# Organic & Biomolecular Chemistry

Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/obc

# ARTICLE



# of

DOI: 10.1039/x0xx00000x

www.rsc.org/

Selective synthesis of functionalized pyrroles from 3-aza-1,5enynes<sup>†</sup>

Yingying Zhao, Haolong Wang, Xincheng Li, Dongping Wang, Xiaoyi Xin\* and Boshun Wan\*

2-Trifluoromethyl-5-(arylsulfonyl)methyl pyrroles and 2-trifluoromethyl-4-(arylsulfonyl)methyl pyrroles were selectively synthesized from trifluoromethyl-substituted 3-aza-1,5-enynes via cyclization/sulfonyl group migration cascade catalyzed by AgOOCCF<sub>3</sub> and CsOPiv, respectively. Alkyvinyl-substituted pyrroles were generated from seven-atoms skeleton 3-aza-1,5-enynes via aryl sulfinic acid elimination in the presence of Cs<sub>2</sub>CO<sub>3</sub>. Two ion-pair intermediates were proposed and a key intermediate, aza-diene-yne, was successfully isolated in the mechanistic studies.

### Introduction

Pyrroles are one of the most important heterocycles, are widely found as key constituents in numerous natural products, biologically active compounds, commercial and potent pharmaceutical drugs, and functional materials.<sup>1</sup> Although there have been numerous methods for their synthesis,<sup>2</sup> developing new synthetic methods and obtaining structural novel products with new substitution patterns remain attract the interest of chemists. As a continuation of our effort on 3-aza-1,5-enyne cycloisomerization reactions<sup>3</sup> and pyrrole ring constructions<sup>3a,3e,4</sup>, we report herein the synthesis of three kinds of functionalized pyrroles from 3-aza-1,5-enynes (Scheme 1).





It is well known that incorporation of trifluoromethyl group into organic molecules can significantly change their physical, chemical, and biological properties.<sup>5</sup> Among these useful trifluoromethyl-substituted compounds, trifluoromethyl pyrroles such as the insecticide chlorfenapyr<sup>6</sup>, antitumor compound<sup>7</sup>, and general anesthesia inducer<sup>8</sup>, have been shown to exhibit significant biological activities. Meanwhile, sulfones have been extensively used as key synthons in organic synthesis,<sup>9</sup> and compounds containing sulfone moiety also have evident bioactivity.<sup>10</sup> In addition, alkene is one of the most fundamental functional group in organic chemistry. Therefore, the pyrroles bearing the above mentioned functional groups reported in this article are highly functionalized and may have potential applications.

### **Results and discussion**

# Synthesis of 2-trifluoromethyl-5-(arylsulfonyl)methyl pyrroles 2.

3-Aza-1,5-enyne 1a was chosen as the model substrate to screen the reaction conditions (Table 1). When 1a was heated in DMF at 100 °C, the desired pyrrole 2a was generated in 35% HPLC yield (entry 1). We reasoned that coin metals, gold, copper, or silver, may catalyze this reaction because these metals are efficient catalysts in transforming polyunsaturated substrates.<sup>1b,11</sup> When 10 mol% Au(I) or Au(III) was added, however, no improved efficiency was observed (entries 2-5). To our delight, higher yields were presented when copper salts were used as catalyst (54–73%, entries 6–9). Twenty kinds of silver salts [both (Ag(I) and Ag(II)] were also screened (entries 10-29), and among these silver salts, AgOOCCF<sub>3</sub> exhibited the highest activity (86% HPLC yield, entry 27). When 10 mol% AgOOCCF<sub>3</sub> was used as catalyst, changing the solvent afforded inferior results (entries 30-37). Decreasing the amount of AgOOCCF<sub>3</sub> from 10 mol% to 5 mol% did not decrease the yield (entry 38 versus entry 27). Using of 5 mol% AgOOCCF<sub>3</sub> as catalyst, neither lowering the reaction temperature to 80 °C (entry 39) nor elevating the temperature to 120 °C (entry 40) affect the yield obviously. Therefore, the following conditions were eventually chosen for subsequent studies: AgOOCCF<sub>3</sub> (5 mol%) in DMF at 80 °C under argon atmosphere for 24 hours (entry 39).

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. E-mail: bswan@dicp.ac.cn; xyxin@dicp.ac.cn

 $<sup>\</sup>dagger$  Electronic Supplementary Information (ESI) available: NMR spectra of all compounds, and crystallographic information files (CIF) for compounds **3a** and **5m**. See DOI: 10.1039/x0xx00000x

| Entry catalyst (x mol%) Solvent Temp Time Yield<br>(°C) (h) (%) <sup>b</sup> | Table 1 | Screening of the react<br>Ph<br>$CO_2Me$<br>Ph<br>$CO_2Me$<br>$CF_3$<br>Ts<br><b>1a</b> | tion conditions for<br>catalyst (x mol%)<br>solvent, temp, time | the synthesi<br>Ph<br>Ph<br>Ph<br>Ts | s of pyrrol<br>CO <sub>2</sub> N<br>N CF<br>H<br><b>2a</b> | les <b>2a</b><br>Ne       |
|------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|------------------------------------------------------------|---------------------------|
|                                                                              | Entry   | catalyst (x mol%)                                                                       | Solvent                                                         | Temp<br>(°C)                         | Time<br>(h)                                                | Yield<br>(%) <sup>b</sup> |

