 1 (45.8 kcal/mol corresponding to TS2'). The preference for the decarboxylation in the presence of AgCl over the case in the absence of AgCl is likely ascribed to the fact that the π coordination of Ag instead of Pd with the carboxyl O atom 95 reduces the Pd-O π -interaction, thus resulting in easier dissociation of CO₂ as compared to the decarboxylation with no AgCl involvement. Therefore, the presence of AgCl plays critical role in ensuring the proceeding of the reaction under the given

This journal is © The Royal Society of Chemistry [year]

conditions.

Figure 2 Calculated free energy profiles in DMF solution for the Cl- and H-substituted metalation-depronation process with the ⁵ involvement of AgCl as well as schematic structures of intermediates and transition states involved (L =DMSO). The relative free energies are given in kcal/mol.

In the case of the H-substituted system, as illustrated in ¹⁰ Figure 3, the intermediates and transition states were marked with the capital letter "H" in the left superscript in order to differentiate them from those with the Cl substituted version. It was found that the H-substituted system involved the same mechanisms and rate-determining step to the Cl-substituted ¹⁵ system discussed above. Thus, the relevant mechanism details are not discussed again for simplification.

In order to elucidate the different reactivity of two substrates **A** and **H-A**, we compared the overall barriers for the ratedetermining steps (i.e., decarboxylation) of the two reactions. It

- was observed in Figure 3 that the overall barrier of the decarboxylation step for the H-substituted system was 32.8 kcal/mol (the energy difference between **H-TS2** and **H-A**), which was 2.4 kcal/mol greater than that (30.4 kcal/mol) for the Cl-substituted system in Figure 1 (the energy difference between
- ²⁵ TS2 and A). This result was consistent with the experimental finding that Cl-substituted substrate A brings out the product P in 86% yield, whereas, upon replacement of the Cl substituent by a hydrogen atom, the H-substituted product H-P is achieved in only 3% yield.

Figure 3 Calculated free energy profiles in DMF solution for the formation of **H-P** from the reaction of the H-substituted substrate **H-A** with phenylethylene as well as schematic structures of intermediates and transition states involved (L =DMSO). The ³⁵ relative free energies are given in kcal/mol.

We could understand the fact above by analyzing the frontier molecular orbitals of **TS2** and **H-TS2**. Scheme 3 showed the highest occupied molecular orbitals (HUMOs) calculated for ⁴⁰ these two structures. In the HUMO of **H-TS2**, it was clear that the C2 atom uses its sp²-hybridized orbital to interact in a σ bonding fashion with the C π^* orbital of the CO₂ moiety. In contrast, in the HUMO of **TS2**, the p- π orbital of the C2 atom interacted with the Pd center. Clearly, the presence of Cl ⁴⁵ substituent in **TS2** reduces the π - π interplay between C1 and C2 atoms and thereby strengthens the orbital overlaps of C2 atom and the Pd center, thus contributing the Pd^{...}C2 bonding and the C2-C(O₂) bond cleavage. These results point to the fact that the introduction of Cl substituent is of key importance for the ⁵⁰ stability of the decarboxylation transition state **TS2**, which makes the CO₂ dissociation more accessible than that for the Hsubstituted system.

Scheme 3 Diagrams of the HUMOs of two decarboxylation ⁵⁵ transition states, H-TS2 and TS2. For clarity, AgCl is omitted in the schematic diagrams. The relative free energies are given in kcal/mol.

Couclusions

⁶⁰ In summary, we have successfully developed a Pd-catalyzed decarboxylative Heck-type coupling reaction for the highly regioselective alkenylation of 3-chlorobenzo[*b*]thiophene-2-carboxylic acids, providing an alternative approach for the formation of diverse benzo[*b*]thiophenes. Theoretical studies ⁶⁵ indicate that the involvement of AgCl generated during the reaction process is of key importance for the proceeding of the transformation. The greater reactivity of Cl substituted 3-benzo[*b*]thiophene-2-carboxylic acids over H-substituted ones is closely related to the presence of the Cl substituent, which can ⁷⁰ reduce adjacent π - π interaction, thus resulting in the facile decarboxylation as compared to the H substituent.

Experimental section General information and materials

All commercially available reagent grade chemicals were ⁷⁵ purchased from chemical suppliers and used as received without further purification. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on a 400 MHz or 500 MHz spectrometer with TMS as internal standard (400 MHz ¹H, 100 MHz ¹³C; 500 MHz ¹H, 125 MHz ¹³C) at room ⁸⁰ temperature, the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. Microanalyses were carried out using chemical ionization method under atmospheric pressure (APCI). Column chromatography was performed on silica gel (200-300 mesh).

Page 4 of 8

Computational Methods

All calculations presented in this work were carried out using M06 functional¹⁸ with the Gaussian 09 suite of programs,²¹ which had been shown to describe static Pd-mediated organometallic systems reasonably well.^{22, 23, 24} The SDD^{25, 26} basis set with the

- effective core potential was used for Pd, Ag, S, and Cl atoms, while the 6-31G(d,p) basis set was used for the remaining atoms. Geometry optimizations was conducted at the chosen level of theory, and the intrinsic reaction coordinate (IRC) analysis²⁷ from
- ¹⁰ the transition states had been followed to confirm that such structures actually connected the two relevant minima. Frequency calculations at the same level of theory were also carried out to verify all the stationary points as minima (zero imaginary frequencies) or first-saddle points (one imaginary frequency) and
- ¹⁵ to provide free energies at 298.15 K, which include entropic contributions by considering the vibrations, rotations, and translations of the species.