|    |                                                               |             | ( C) | (1) | (/0) |
|----|---------------------------------------------------------------|-------------|------|-----|------|
| 1  | -                                                             | DMF         | 100  | 24  | 35   |
| 2  | AuCl (10)                                                     | DMF         | 100  | 24  | 14   |
| 3  | Ph₃PAuCl (10)                                                 | DMF         | 100  | 24  | 33   |
| 4  | IPrAuCl (10)                                                  | DMF         | 100  | 24  | 29   |
| 5  | AuCl <sub>3</sub> (10)                                        | DMF         | 100  | 24  | 10   |
| 6  | CuOAc (10)                                                    | DMF         | 100  | 24  | 73   |
| 7  | [(CH <sub>3</sub> CN) <sub>4</sub> Cu]PF <sub>6</sub><br>(10) | DMF         | 100  | 24  | 61   |
| 8  | CuBr <sub>2</sub> (10)                                        | DMF         | 100  | 24  | 73   |
| 9  | Cu(OTf) <sub>2</sub> (10)                                     | DMF         | 100  | 24  | 54   |
| 10 | AgI (10)                                                      | DMF         | 100  | 24  | 42   |
| 11 | AgBr (10)                                                     | DMF         | 100  | 24  | 46   |
| 12 | AgVO <sub>3</sub> (10)                                        | DMF         | 100  | 24  | 56   |
| 13 | Ag <sub>3</sub> PO <sub>4</sub> (10)                          | DMF         | 100  | 24  | 64   |
| 14 | AgAsF <sub>6</sub> (10)                                       | DMF         | 100  | 24  | 68   |
| 15 | AgNO <sub>3</sub> (10)                                        | DMF         | 100  | 24  | 69   |
| 16 | AgF (10)                                                      | DMF         | 100  | 24  | 78   |
| 17 | AgPF <sub>6</sub> (10)                                        | DMF         | 100  | 24  | 79   |
| 18 | AgOTf (10)                                                    | DMF         | 100  | 24  | 77   |
| 19 | Ag <sub>2</sub> O (10)                                        | DMF         | 100  | 24  | 79   |
| 20 | Ag <sub>2</sub> WO <sub>4</sub> (10)                          | DMF         | 100  | 24  | 73   |
| 21 | Ag <sub>2</sub> CO <sub>3</sub> (10)                          | DMF         | 100  | 24  | 74   |
| 22 | Ag <sub>2</sub> SO <sub>4</sub> (10)                          | DMF         | 100  | 24  | 72   |
| 23 | AgOAc (10)                                                    | DMF         | 100  | 24  | 78   |
| 24 | AgBF <sub>4</sub> (10)                                        | DMF         | 100  | 24  | 82   |
| 25 | AgNTf <sub>2</sub> (10)                                       | DMF         | 100  | 24  | 82   |
| 26 | AgSbF <sub>6</sub> (10)                                       | DMF         | 100  | 24  | 84   |
| 27 | AgOOCCF <sub>3</sub> (10)                                     | DMF         | 100  | 24  | 86   |
| 28 | AgF <sub>2</sub> (10)                                         | DMF         | 100  | 24  | 78   |
| 29 | AgO (10)                                                      | DMF         | 100  | 24  | 70   |
| 30 | AgOOCCF <sub>3</sub> (10)                                     | $CH_2CI_2$  | 100  | 24  | 15   |
| 31 | AgOOCCF <sub>3</sub> (10)                                     | acetone     | 100  | 24  | 34   |
| 32 | AgOOCCF <sub>3</sub> (10)                                     | THF         | 100  | 24  | 40   |
| 33 | AgOOCCF <sub>3</sub> (10)                                     | 1,4-dioxane | 100  | 24  | 54   |
| 34 | AgOOCCF $_3$ (10)                                             | DMSO        | 100  | 24  | 56   |
| 35 | AgOOCCF $_3$ (10)                                             | toluene     | 100  | 24  | 56   |
| 36 | AgOOCCF $_3$ (10)                                             | NMP         | 100  | 24  | 68   |
| 37 | AgOOCCF <sub>3</sub> (10)                                     | MeCN        | 100  | 24  | 83   |
|    |                                                               |             |      |     |      |

| 38 | AgOOCCF <sub>3</sub> (5) | DMF | 100 | 24 | 86 |
|----|--------------------------|-----|-----|----|----|
| 39 | AgOOCCF <sub>3</sub> (5) | DMF | 80  | 24 | 85 |
| 40 | AgOOCCF <sub>3</sub> (5) | DMF | 120 | 7  | 84 |
| ~  | h                        |     |     |    |    |

 $^{a}$  In 0.1 mmol scale.  $^{b}$  HPLC yields using naphthalene as an internal standard.

We next explored the scope and generality of this reaction, and the results were given in Table 2. Both electron-deficient and electron-rich on aromatic groups  $R^1$  were all well tolerated, (entries 1–4 and 6–10). Fused ring was also suitable for this process (entry 11). However, 2-MeO-substituted subtract **1e** gave an inseparable mixture (entry 5), and alkyl group ( $R^1$ ) was not tolerated (entry 12). Groups ( $R^2$ ) directly connected to the alkyne moiety containing both aryl (entries 13–17) and alkyl (entries 18–20) substituents were also tolerated. The substitutes on  $R^3$  had slight impact on product yields (entry 7 versus entry 21, entry 9 versus entry 22).