Solvent effects have been introduced via single-point calculations on gas-phase-optimized geometries by employing

- ²⁰ the simple self-consistent reaction field (SCRF) method^{28, 29, 30} based on CPCM solvation model³¹ with UAKS cavities.³² The single-point energy calculations were performed using the larger basis set, i.e., SDD for Pd, Ag, S, and Cl atoms and 6-311+G(d,p) for the other atoms. Here, acetonitrile was used as
- 25 solvent, corresponding to the experimental conditions. In this paper, relative free energies in solution were exclusively used to describe the reaction mechanism throughout the study. Ceneral experimental procedures

General experimental procedures.

- A 25 mL Schlenk tube equipped with a magnetic stirring bar ³⁰ was charged with PdCl₂ (2.2 mg), Ag₂CO₃ (205.3 mg), substituted 3-chlorobenzo[*b*]thiophene-2-carboxylic acids (1) (0.25 mmol) and styrenes (2) (0.325 mmol). The tube was evacuated twice and backfilled with nitrogen, and DMSO/DMF (v_1/v_2 =1:20) (1.0 mL) was added to the tube
- ³⁵ under nitrogen atmosphere. The tube was sealed with a balloon and then the mixture was allowed to stir under nitrogen atmosphere at 110 °C for 24 h. After completion of the reaction, the resulting solution was cooled to room temperature, and the solvent was removed with the aid of a
- ⁴⁰ rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product (**3**).

(*E*)-3-Chloro-2-styrylbenzo[*b*]thiophene (3a): Eluent petroleum ether/ethyl acetate (40:1). White solid, mp 139-141°C. ¹H NMR ⁴⁵ (CDCl₃, 400 MHz, ppm) δ 7.82 (d, 1H, *J* = 8.0 Hz), 7.77 (d, 1H, *J*

- ⁴⁵ (CDC1₃, 400 kH2, ppH) δ 7.82 (d, 11, δ = 6.0 H2), 7.77 (d, 11, δ = 8.0 Hz), 7.60 (d, 2H, J = 8.0 Hz), 7.55 (d, 1H, J = 16.0 Hz), 7.46-7.41 (m, 4H), 7.36 (d, 1H, J = 8.0 Hz), 7.07 (d, 1H, J = 16.0 Hz). ¹³C NMR (CDC1₃, 100 MHz, ppm) δ 137.4, 136.4, 136.1, 135.6, 132.3, 128.8, 128.5, 126.9, 126.0, 125.1, 122.4, 121.8,
- ⁵⁰ 119.6, 119.0. MS (APCI) m/z=271 [M+H]⁺. Anal. Calcd for C₁₆H₁₁ClS: C, 70.97; H, 4.09; Cl, 13.09; S, 11.84. Found C, 70.94; H, 4.07; Cl, 13.10; S, 11.82.

(*E*)-3-Chloro-2-(4-methylstyryl)benzo[*b*]thiophene (3b): Eluent petroleum ether/ethyl acetate (35:1). White solid, mp 145-

⁵⁵ 146 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ ^{7.80} (d, 1H, *J* = 8.0 Hz), 7.75 (d, 1H, *J* = 8.0 Hz), 7.50 (d, 1H, *J* = 8.0 Hz), 7.48 (d, 2H, *J* = 8.0 Hz), 7.46-7.38 (m, 2H), 7.20 (d, 2H, *J* = 8.0 Hz), 7.05 (d, 1H, *J* = 16.0 Hz), 2.51

(s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 138.6, 137.5, 135.9, 135.8, 133.7, 132.3, 129.5, 126.8, 125.8, 125.1, 122.4, 121.7

⁶⁰ 135.8, 133.7, 132.3, 129.5, 126.8, 125.8, 125.1, 122.4, 121.7, 119.2, 118.0. MS (APCI) *m/z*=285 [M+H]⁺. Anal. Calcd for C₁₇H₁₃ClS: C, 71.69; H, 4.60; Cl, 12.45; S, 11.26. Found C, 71.65; H, 4.62; Cl, 12.43; S, 11.23.

(E)-3-Chloro-2-(3-methylstyryl)benzo[b]thiophene (3c):

- ⁶⁵ Eluent petroleum ether/ethyl acetate (40:1). White solid, mp 110-112 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.81 (d, 1H, *J* = 8.0 Hz), 7.77 (d, 1H, *J* = 8.0 Hz), 7.53 (d, 1H, *J* = 16.0 Hz), 7.47-7.39 (m, 4H), 7.31 (t, 1H, *J* = 8.0 Hz), 7.16 (d, 1H, *J* = 8.0 Hz), 7.05 (d, 1H, *J* = 16.0 Hz), 2.43
- ⁷⁰ (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 138.4, 137.5, 136.4, 136.0, 135.7, 132.4, 129.3, 128.7, 127.5, 125.9, 124.1, 122.4, 121.7, 119.5, 118.8, 21.4. MS (APCI) *m/z*=285 [M+H]⁺. Anal. Calcd for C₁₇H₁₃ClS: C, 71.69; H, 4.60; Cl, 12.45; S, 11.26. Found C, 71.65; H, 4.62; Cl, 12.43; S, 11.23.
- (3d): Eluent petroleum ether/ethyl acetate (40:1). White solid, mp 151-153 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.93 (s, 1H), 7.89-7.78 (m, 6H), 7.66 (d, 1H, J = 16.0 Hz), 7.54-7.50 (m, 2H), 7.48-7.40 (m, 2H), 7.25 (d, 1H, J = 16.0 Hz), 2.43 (s, 3H). ¹³C
- ⁸⁰ NMR (CDCl₃, 100 MHz, ppm) δ 137.5, 136.1, 135.7, 133.9, 133.6, 133.4, 132.3, 128.5, 128.2, 127.8, 127.4, 126.5, 126.4, 126.0, 125.1, 123.4, 122.4, 121.8, 119.7, 119.3. MS (APCI) m/z=321 [M+H]⁺. Anal. Calcd for C₂₀H₁₃ClS: C, 74.87; H, 4.08; Cl, 11.05; S, 9.99. Found C, 74.72; H, 4.11; Cl, 11.13; S, 9.84.
- ⁸⁵ (*E*)-3-Chloro-2-(4-chlorostyryl)benzo[*b*]thiophene (3e): Eluent petroleum ether/ethyl acetate (40:1). White solid, mp 156-158 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.81 (d, 1H, *J* = 8.0 Hz), 7.77 (d, 1H, *J* = 8.0 Hz), 7.52-7.48 (m, 3H), 7.45-7.40 (m, 2H), 7.37 (d, 2H, *J* = 8.0 Hz), 7.00 (d, 1H, *J* = 16.0 Hz). ¹³C NMR
- ⁹⁰ (CDCl₃, 100 MHz, ppm) δ 137.4, 136.1, 135.2, 134.9, 134.1, 130.8, 129.0, 128.0, 126.2, 125.2, 122.4, 121.9, 120.0, 119.6. MS (APCI) *m/z*=305 [M+H]⁺. Anal. Calcd for C₁₆H₁₀Cl₂S: C, 62.96; H, 3.30; Cl, 23.23; S, 10.51. Found C, 62.87; H, 3.31; Cl, 23.26; S, 10.64.
- ⁹⁵ (*E*)-3-Chloro-6-methyl-2-styrylbenzo[*b*]thiophene (3f): Eluent petroleum ether/ethyl acetate (40:1). White solid, mp 131-133 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.68 (d, 1H, *J* = 8.0 Hz), 7.59-7.57 (m, 3H), 7.52 (d, 1H, *J* = 16.0 Hz), 7.41 (t, 1H, *J* = 8.0 Hz), 7.34 (d, 1H, *J* = 8.0 Hz), 7.26 (d, 1H, *J* = 8.0 Hz), 7.03 (d,
- ¹⁰⁰ 1H, J = 16.0 Hz), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 136.6, 136.3, 136.2, 135.3, 134.4, 131.6, 128.8, 128.3, 126.8, 122.3, 121.4, 119.5, 119.2, 21.6. MS (APCI) *m/z*=285 [M+H]⁺. Anal. Calcd for C₁₇H₁₃ClS: C, 71.69; H, 4.60; Cl, 12.45; S, 11.26. Found C, 71.62; H, 4.57; Cl, 12.36; S, 11.16.
- ¹⁰⁵ (*E*)-3-Chloro-6-methyl-2-(4-methylstyryl)benzo[*b*]thiophene (3g): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 144-145 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.67 (d, 1H, *J* = 8.0 Hz), 7.56 (s, 1H), 7.48-7.45 (m, 3H), 7.28-7.20 (m, 3H), 7.01 (d, 1H, *J* = 16.0 Hz), 2.51 (s, 3H), 2.40 (s, 3H). ¹³C NMR (CDCl₃,
- ¹¹⁰ 100 MHz, ppm) δ 138.4, 136.2, 136.1, 135.3, 134.7, 133.8, 131.6, 129.5, 126.8, 126.7, 122.3, 121.3, 119.1, 118.2, 21.6, 21.3. MS (APCI) *m/z*=299 [M+H]⁺. Anal. Calcd for C₁₈H₁₅ClS: C, 72.35; H, 5.06; Cl, 11.86; S, 10.73. Found C, 72.28; H, 5.11; Cl, 11.92; S, 10.64.
- (*E*)-3-Chloro-2-(4-chlorostyryl)-6-methylbenzo[*b*]thiophene(3h):Eluent petroleum ether/ethyl acetate (40:1). White solid, mp

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00 | 5

161-162 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.68 (d, 1H, J = 8.0 Hz), 7.56 (s, 1H), 7.50-7.46 (m, 3H), 7.36 (d, 2H, J = 8.0 Hz), 7.26 (d, 1H, J = 8.0 Hz), 6.95 (d, 1H, J = 16.0 Hz), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 136.5, 136.3, 135.2,

 5 135.1, 134.0, 133.9, 130.1, 129.0, 127.9, 127.0, 122.3, 121.5, 120.0, 119.7, 21.6. MS (APCI) *m/z*=319 [M+H]⁺. Anal. Calcd for C₁₇H₁₂Cl₂S: C, 63.96; H, 3.79; Cl, 22.21; S, 10.04. Found C, 63.99; H, 3.72; Cl, 22.23; S, 10.13.