**Table 2.** Scope of the synthesis of pyrroles **2**<sup>*a*</sup>

|                    | $R^2$   |                        |                                   | <b>D</b> <sup>2</sup>             | CO-Me     |                  |
|--------------------|---------|------------------------|-----------------------------------|-----------------------------------|-----------|------------------|
|                    |         | _CO <sub>2</sub> Me    | AgOOCCF3 (5 mol                   | %) <sub>P1</sub>                  |           |                  |
|                    |         |                        | DMF, Ar, 80 °C, 24                | h N                               | CF3       |                  |
|                    | R' N    | $1 CF_3$               |                                   | R <sup>3</sup> O₂Ś H              |           |                  |
|                    | 1       |                        |                                   | 2                                 |           |                  |
| Entry              | 1       | $R^1$                  | R <sup>2</sup>                    | R <sup>3</sup>                    | 2         | Yield            |
|                    |         |                        |                                   |                                   |           | (%) <sup>b</sup> |
| 1                  | 1a      | Ph                     | Ph                                | $4-MeC_6H_4$                      | 2a        | 84               |
| 2                  | 1b      | $2-MeC_6H_4$           | Ph                                | $4-MeC_6H_4$                      | 2b        | 80               |
| 3                  | 1c      | $3-MeC_6H_4$           | Ph                                | $4-MeC_6H_4$                      | 2c        | 67               |
| 4                  | 1d      | $4-MeC_6H_4$           | Ph                                | $4-MeC_6H_4$                      | 2d        | 73               |
| 5                  | 1e      | 2-                     | Ph                                | $4-MeC_6H_4$                      | 2e        | _ <sup>c</sup>   |
|                    |         | $MeOC_6H_4$            |                                   |                                   |           |                  |
| 6                  | 1f      | $2-FC_6H_4$            | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | 2f        | 84               |
| 7                  | 1g      | $4-FC_6H_4$            | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | 2g        | 77               |
| 8                  | 1h      | $2-CIC_6H_4$           | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | 2h        | 92               |
| 9                  | 1i      | $2-BrC_6H_4$           | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | <b>2i</b> | 83               |
| 10                 | 1j      | $2-CF_3C_6H_4$         | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | 2j        | 69               |
| 11                 | 1k      | 1-                     | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | 2k        | 70               |
|                    |         | naphthyl               |                                   |                                   |           |                  |
| 12                 | 11      | <sup>′</sup> Pr        | Ph                                | 4-MeC <sub>6</sub> H <sub>4</sub> | 21        | N.R.             |
| 13                 | 1m      | Ph                     | $2-MeC_6H_4$                      | 4-MeC <sub>6</sub> H <sub>4</sub> | 2m        | 78               |
| 14                 | 1n      | Ph                     | 3-MeC <sub>6</sub> H <sub>4</sub> | 4-MeC <sub>6</sub> H <sub>4</sub> | 2n        | 84               |
| 15                 | 10      | Ph                     | $4-MeC_6H_4$                      | 4-MeC <sub>6</sub> H <sub>4</sub> | 20        | 86               |
| 16                 | 1p      | Ph                     | $4-FC_6H_4$                       | 4-MeC <sub>6</sub> H <sub>4</sub> | 2р        | 73               |
| 17                 | 1q      | Ph                     | $4-CIC_6H_4$                      | 4-MeC <sub>6</sub> H <sub>4</sub> | 2q        | 83               |
| 18                 | 1r      | Ph                     | "Pr                               | 4-MeC <sub>6</sub> H <sub>4</sub> | 2r        | 71               |
| 19                 | 1s      | Ph                     | "Bu                               | 4-MeC <sub>6</sub> H <sub>4</sub> | 2s        | 75               |
| 20                 | 1t      | Ph                     | Су                                | $4-MeC_6H_4$                      | 2t        | 47               |
| 21                 | 1u      | $4-FC_6H_4$            | Ph                                | Ph                                | 2u        | 71               |
| 22                 | 1v      | $2-BrC_6H_4$           | Ph                                | Ph                                | 2v        | 79               |
| <sup>°</sup> React | tion co | nditions: <b>1</b> (0, | 2 mmol). AgO                      | OCCF <sub>3</sub> (5 mol%)        | . DMF (   | 1 mL)            |

<sup>*a*</sup> Reaction conditions: **1** (0.2 mmol), AgOOCCF<sub>3</sub> (5 mol%), DMF (1 mL), 80 °C, 24 h, under argon atmosphere. <sup>*b*</sup> Isolated yields. <sup>*c*</sup> Inseparable mixture. <sup>*d*</sup> 140 °C; N.R. = no reaction.

A deuterium-labeling experiment was performed to explore the reaction mechanism. Substrate deuterated at the C4position (**1a-D**) was subjected to the standard reaction conditions (Scheme 2a), the deuterium atom was incorporated into the Ts-connecting carbon of the product (**2a-D**). This indicated that C–H bond at the C4-position did not cleavage during the reaction. A crossover experiment was also carried

out (Scheme 2b). 3-Aza-1,5-enynes 1g and 1v which bearing different substituents were subjected to react in the same reaction tube, and both normal products (2g and 2v) and crossover products (2u and 2i) were detected, suggesting that the sulfonyl group migration was in an intermolecular manner.



A plausible mechanism is proposed as shown in Scheme 3. 3-Aza-1,5-enyne **1** is transformed into intermediate **A** via an aza-Claisen rearrangement.<sup>3</sup> Followed by an imine-enamine isomerization generates intermediate **B**.<sup>13</sup> The intermediate **B** can go through different pathways under different conditions. In the absence of Ag(I) or other transition-metals, [2 + 2]cycloaddition gives the cyclobutenes **C** (Path a, Scheme 3).<sup>3c</sup> In contrast, in the presence of Ag(I) (Path b, Scheme 3), Ag(I) \_\_\_\_\_ activates one of the double bonds of the allene moiety to give intermediate **D**. Cyclization of **D** provides intermediate **E**. N–S bond cleavage generates intermediate **F** which is a combination of metallorganic compound and an organic cation. In the last step, the organic cation displaces the Ag(I) catalyst.



# Synthesis of 2-trifluoromethyl-4-(arylsulfonyl)methyl pyrroles 3.

After successfully obtain pyrroles **2**, we turned our attentions to synthesize another kind of functionalized pyrroles, 4-(arylsulfonyl)-methyl-2-(trifluoromethyl)-pyrroles **3**. Similar to our previous work, <sup>3a</sup> base is needed in this reaction (Table 3). In the absence of a base, the desired pyrrole **3a** was

not detedcted (entry 1). When 10 mol% Cs<sub>2</sub>CO<sub>3</sub> was used as catalyst, the product 3a was generated in 48% HPLC yield (entry 2). The structure of 3a was unambiguously confirmed by X-ray crystal diffraction analysis.<sup>12</sup> NaOMe and NaO<sup>t</sup>Bu afforded inferior yields (entries 3 and 4). The use of LiHMDS and KOAc increased the yield of 3a to 64% and 70%, respectively (entries 5 and 6). Organic base, DBU and DABCO, afforded moderate yields (entries 7 and 8). To our delight, CsOPiv exhibited higher performance, and 3a was generated in 80% yield (entry 9). Lowering or elevating the reaction temperature did not increase the yield (entries 10 and 11). The reactions carried out in solvents such as CH<sub>2</sub>Cl<sub>2</sub>, toluene, 1,4dioxane, and 1,2-dichlororehane (DCE) were very sluggish (entries 12-15). Further screening the solvents (MeCN, THF, acetone, and DMSO) demonstrated that DMSO afforded a very slight high yield (81%, entry 19) than DMF (80%, entry 9). Considering that DMF was easily handled than DMSO, we still use DMF as solvent. The optimized reaction conditions were as following: 10 mol% of CsOPiv as catalyst, DMF as solvent, at 100 °C for 24 hours.

| <b>Table 3</b> Screening of the reaction conditionsfor the synthesis of pyrroles 3 <sup>a</sup> |                            |                                          |         |          |                   |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|---------|----------|-------------------|--|--|
|                                                                                                 | Ph                         |                                          |         | Ph       |                   |  |  |
|                                                                                                 |                            | <sup>O</sup> ₂ <sup>Me</sup> catalvst (1 | 0 mol%) | Ts-      | 2Me               |  |  |
|                                                                                                 | ∏ ∏                        |                                          |         |          |                   |  |  |
|                                                                                                 |                            | 3 SOIVENIL, LE                           | mp, ume | Phr Nr C | /-3               |  |  |
|                                                                                                 | Ts<br><b>1a</b>            |                                          |         | 3a       |                   |  |  |
| Entry                                                                                           | Catalyst                   | Solvent                                  | Temp    | Time     | Yield             |  |  |
|                                                                                                 |                            |                                          | (°C)    | (h)      | (%) <sup>b</sup>  |  |  |
| 1                                                                                               | -                          | DMF                                      | 100     | 24       | N.D. <sup>c</sup> |  |  |
| 2                                                                                               | $Cs_2CO_3$                 | DMF                                      | 100     | 24       | 48                |  |  |
| 3                                                                                               | NaOMe                      | DMF                                      | 100     | 24       | 36                |  |  |
| 4                                                                                               | NaO <sup>t</sup> Bu        | DMF                                      | 100     | 24       | 46                |  |  |
| 5                                                                                               | LiHMDS                     | DMF                                      | 100     | 24       | 64                |  |  |
| 6                                                                                               | KOAc                       | DMF                                      | 100     | 24       | 70                |  |  |
| 7                                                                                               | DBU                        | DMF                                      | 100     | 24       | 50                |  |  |
| 8                                                                                               | DABCO                      | DMF                                      | 100     | 24       | 61                |  |  |
| 9                                                                                               | CsOPiv                     | DMF                                      | 100     | 24       | 80                |  |  |
| 10                                                                                              | CsOPiv                     | DMF                                      | 80      | 48       | 77                |  |  |
| 11                                                                                              | CsOPiv                     | DMF                                      | 120     | 6        | 73                |  |  |
| 12                                                                                              | CsOPiv                     | $CH_2CI_2$                               | 100     | 24       | 7                 |  |  |
| 13                                                                                              | CsOPiv                     | toluene                                  | 100     | 24       | $N.D.^{c}$        |  |  |
| 14                                                                                              | CsOPiv                     | 1,4-dioxane                              | 100     | 24       | 7                 |  |  |
| 15                                                                                              | CsOPiv                     | DCE                                      | 100     | 24       | 4                 |  |  |
| 16                                                                                              | CsOPiv                     | MeCN                                     | 100     | 24       | 66                |  |  |
| 17                                                                                              | CsOPiv                     | THF                                      | 100     | 24       | 37                |  |  |
| 18                                                                                              | CsOPiv                     | acetone                                  | 100     | 24       | 65                |  |  |
| 19                                                                                              | CsOPiv                     | DMSO                                     | 100     | 24       | 81                |  |  |
| <sup>a</sup> In 0.1 mmol scale. <sup>b</sup> HPLC yields using naphthalene as an internal       |                            |                                          |         |          |                   |  |  |
| standar                                                                                         | d. <sup>c</sup> N.D. = not | t detected by H                          | PLC.    |          |                   |  |  |
|                                                                                                 |                            |                                          |         |          |                   |  |  |

Following the optimized conditions, we next explored the scope and limitation of this reaction (Table 4). Both electron-deficient and electron-rich groups on aromatic groups ( $R^1$  and  $R^2$ ) were tolerated, gave moderate to good yields (entries 1–12). However, 2-Me-C<sub>6</sub>H<sub>4</sub>, 2-MeO-C<sub>6</sub>H<sub>4</sub>, and 1-naphthyl-substituted 3-aza-1,5-enynes (**1b**, **1e**, and **1k**, respectively) generated crude products which were very hard to be purified (entries 2, 5 and 11). Alkyl group ( $R^1$ ) was not tolerated in this

ARTICLE

reaction (entry 12). When  $R^2$  was alkyl, a very complicated mixture was obtained and no major product was isolated (entries 18–20). The substitutes on  $R^3$  had no significant impact on product yields (entry 7 versus entry 21, entry 9 versus entry 22).