(E)-2-(4-Bromostyryl)-3-chloro-6-methylbenzo[b]thiophene

- ¹⁰ (**3i**): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 171-173 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.68 (d, 1H, *J* = 8.0 Hz), 7.56 (s, 1H), 7.53-7.41 (m, 5H), 7.26 (d, 1H, *J* = 8.0 Hz), 6.94 (d, 1H, *J* = 16.0 Hz), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 136.6, 136.3, 135.5, 135.2, 134.0, 131.9, 130.2,
- ¹⁵ 128.2, 126.9, 122.3, 122.1, 121.5, 120.0, 119.8, 21.6. MS (APCI) m/z=340, 342 [M+K]⁺. Anal. Calcd for C₁₇H₁₂BrClS: C, 56.14; H, 3.33; Br, 21.97; Cl, 9.75; S, 8.82. Found C, 56.21; H, 3.24; Br, 21.91; Cl, 9.85; S, 8.84.

(E)-3-Chloro-6-methyl-2-(3-methylstyryl)benzo[b]thiophene

- ²⁰ (**3***j*): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 146-147 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.68 (d, 1H, *J* = 8.0 Hz), 7.56 (s, 1H), 7.51 (d, 1H, *J* = 16.0 Hz), 7.39 (d, 2H, *J* = 8.0 Hz), 7.32-7.25 (m, 2H), 7.15 (d, 1H, *J* = 8.0 Hz), 7.01 (d, 1H, *J* = 16.0 Hz), 2.51 (s, 3H), 2.43 (s, 3H). ¹³C NMR (CDCl₃,
- ²⁵ 100 MHz, ppm) δ 138.4, 136.5, 136.3, 135.3, 134.6, 131.8, 129.2, 128.7, 127.4, 126.8, 124.0, 122.3, 121.4, 119.4, 118.9, 21.6, 21.4. MS (APCI) *m/z*=299 [M+H]⁺. Anal. Calcd for C₁₈H₁₅ClS: C, 72.35; H, 5.06; Cl, 11.86; S, 10.73. Found C, 72.28; H, 5.11; Cl, 11.92; S, 10.64.

30 (E)-3-Chloro-6-methyl-2-(2-(naphthalen-2-

yl)vinyl)benzo[*b***]thiophene (3k):** Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 162-164 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.92 (s, 1H), 7.87 (d, 1H, *J* = 8.0 Hz), 7.84-7.78 (m, 2H), 7.69 (d, 1H, *J* = 8.0 Hz), 7.64 (d, 1H, *J* = 16.0 Hz),

- ³⁵ 7.59 (s, 1H), 7.52-7.49 (m, 2H), 7.27 (d, 1H, J = 8.0 Hz), 7.19 (d, 1H, J = 16.0 Hz), 2.52 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 136.4, 136.3, 135.3, 134.5, 134.1, 133.6, 133.3, 131.7, 128.5, 128.2, 127.8, 127.3, 126.8, 126.5, 126.3, 123.4, 122.4, 121.4, 119.6, 119.4, 21.7. MS (APCI) *m*/*z*=335 [M+H]⁺. Anal.
- ⁴⁰ Calcd for C₂₁H₁₅ClS: C, 75.32; H, 4.52; Cl, 10.59; S, 9.58. Found C, 75.27; H, 4.41; Cl, 10.63; S, 9.51.

(*E*)-3,6-Dichloro-2-styrylbenzo[*b*]thiophene (31): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 128-129 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.16 (s, 1H), 7.70 (d, 1H, *J* =

- ⁴⁵ 8.0 Hz), 7.58 (d, 1H, J = 8.0 Hz), 7.49 (d, 1H, J = 16.0 Hz), 7.44-7.40 (m, 3H), 7.35 (d, 1H, J = 8.0 Hz), 7.06 (d, 1H, J = 16.0 Hz). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 137.0, 136.2, 136.1, 136.0, 132.7, 132.1, 128.9, 128.6, 126.9, 126.0, 122.6, 122.0, 119.2, 118.7. MS (APCI) m/z=305 [M+H]⁺. Anal. Calcd for C₁₆H₁₀Cl₂S:
- ⁵⁰ C, 62.96; H, 3.30; Cl, 23.23; S, 10.51. Found C, 62.87; H, 3.31; Cl, 23.26; S, 10.64.

(*E*)-3,6-Dichloro-2-(4-methylstyryl)benzo[*b*]thiophene (3m): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 135-136 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.47 (s, 1H), 7.69

⁵⁵ (d, 1H, *J* = 8.0 Hz), 7.48-7.38 (m, 4H), 7.22 (d, 1H, *J* = 8.0 Hz), 7.03 (d, 1H, *J* = 16.0 Hz), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 138.8, 136.9, 136.4, 136.0, 133.5, 132.7, 131.9, 129.6, 126.8, 125.9, 122.5, 122.0, 118.8, 117.7, 21.4. MS (APCI) *m/z*=319 [M+H]⁺. Anal. Calcd for C₁₇H₁₂Cl₂S: C, 63.96; 60 H, 3.79; Cl, 22.21; S, 10.04. Found C, 63.99; H, 3.72; Cl, 22.23; S. 10.13.

- (*E*)-3,6-Dichloro-2-(3-methylstyryl)benzo[*b*]thiophene (3n): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 139-
- 141 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.75 (s, 1H), 7.70 65 (d, 1H, *J* = 8.0 Hz), 7.47 (d, 1H, *J* = 16.0 Hz), 7.41-7.37 (m, 3H), 7.31 (t, 1H, *J* = 8.0 Hz), 7.16 (d, 1H, *J* = 8.0 Hz), 7.03 (d, 1H, *J* = 16.0 Hz), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 138.5, 136.9, 136.2, 136.1, 136.0, 132.9, 132.0, 129.5, 128.7, 127.5, 126.0, 124.1, 122.5, 122.0, 119.0, 118.5, 21.4. MS (APCI)
- ⁷⁰ m/z=319 [M+H]⁺. Anal. Calcd for C₁₇H₁₂Cl₂S: C, 63.96; H, 3.79; Cl, 22.21; S, 10.04. Found C, 63.99; H, 3.72; Cl, 22.23; S, 10.13. (*E*)-**3,6-Dichloro-2-(4-chlorostyryl)benzo[***b***]thiophene (30):** Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 157-159 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.75 (s, 1H), 7.70
- ⁷⁵ (d, 1H, J = 8.0 Hz), 7.50 (d, 2H, J = 8.0 Hz), 7.45 (d, 1H, J = 16.0 Hz), 7.42-7.37 (m, 3H), 6.99 (d, 1H, J = 16.0 Hz). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 137.0, 135.9, 135.7, 134.7, 134.3, 132.3, 131.2, 129.1, 128.0, 126.1, 122.7, 122.1, 119.6, 119.3. MS (APCI) *m/z*=338 [M+H]⁺. Anal. Calcd for C₁₆H₉Cl₃S: C, 56.58; ⁸⁰ H, 2.67; Cl, 31.11; S, 9.44. Found C, 56.51; H, 2.76; Cl, 31.06; S,

9.45. (*E*)-6-Bromo-3-chloro-2-styrylbenzo[*b*]thiophene (3p): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 161-162 °C.

- ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.91 (s, 1H), 7.64 (d, 1H, J = 85 8.0 Hz), 7.58 (d, 2H, J = 8.0 Hz), 7.54 (d, 1H, J = 8.0 Hz), 7.58 (d, 2H, J = 8.0 Hz), 7.54 (d, 1H, J = 8.0 Hz), 7.49 (d, 1H, J = 16.0 Hz), 7.42 (t, 2H, J = 8.0 Hz), 7.35 (d, 1H, J = 8.0 Hz), 7.06 (d, 1H, J = 16.0 Hz). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 137.3, 136.3, 136.2, 136.1, 132.8, 128.9, 128.7, 128.6, 126.9, 124.9, 122.8, 119.9, 119.3, 118.7. MS (APCI) m/z=348,
- ⁹⁰ 350 [M+H]⁺. Anal. Calcd for C₁₆H₁₀BrClS: C, 54.96; H, 2.88; Br, 22.85; Cl, 10.14; S, 9.17. Found C, 54.91; H, 2.96; Br, 22.89; Cl, 10.03; S, 9.11.

(*E*)-6-Bromo-3-chloro-2-(3-methylstyryl)benzo[*b*]thiophene

- (3q): Eluent petroleum ether/ethyl acetate (30:1). White solid, mp ⁹⁵ 178-181 °C. δ ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.91 (s, 1H), 7.64 (d, 1H, *J* = 8.0 Hz), 7.54 (d, 2H, *J* = 8.0 Hz), 7.47 (d, 1H, *J* = 16.0 Hz), 7.38 (d, 1H, *J* = 8.0 Hz), 7.30 (t, 1H, *J* = 8.0 Hz), 7.16 (d, 1H, *J* = 8.0 Hz), 7.04 (d, 1H, *J* = 16.0 Hz), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 138.5, 137.3, 136.3, 136.2,
- ¹⁰⁰ 136.1, 132.9, 129.5, 128.8, 128.6, 127.6, 124.9, 124.1, 122.8, 119.8, 119.1, 118.4. MS (APCI) m/z=340, 342 [M+K]⁺. Anal. Calcd for C₁₇H₁₂BrClS: C, 56.14; H, 3.33; Br, 21.97; Cl, 9.75; S, 8.82. Found C, 56.21; H, 3.24; Br, 21.91; Cl, 9.85; S, 8.84. (*E*)-3-chloro-2-(2-(naphthalen-2-yl)vinyl)-6-
- ¹⁰⁵ (trifluoromethyl)benzo[*b*]thiophene (3r): Eluent petroleum ether/ethyl acetate (25:1). White solid, mp 168-170 °C. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.02 (s, 1H), 7.91 (s, 1H), 7.85-7.81 (m, 4H), 7.76 (d, 1H, *J* = 10.0 Hz), 7.64-7.58 (m, 2H), 7.49 (t, 2H, *J* = 5.0 Hz), 7.24 (d, 1H, *J* = 10.0 Hz). ¹³C NMR (CDCl₃, 125
- ¹¹⁰ MHz, ppm) δ 139.8, 139.0, 135.8, 133.9, 133.6(q, *J*=36.3), 128.7, 128.3, 128.1, 127.9, 127.8, 127.7, 126.7, 126.4 (q, *J*=270.1), 125.3, 123.2, 122.1, 121.9 (d, *J*=3.7), 119.8, 119.3, 118.7. MS (APCI) *m*/*z*=389.0 [M+H]⁺. Anal. Calcd for C₂₁H₁₂ClF₃S: C, 64.87; H, 3.11; Cl, 9.12; F, 14.66; S, 8.25. Found C, 64.81; H, ¹¹⁵ 3.06; Cl, 9.04; F, 14.57; S, 8.16.