| Table 4 Scope of the Synthesis of Pyrroles 3 <sup>a</sup>                      |                  |                     |                |                                  |                    |                   |
|--------------------------------------------------------------------------------|------------------|---------------------|----------------|----------------------------------|--------------------|-------------------|
|                                                                                | R <sup>2</sup>   |                     |                | R <sup>2</sup>                   |                    |                   |
|                                                                                |                  | _CO₂Me              |                | R <sup>3</sup> O <sub>2</sub> S- | CO <sub>2</sub> Me |                   |
|                                                                                |                  |                     | Piv (10 mol%)  |                                  |                    |                   |
|                                                                                | R <sup>1</sup> N | CF <sub>3</sub> DMF | , 100 °C, 24 h | R' N                             | CF3                |                   |
|                                                                                | 50               | $J_2 R^3$           |                | H<br>3                           |                    |                   |
| Entry                                                                          | 1                | $R^1$               | R <sup>2</sup> | R <sup>3</sup>                   | 3                  | Yield             |
| ,                                                                              |                  |                     |                |                                  |                    | (%) <sup>b</sup>  |
| 1                                                                              | 1a               | Ph                  | Ph             | $4-MeC_6H_4$                     | 3a                 | 77                |
| 2                                                                              | 1b               | $2-MeC_6H_4$        | Ph             | $4-MeC_6H_4$                     | 3b                 |                   |
| 3                                                                              | 1c               | $3-MeC_6H_4$        | Ph             | $4-MeC_6H_4$                     | 3c                 | 73                |
| 4                                                                              | 1d               | $4-MeC_6H_4$        | Ph             | $4-MeC_6H_4$                     | 3d                 | 58                |
| 5                                                                              | 1e               | $2-MeOC_6H_4$       | Ph             | $4-MeC_6H_4$                     | 3e                 | _c                |
| 6                                                                              | 1f               | $2-FC_6H_4$         | Ph             | $4-MeC_6H_4$                     | 3f                 | 53                |
| 7                                                                              | 1g               | $4-FC_6H_4$         | Ph             | $4-MeC_6H_4$                     | 3g                 | 60                |
| 8                                                                              | 1h               | $2-CIC_6H_4$        | Ph             | $4-MeC_6H_4$                     | 3h                 | 62                |
| 9                                                                              | 1i               | $2-BrC_6H_4$        | Ph             | $4-MeC_6H_4$                     | 3i                 | 57                |
| 10                                                                             | 1j               | $2-CF_3C_6H_4$      | Ph             | $4-MeC_6H_4$                     | 3j                 | 78                |
| 11                                                                             | 1k               | 1-naphthyl          | Ph             | $4-MeC_6H_4$                     | 3k                 | <u>-</u> <i>c</i> |
| 12                                                                             | 11               | <sup>′</sup> Pr     | Ph             | $4-MeC_6H_4$                     | 31                 | N.R. <sup>d</sup> |
| 13                                                                             | 1m               | Ph                  | $2-MeC_6H_4$   | $4-MeC_6H_4$                     | 3m                 | 81                |
| 14                                                                             | 1n               | Ph                  | $3-MeC_6H_4$   | $4-MeC_6H_4$                     | 3n                 | 82                |
| 15                                                                             | 10               | Ph                  | $4-MeC_6H_4$   | $4-MeC_6H_4$                     | 30                 | 69                |
| 16                                                                             | 1p               | Ph                  | $4-FC_6H_4$    | $4-MeC_6H_4$                     | Зр                 | 73                |
| 17                                                                             | 1q               | Ph                  | $4-CIC_6H_4$   | $4-MeC_6H_4$                     | Зq                 | 75                |
| 18                                                                             | 1r               | Ph                  | "Pr            | $4-MeC_6H_4$                     | 3r                 | _ <sup>e</sup>    |
| 19                                                                             | 1s               | Ph                  | "Bu            | $4-MeC_6H_4$                     | 3s                 | _ <sup>e</sup>    |
| 20                                                                             | 1t               | Ph                  | Су             | $4-MeC_6H_4$                     | 3t                 | _ <sup>e</sup>    |
| 21                                                                             | 1u               | $4-FC_6H_4$         | Ph             | Ph                               | 3u                 | 67                |
| 22                                                                             | 1v               | $2-BrC_6H_4$        | Ph             | Ph                               | 3v                 | 57 <sup>f</sup>   |
| $^{a}$ Reaction conditions: <b>1</b> (0.2 mmol), CsOPiv (10 mol%), DMF (1 mL), |                  |                     |                |                                  |                    |                   |

100 °C, 24 h, under argon atmosphere. <sup>b</sup> Isolated yields. <sup>c</sup> Inseparable mixture. <sup>d</sup> N.R. = no reaction. <sup>e</sup> Very complicated mixtures. <sup>f</sup> In 0.4 mmol scale.

The proposed mechanism of this reaction (Scheme 4) was similar to our previous study.<sup>3a</sup> The propargyl moiety of **1** is transformed into allene **H** firstly. One of the double bonds of the allene moiety of **H** attackes the carbon atom of olefin moiety affords intermediate **I**. An ion pair **J** is formed through N–S bond cleavege. The recombination of the cation and the anion of **J** results in the formation of the C–S bond of **K**, and then **K** aromatized to pyrroles **3**.



To verify the ion pair intermediate J, a crossover experiment (Scheme 5a) and two competetion experiments (Scheme 5b and 5c) were carried out.<sup>3a</sup> Equimolecular of starting materials **1g** and **1v** was allowed to react in the same reaction tube under the standard conditions, not only the normal products (**3g** and **3v**) but also the crossover products (**3u** and **3i**) were observed (Scheme 5a). One equivalent of sodium phenyl sulfinate was added to reactant with **1i**, which has a *p*-tolyl group, besides the normal product **3i**, competition product **3v** was also observed (Scheme 5b). Meanwhile, the combination of one equivalent of sodium *p*-tolyl sulfinate and **1v**, which has a phenyl group, exhibited the same competitive reaction phenomenon (Scheme 5c). These results strongly support the prensence of the ion pair J.



### Synthesis of alkylvinyl pyrroles 5.

Along with the research continuation, we found that the propyl-/diester-substituted 3-aza-1,5-enyne **4m** can generated

a new kind of pyrrole product, 4-(but-1-en-1-yl)-pyrrole **5m**, in the presence of 20 mol% CsOPiv (eq. 1). The structure of **5m** was also unambiguously confirmed by X-ray crystal diffraction analysis.<sup>12</sup>