Organic & Biomolecular Chemistry Accepted Manuscrip

Page 6 of 8

6 | *Journal Name*, [year], [vol], 00–00

8

(*E*)-3-chloro-6-nitro-2-styrylbenzo[*b*]thiophene (3s): Eluent petroleum ether/ethyl acetate (20:1). yellow solid, mp 147-149 °C. δ^{1} H NMR (CDCl₃, 500 MHz, ppm) δ 7.74-7.71 (m, 3H), 7.67 (s, 1H), 7.56 (d, 1H, *J* = 10.0 Hz), 7.40-7.35 (m, 2H), 6.81 (dd, 1H, *J*

- $_{5}$ = 10.0 Hz), 5.80 (d, 1H, *J* = 20.0 Hz), 5.26 (d, 1H, *J* = 20.0 Hz). $_{13}^{13}$ C NMR (CDCl₃, 125 MHz, ppm) δ 135.9, 134.0, 132.5, 132.1, 127.1, 127.0, 126.6, 125.3, 125.2, 124.9, 122.1, 113.1. MS (APCI) *m/z*=316 [M+H]⁺. Anal. Calcd for C₁₆H₁₀ClNO₂S: C, 60.86; H, 3.19; Cl, 11.23; N, 4.44; O, 10.13; S, 10.15. Found C, 10 60.63; H, 3.27; Cl, 11.08; N, 4.37; O, 10.16; S, 10.42.
- (*E*)-3-chloro-5-methoxy-2-(4-methylstyryl)benzo[b]thiophene (3t): Eluent petroleum ether/ethyl acetate (30:1). white solid, mp 116-118 °C. δ ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.57 (d, 1H, *J* = 5.0 Hz), 7.45-7.41 (m, 3H), 7.19-7.15 (m, 3H), 7.01-6.98 (m,
- ¹⁵ 2H), 3.89 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 171.2, 158.2, 138.5, 138.4, 137.0, 133.7, 132.0, 129.5, 128.9, 126.8, 123.2, 118.1, 116.2, 103.7, 55.6, 21.1. MS (APCI) *m/z*=315 [M+H]⁺. Anal. Calcd for C₁₈H₁₅ClOS: C, 68.67; H, 4.80; Cl, 11.26; O, 5.08; S, 10.18. Found C, 68.46; H, 4.59; Cl, 20 11.19; O, 5.14; S, 10.09.
- (*E*)-3-bromo-2-(2-(naphthalen-2-yl)vinyl)benzo[b]thiophene (3u): Eluent petroleum ether/ethyl acetate (30:1). white solid, mp 172-174 °C. δ ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.90 (s, 1H), 7.86-7.82 (m, 3H,), 7.80-7.75 (m, 3H), 7.62 (d, 1H, J = 15.0 Hz),
- ²⁵ 7.51-7.48 (m, 2H), 7.43 (t, 1H, *J*=5.0 Hz), 7.38 (t, 1H, *J*=5.0 Hz), 7.25 (d, 2H, *J*=10.0 Hz). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 138.9, 137.4, 136.5, 133.9, 133.6, 133.4, 132.8, 128.6, 128.2, 127.8, 127.5, 126.6, 126.4, 126.1, 125.3, 123.4, 123.1, 122.3, 120.9. MS (APCI) *m*/*z*=365, 367 [M+H]⁺. Anal. Calcd for
- ³⁰ C₂₀H₁₃BrS: C, 65.76; H, 3.59; Br, 21.87; S, 8.78. Found C, 65.66; H, 3.47; Br, 21.83; S, 8.69.

(*E*)-2-Styrylbenzo[*b*]thiophene (3y):³³ Eluent petroleum ether/ethyl acetate (30:1). White solid, mp 83-84 °C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ 7.80 (d, 1H, *J* = 8.0 Hz), 7.73 (d,

³⁵ 1H, J = 8.0 Hz), 7.54 (d, 1H, J = 8.0 Hz), 7.42-7.31 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 142.9, 140.2, 138.9, 136.6, 130.9, 128.8, 128.0, 126.6, 124.7, 124.5, 123.4, 123.3, 122.3, 122.2. MS (APCI) m/z=237 [M+K]⁺. Anal. Calcd for C₁₇H₁₂BrClS: C, 81.31; H, 5.12; S, 13.57; found C, 81.27; H, ⁴⁰ 5.15; S, 13.59.

Acknowlegement

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21302110, 21375075, 21473100 and 21403123), the Taishan

- ⁴⁵ Scholar Foundation of Shandong Province, the Natural Science Foundation of Shandong Province (ZR2013BQ017 and ZR2013BQ019), the Project of Shandong Province Higher Educational Science and Technology Program (J13LD14 and J14LC17) and the Doctoral Start-Up Scientific Research ⁵⁰ Foundation of Qufu Normal University (BSQD2012021 and
- BSQD2012021 and BSQD2012021 and BSQD20120218).

Notes and references

- (a) C. M. R.Volla, I. Atodiresei and M. Rueping, *Chem. Rev.*, 2014, 114, 2390–2431; (b) X.-X. Guo, D.-W. Gu, Z. Wu and W. Zhang,
- S. Méndez and G. A. Seoane, *Chem. Rev.*, 2011, 111, 4346–4403; (d)

This journal is © The Royal Society of Chemistry [year]

A. Suzuki, In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998; p 49.

- 2 (a) E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, *Chem. Rev.*, 2007, **107**, 5318-5365; (b) C.-J. Li, *Chem. Rev.*, 2005, **105**, 3095–3165.
- (a) T. Mizoroki, K. Mori and A. Ozaki, *Bull. Chem. Soc. Jpn.*, 1971, 44, 581–581. (b) R. F. Heck and J. P. Nolley Jr, *J. Org. Chem.* 1972, 37, 2320–2322.
- 65 4 H. Li, C. C. C. Johansson Seechurn and T. J. Colacot, ACS Catal., 2012, 2, 1147–1164.
- 3066; (d) J. L. Bras and J. Muzart, *Chem. Rev.*, 2011, **111**, 1170–1214; (e) D. M. Cartney and P. J. Guiry, *Chem. Soc. Rev.*, 2011, **40**, 5122–5150.
- 6 E. M. Beck, N. P. Grimster, R. Hatley, M. J. Gaunt, J. Am. Chem. Soc., 2006, **128**, 2528–2529.
- 75 7 A. García-Rubia, R. G. Arrayás and J. C. Carretero, *Angew. Chem.*, 2009, **12**1, 6633–6637.
 - Y. Zhang, Z. Li and Z.-Q. Liu, Org. Lett., 2012, 14, 226-229.
 - 9 T. Iitsuka, P. Schaal, K. Hirano, T. Satoh, C. Bolm and M. Miura, J. Org. Chem., 2013, 78, 7216–7222.
- 80 10 (a) L. J. Gooßen, G. Deng and L. M. Levy, *Science.*, 2006, 313, 662–664. (b) L. J. Gooßen, N. Rodríguez and K. Gooßen, *Angew. Chem. Int. Ed.*, 2008, 47, 3100–3120; (c) N. Rodriguez and L. J. Gooßen, *Chem. Soc. Rev.*, 2011, 40, 5030–5048; (d) W. I. Dzik, P. P. Lange and L. J. Gooßen, *Chem. Sci.*, 2012, 3, 2671–2678; (e) B.
- Song, T. Knauber and L. J. Gooßen, *Angew. Chem. Int. Ed.*, 2013, 52, 2954–2958. (f) L. J. Gooßen, P. P. Lange, N. Rodríguez and C. Linder, *Chem. Eur. J.*, 2010, 16, 3906–3909; (g) L. J. Goossen, N. Rodríguez, B. Melzer, C. Linder, G. Deng and L. M. Levy, *J. Am. Chem. Soc.*, 2007, 129, 4824–4833.
- 90 11 (a) A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem. Soc., 2002, **124**, 11250–11251; (b) D. Tanaka, S. P. Romeril and A. G. Myers, J. Am. Chem. Soc., 2005, **127**, 10323–10333.
- 12 For selected examples, see: (a) C. Wang, S. Rakshit and F. Glorius, J. Am. Chem. Soc., 2010, 132, 14006–14008; (b) J. M. Neely and T. Rovis, J. Am. Chem. Soc., 2014, 136, 2735–2738; (c) T. Satoh and M. Miura, Synthesis., 2010, 3395–3409; (d) R. Shang, Z.-W. Yang, Y. Wang, S.-L. Zhang and L. Liu, J. Am. Chem. Soc., 2010, 132, 14391–14393; (d) C. Li and B. Breit, J. Am. Chem. Soc., 2014, 136, 862–865; (e) P. Forgione, M.-C. Brochu, M. St-Onge, K. H. Thesen, M. D. Bailey and F. Bilodeau, J. Am. Chem. Soc., 2006, 128, 11350–11351; (f) J. Wang, Z. Cui, Y. Zhang, H. Li, L.-M. Wu and Z. Liu, Org. Biomol. Chem., 2011, 9, 663–666; (g) A. Fardost, J. Lindh, P. J. R. Sjöberg and M. Larhed, Adv. Catal. Synth., 2014, 356, 870–878.