One carbon (C7 in 4m) of the propyl group was incorporated into the double bond of the product (eq. 1). Ts-H (ptoluenesulfinic acid) elimination occurred this in transformation, and the isolated yield of the product, 19%, was not more than the base amount, 20% (eq. 1). We reasoned that the eliminated p-toluenesulfinic acid may neutralize the base, CsOPiv, thus the product yield was not higher than the base amount. Therefore, stoichiometric base may be needed to neutralize the in situ generated acid. With this hypothesis in mind, we further screened the reaction conditions using butyl-substituted 3-aza-1,5-enyne 4a as model substrate in DMF (Table 5). In addition to 20 mol% Cs<sub>2</sub>CO<sub>3</sub>, one equivalent of a second base, such as NEt<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, NaOAc, NaOH, and DBU, were tested (entries 1-5), and the desired product was obtained in 31-69% yield (entries 1-5). When 1.2 equivalents of  $Cs_2CO_3$  was used without a second base, 5a could be generated in 70% yield (entry 6). Shortening reaction time from 12 hours to 4 hours obviously decrease the efficiency (entry 6 versus entry 7). If 1.2 equivalents of CsOPiv were employed instead of Cs2CO3, no higher yield was obtained (entry 8 versus entry 6). We next screened the solvent effect using 1.2 equivalent of Cs<sub>2</sub>CO<sub>3</sub>. Among the tested solvents (CH<sub>3</sub>OH, toluene, DCE, DMSO, 1,4-dioxane, CH<sub>3</sub>CN, and THF) (entries 9–15), THF was the best choice (80% yield, entry 15). Reducing the amount of Cs<sub>2</sub>CO<sub>3</sub> to 1.0 equivalent or increasing the amount to 1.5 equivalents slightly decreased the yield (entries 16 and 17 versus entry 15). Both elevating the temperature to 120 °C (entry 18) and lowering the reaction temperature to 60 °C (entry 20) slightly decreased the yield. Further lowering the reaction temperature to 25 °C, the yield was very low (5%, entry 21). When the reaction was carried out at 80 °C, the yield was highest among the tested conditions (81%, entry 19). Thus the following conditions were eventually chosen as the optimal reaction conditions: 1.2 equivalents of Cs<sub>2</sub>CO<sub>3</sub>, in THF at 80 °C for 12 hours under argon atmosphere (entry 19).



|    | Na <sub>2</sub> CO <sub>3</sub> (100)  |                    |     |    |                   |
|----|----------------------------------------|--------------------|-----|----|-------------------|
| э  | Cs <sub>2</sub> CO <sub>3</sub> (20) + | DME                | 100 | 12 | 60                |
| 5  | NaOAc (100)                            | DIVIF              | 100 | 12 | 00                |
| 1  | Cs <sub>2</sub> CO <sub>3</sub> (20) + | DME                | 100 | 12 | 69                |
| 4  | NaOH (100)                             | DIVIT              | 100 | 12 | 08                |
| 5  | Cs <sub>2</sub> CO <sub>3</sub> (20) + | DME                | 100 | 12 | 69                |
| 5  | DBU (100)                              | Divit              | 100 | 12 | 05                |
| 6  | Cs <sub>2</sub> CO <sub>3</sub> (120)  | DMF                | 100 | 12 | 70                |
| 7  | Cs <sub>2</sub> CO <sub>3</sub> (120)  | DMF                | 100 | 4  | 60                |
| 8  | CsOPiv (120)                           | DMF                | 100 | 12 | 60                |
| 9  | Cs <sub>2</sub> CO <sub>3</sub> (120)  | CH₃OH              | 100 | 12 | N.D. <sup>c</sup> |
| 10 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | toluene            | 100 | 12 | N.D.              |
| 11 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | DCE                | 100 | 12 | 5                 |
| 12 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | DMSO               | 100 | 12 | 16                |
| 13 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | 1,4-dioxane        | 100 | 12 | 38                |
| 14 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | CH <sub>3</sub> CN | 100 | 12 | 65                |
| 15 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | THF                | 100 | 12 | 80                |
| 16 | Cs <sub>2</sub> CO <sub>3</sub> (100)  | THF                | 100 | 12 | 77                |
| 17 | Cs <sub>2</sub> CO <sub>3</sub> (150)  | THF                | 100 | 12 | 76                |
| 18 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | THF                | 120 | 12 | 65                |
| 19 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | THF                | 80  | 12 | 81                |
| 20 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | THF                | 60  | 12 | 68                |
| 21 | Cs <sub>2</sub> CO <sub>3</sub> (120)  | THF                | 25  | 12 | 5                 |
|    |                                        |                    |     |    |                   |

<sup>*a*</sup> Reaction conditions: **4a** (0.1 mmol), solvent (1 mL), under argon atmosphere. <sup>*b*</sup> HPLC yields using naphthalene as an internal standard. <sup>*c*</sup> N.D. = not detected by HPLC.

With the optimized conditions in hand, we next explored the scope and limitations of this reaction (Table 6). Electronneutral group (entry 1), -donating groups (entries 2-4), withdrawing groups (entries 6–11) in aryl R<sup>1</sup> were tolerated, and the desired products were isolated with low to high yields (10-90%). However, the substrate 4b bearing 2-MeC<sub>6</sub>H<sub>4</sub> exhibited very low efficiency (10% yield, entry 2), and the substrate **4e** bearing 2-MeOC<sub>6</sub>H<sub>4</sub> gave a very compilcated mixture, the desired product 5e was not successfully isolated (entry 5). This probably is attributed to the steric factor. A fused ring was also suitable for this process (entry 12). Changing <sup>n</sup>Pr (R<sup>2</sup>) to Et had no significant effect on the yield (entry 13 versus entry 1). When  $R^2$  was phenyl, a Z/E = 1:1.4mixture 5n was obtained in 20% yield (entry 14). The electronic properties of the sulfonyl group  $(R^3)$  had a very slightly impact on the yield (entries 8, 15, and 16; the substrates 4h, 4o, and 4p generated the same product, labeled as 5h).



This journal is © The Royal Society of Chemistry 20xx

Accepted Manuscrig

k Biomolecular (

| 6  | 4f | 3-MeOC <sub>6</sub> H <sub>4</sub> | "Pr | 4-MeC <sub>6</sub> H <sub>4</sub> | 5f              | 90 |
|----|----|------------------------------------|-----|-----------------------------------|-----------------|----|
| 7  | 4g | $2-FC_6H_4$                        | "Pr | $4-MeC_6H_4$                      | 5g              | 82 |
| 8  | 4h | $4-FC_6H_4$                        | "Pr | $4-MeC_6H_4$                      | 5h              | 82 |
| 9  | 4i | $4-CIC_6H_4$                       | "Pr | $4-MeC_6H_4$                      | 5i              | 87 |
| 10 | 4j | $4-BrC_6H_4$                       | "Pr | $4-MeC_6H_4$                      | 5j              | 74 |
| 11 | 4k | $2-CF_3C_6H_4$                     | "Pr | $4-MeC_6H_4$                      | 5k              | 70 |
| 12 | 41 | 2-naphthyl                         | "Pr | $4-MeC_6H_4$                      | 51              | 79 |
| 13 | 4m | Ph                                 | Et  | $4-MeC_6H_4$                      | 5m              | 82 |
| 14 | 4n | Ph                                 | Ph  | $4-MeC_6H_4$                      | 5n <sup>d</sup> | 20 |
| 15 | 4o | $4-FC_6H_4$                        | "Pr | Ph                                | 5h              | 79 |
| 16 | 4p | $4-FC_6H_4$                        | "Pr | $4-CIC_6H_4$                      | 5h              | 78 |

<sup>*a*</sup> Reaction conditions: **4** (0.3 mmol),  $Cs_2CO_3$  (0.36 mmol), THF (3 mL), 80 °C, 12 h, under argon atmosphere. <sup>*b*</sup> Isolated yields. <sup>*c*</sup> Very complicated mixtures, the desired products was not successfully obtained. <sup>*d*</sup> A Z/E = 1:1.4 mixture.