Organic & Biomolecular Chemistry Accepted Manuscr

- 13 (a) R. Shang, Q. Xu, Y.-Y. Jiang, Y. Wang and L. Liu, *Org. Lett.*, 2010, **12**, 1000–1003; (b) Z.-M. Sun, J. Zhang and P. Zhao, *Org. Lett.*, 2010, **12**, 992–995; (c) R. Shang, Y. Fu, J.-B. Li, S.-L. Zhang, Q.-X. Guo and L. Liu, *J. Am. Chem. Soc.*, 2009, **131**, 5738–5739; (d) R. Shang, D.-S. Ji, L. Chu, Y. Fu and L. Liu, *Angew. Chem. Int. Ed.*, 2011, **50**, 4470–4474; (e) W.-M. Cheng, R. Shang, H.-Z. Yu and Y. Fu, *Chem. Eur. J.*, 2015, **21**, 13191–13195; (f) F. Svensson, R. S. Mane, J. Sävmarker, M. Larhed and C. Sköld, *Organometallics.*, 2013, **32**, 490–497; (g) J. Rydfjord, F. Svensson, A. Trejos, P. J. R. Sjöberg, C. Sköld, J. Sävmarker, L. R. Odell and M. Larhed, *Chem. Eur. J.*, 2013, **19**, 13803–13810.
 - 14 A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem. Soc., 2002, 124, 11250–1251.
- (a) F. Jafarpour, S. Zarei, M. B. A. Olia, N. Jalalimanesh and S. Rahiminejadan, J. Org. Chem., 2013, 78, 2957–2964; (b) J.-B. E. Y. Rouchet, C. Schneider, C. Fruit and C. Hoarau, J. Org. Chem., 2015, 80, 5919–5927; (c) D. Nandi, Y.-M. Jhou, J.-Y. Lee, B.-C. Kuo, C.-Y. Liu, P.-W. Huang and H. M. Lee, J. Org. Chem., 2012, 77, 9384–9390; (d) F. Bilodeau, M.-C. Brochu, N. Guimond, K. H. Thesen and P. Forgione, J. Org. Chem., 2010, 75, 1550–1560; (e) S. Messaoudi, J.-D. Brion and M. Alami, Org. Lett., 2012, 14, 1496–1499; (f) F. Zhang and M. F. Greaney, Org. Lett., 2010, 12, 4745–4747; (g) R. Suresh, S. Muthusubramanian1, R. S. Kumaran and G. Manickam, Asian. J. Org. Chem., 2013, 2,

169–175; (h) R. N. P. Tulichala and K. C. K. Swamy, *Chem. Commun.*, 2015, **51**, 12008–12011.

- (a) T. Y. Zhang, J. O'Toole and C. S. Proctor, *Sulfur Rep.*, 1999, 22, 1–47;
 (b) I. Jarak, M. Kralj, L. Suman, G. Pavlovic, J. Dogan, I. Piantanida, M. Zinic, K. Pavelic and G. Karminski-Zamola, *J. Med.*
- Chem., 2005, 48, 2346–2360; (c) A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet and M. P. Costi, *J. Med. Chem.*, 2007, 50, 5644–5654; (e) J. Gao, L. Li, Q. Meng, R. Li, H. Jiang, H. Li, and W. Hu, *L. Matter. Chem.*, 2007, 17, 1421, 1426; (f) D.
- 10 and W. Hu, J. Mater. Chem., 2007, **17**, 1421–1426; (f) D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Walter, R. Gaudiana and C. Brabec, Adv. Mater., 2006, **18**, 2884–2889.
- For selected examples, see: (a) D. Alberico, M. E. Scott and M. Lautens, *Chem. Rev.*, 2007, **107**, 174–238; (b) T. W. Lyons and M. S. Sanford, *Chem. Rev.*, 2010, **110**, 1147–1169; (c) B. Gabriele, R.
- 18 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 20 19 S.-L. Zhang, Y. Fu, R. Shang, Q.-X. Guo and L. Liu, J. Am. Chem. Soc. 2010, 132, 638–646.
- 20 R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, *Angew. Chem. Int. Ed.*, 2009, **48**, 9350–9354.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
 Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
 Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
 Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
 Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
 Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E.
- Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starov-erov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
- Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, **2013**.
- 40 22 Y.-F. Yang, G.-J. Cheng, P. Liu, D. Leow, T.-Y. Sun, P. Chen, X. Zhang, J.-Q. Yu, Y.-D. Wu and K. N. Houk, *J. Am. Chem. Soc.*, 2014, **136**, 344–355.
- 23 A. Gordillo, M. A. Ortuño, C. López-Mardomingo, A. Lledós, G. Ujaque and E. Jesús, J. Am. Chem. Soc., 2013, 135, 13749–13756.
- 45 24 C. Zheng, C.-X. Zhuo and S.-L. You, J. Am. Chem. Soc., 2014, 136, 16251–16259.
- 25 D. Andrae, U. Haussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta.*, 1990, 77, 123–141.
- 26 L. E. Roy, P. J. Hay and R. L. J. Martin, *Chem. Theory Comput.*, 2008, **4**, 1029–1031.
- 27 C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 1990, 94, 5523– 5527.
- 28 B. Y. Simkin and, I. Sheikhet, Ellis Horwood: London, 1995.
- 29 J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027–2094.
- 55 30 O. J. Tapia, Math. Chem., 1992, 10, 139-181.
- 31 J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3093.
- 32 Y. Takano and K. N. J. Houk, Chem. Theory Comput., 2005, 1, 70– 77.
- 60 33 B. Gabriele, R. Mancuso, E. Lupinacci, L. Veltri, G. Salerno and C. Carfagna, J. Org. Chem., 2011, 76, 8277–8286.