After exploring the substrate scope, we then turned our attention to the mechanism (Scheme 6). Initially, the base abstracts the proton bound to C4 of the starting material 4 to generate anion intermediate L and <sup>+</sup>base-H species. There are</sup> two possible pathways (Path a and Path b) for the following reactions. In Path a, allene intermediate N is formed by giving back the proton of <sup>+</sup>base-H. Then intermediate N passes through intermediates similar to that described in Scheme 4, that is I'-K', to give pyrrole **O**.<sup>3a</sup> Follewed by elimination of R<sup>3</sup>SO<sub>2</sub>H (the final byproducts are R<sup>3</sup>SO<sub>2</sub>Cs and CsHCO<sub>3</sub>) to generate the pyrrole 5. This elimiantion propbly is an E2 process for the (Z)-isomer is the sole product. Another possilble pathway (Path b) is that reactant 4 firstly eliminates  $R^{3}SO_{2}H$  (the final byproducts are  $R^{3}SO_{2}Cs$  and  $CsHCO_{3}$ ) to form aza-dien-yne intermediate P (Path b). The base abatract a proton of P to give intermediate Q. There are also two pathways (Path ba and Path bb) for the following reactions of Q. In Path ba, directly cyclization to generate intermediate R, and returning the proton to give intermediate S. Then intermediate S passes through two isomeriazations to

generate the Z/E mixture product 5-Z/E. In Path bb, another kind of allene **U** is formed, then a  $6\pi$ -clectrocyclization occurs to give intermediate V. Intermediate V isomerized to pyridine 6. Unfortunately, we are failed to obtain the intermediate O. However, to our delight, we successfully isolated the intermediate Pa albeit in very low yield (8%) at a lower temparature (40 °C) and for a shorter reaction time (30 min) (Scheme 7a). When the compound Pa was used as starting material in the presence of 20 mol% of  $Cs_2CO_3$ , a Z/E = 1 : 1mixture pyrrole 5a-Z/E was obtained in 20% yield, accompanied with pyridine **6a**<sup>3d</sup> in 19% yield (Scheme 7b). In contrast, in the absence of the base  $(Cs_2CO_3)$ , no reaction took place, and recovering of the starting material Pa (Scheme 7c). The phenyl (R<sup>2</sup>)-substituted **4n** aslo generate a Z/E mixture **5n** and pyrrole **6n** under the standard conditions in 20%, and 9% yield, respectively (Scheme 7d). These mechanistic studies suggest that both Path a and Path b are plausible. For the substrates where R<sup>2</sup> was alkyl, Path a was dominant. In contrast, when R<sup>2</sup> was aryl, the raction probably mainly passed through Path b.



### Conclusions

In summary, we have developed efficient cyclization strategies for the synthesis of functionalized 2-trifluoromethyl-5-(arylsulfonyl)methyl pyrroles, 2-trifluoromethyl-4-(arylsulfonyl)methyl pyrroles, and alkyvinyl pyrroles from the versatile 3-aza-1,5-enynes. The chemoselectivity of these reactions was controlled by the reaction conditions and substitution patterns of the starting materials. In these three transfer processes, the C–S bond of sulfamide in the starting materials broke down via sulfonyl group migration or aryl sulfinic acid elimination. The reaction pathways of 3-aza-1,5-enynes such as aza-Claisen rearrangement/cyclization, propargyl-allene isomerization/ cyclization, propargyl-allene isomerization/cyclization/sulfinic

cyclization, propargyl-allene isomerization/cyclization/sulfinic acid elimination, and sulfinic acid elimination/cyclization, were proposed in the plausible mechanisms. And an important

intermediate, aza-diene-yne, was successfully isolated in the course of mechanism studies. These results maybe will provide new insight into the chemistry of enyne cycloisomerization.

### **Experimental section**

General Information. Solvents were treated to anhydrous prior to use according to the standard methods or purchased from commercial sources in anhydrous grade. All reactions were carried out under an atmosphere of argon using standard Schlenk techniques or in an argon filled glove-box. Column chromatography was carried out on silica gel (300-400 mesh) using a forced flow of eluent at 0.3–0.5 bar pressure. <sup>1</sup>H NMR,  $^{13}\mathrm{C}$  NMR and  $^{19}\mathrm{F}$  NMR were recorded at a 400 or 500 MHz spectrometers at room temperature. The chemical shifts for <sup>1</sup>H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with TMS resonance (0.00 ppm) as the internal standard. The chemical shifts for <sup>13</sup>C NMR were recorded in ppm downfield using the central peak of CDCl<sub>3</sub> (77.16 ppm) or (CD<sub>3</sub>)<sub>2</sub>CO (29.84 ppm) as the internal standard.<sup>14</sup> Coupling constants (J) are reported in Hz and refer to apparent peak multiplications. The abbreviations s, d, t, q and m stand for singlet, doublet, triplet, quartet and multiplet in that order. HRMS data were obtained with a HPLC-Q-TOF mass spectrometer (ESI).

General Procedure for Preparation the Starting Materials 3-Aza-1,5-enynes 1. 3-Aza-1,5-enynes 1 was prepared according literature<sup>3c</sup>: propargyl amine  $7^{15}$  was placed in a dried flask, CH<sub>2</sub>Cl<sub>2</sub> was added until the dissolution of the solid. Subsequenly, alkyne  $8^{16}$  (1.2 equiv) and Cs<sub>2</sub>CO<sub>3</sub> (20 mol%) was added. The resulting mixture was stirred at room temperature under argon atmosphere until the consummation of popargyl amines detected by TLC (usually 12 h). The solvent was evaporated under vacuum and the crude product was directly purified by silica gel flash column chromatography eluting with petroleum ether/ethyl acetate (20 : 1, v/v) to give the desired compounds 1. Compounds 1a–1t and 1a-D are known.<sup>3c</sup> Compounds 1u and 1v are new.



(*E*)-methyl4,4,4-trifluoro-3-(*N*-(1-(4-fluorophenyl)-3-phenylprop-2-yn-1-yl)-phen-ylsulfonamido)but-2-enoate (1u): white solid; 548.8 mg (in 5.0 mmol scale); 21% yield; mp 87–88 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 7.92 (m, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.57 – 7.50 (m, 4H), 7.38 – 7.27 (m, 3H), 7.25 – 7.15 (m, 2H), 7.05 (t, *J* = 8.6 Hz, 2H), 6.42 (s, 1H), 6.33 (s, 1H), 3.75 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.3 (d, *J* = 249.0 Hz),

162.4, 138.1, 133.9, 133.8, 131.7, 131.1 (d, J = 8.5 Hz), 130.4 (d, J = 3.2 Hz), 129.4, 129.3, 128.8, 128.7, 128.6, 121.3, 119.5 (q, J = 277.9 Hz), 115.8 (d, J = 21.9 Hz), 90.0, 83.3, 56.3, 52.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.73 (s, 3F), -111.98 (s, 1F); HRMS (Q-TOF, m/z) calcd for C<sub>26</sub>H<sub>23</sub>F<sub>4</sub>N<sub>2</sub>O<sub>4</sub>S [M + NH<sub>4</sub>]<sup>+</sup> 535.1309, found 535.1317.

### ARTICLE

(*E*)-methyl 3-(*N*-(1-(2-bromophenyl)-3-phenylprop-2-yn-1yl)phenylsulfonamido)-4,4,4-trifl- uorobut-2-enoate (1v): white solid; 1.10 g (in 5.0 mmol scale); 38% yield; mp 112–113 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 7.6 Hz, 2H), 7.66 – 7.54 (m, 3H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.39 – 7.28 (m, 4H), 7.28 – 7.17 (m, 3H), 6.84 (s, 1H), 6.55 (s, 1H), 3.75 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.4, 133.8, 133.6, 133.3, 132.1, 131.5, 131.2, 129.3, 129.2, 129.1, 128.9, 128.5, 127.6, 125.2, 121.2, 119.4 (q, *J* = 278.2 Hz), 89.7, 84.1, 56.7, 52.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -63.47; HRMS (Q-TOF, m/z) calcd for C<sub>26</sub>H<sub>23</sub>BrF<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S [M + NH<sub>4</sub>]<sup>+</sup> 595.0509, found 595.0523.

**General Procedure for Synthesis of Pyrroles 2.** To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, starting material **1** (0.2 mmol), AgOOCCF<sub>3</sub> (2.2 mg, 5 mol%) and DMF (1 mL) were added. The resulting mixture was stirred at 80 °C under argon protection for 24 h. After cooling down to room temperature, the solvent was removed under vacuum. The residue was directly purified by silica gel flash column chromatography eluting with petroleum ether/ethyl acetate (20 : 1, v/v) to give the desired pyrroles **2**.

Methyl 4-phenyl-5-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (2a): white solid; 86.1 mg; 84% yield; mp 152–153 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.10 (s, 1H), 7.41 – 7.32 (m, 7H), 7.30 – 7.18 (m, 5H), 6.72 – 6.62 (m, 2H), 5.17 (s, 1H), 3.62 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.6, 134.5, 132.0, 131.0, 129.91, 129.87, 129.7, 129.6, 129.4, 129.2, 128.4, 128.0, 127.9, 123.6 (q, *J* = 40.0 Hz), 122.7, 120.3 (q, *J* = 268.9 Hz), 114.9 (q, *J* = 1.9 Hz), 66.6, 51.6, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.67; HRMS (Q-TOF, m/z) calcd for  $C_{27}H_{23}F_3NO_4S^+$  [M + H]<sup>+</sup> 514.1294, found 514.1286.

Methyl 4-phenyl-5-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate- $d_6$  (2a-D): white solid; 87.1 mg; 84% yield; mp 151–152 °C;<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.08 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.31 – 7.17 (m, 5H), 6.81 – 6.57 (m, 2H), 5.17 (s, 0.03H), 3.62 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.6, 134.5, 132.0, 129.91, 129.88, 129.7, 128.4, 128.0, 127.9, 123.6 (q, J = 40.3 Hz), 122.7, 120.3 (q, J = 268.7 Hz), 114.9 (q, J = 2.4 Hz), 51.6, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.12; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>17</sub>D<sub>6</sub>F<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 520.1671, found 520.1674.

Methyl 4-phenyl-5-(*o*-tolyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (2b): white solid; 84.2 mg; 80% yield; mp 150–151 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.27 (s, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.20 (m, 7H), 7.05 (d, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 6.8 Hz, 2H), 5.53 (s, 1H), 3.62 (s, 3H), 2.41 (s, 3H), 1.69 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.6, 137.8, 134.8, 132.4, 131.2, 130.0, 129.9, 129.49, 129.45, 129.4, 128.8, 128.4, 128.1, 127.9, 126.9, 123.41 (q, *J* = 39.4 Hz), 123.36, 120.3 (q, *J* = 268.7 Hz), 114.9, 62.2, 51.6, 21.8, 19.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.67; HRMS (Q-TOF, m/z) calcd for  $C_{28}H_{25}F_3NO_4S^+$  [M + H]<sup>+</sup> 528.1451, found 528.1474.

Methyl4-phenyl-5-(m-tolyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate(2c): white solid;70.2 mg; 67% yield; mp 119–120 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)δ 10.05 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.31 – 7.27 (m, 1H),7.26 – 7.16 (m, 6H), 7.12 (d, J = 5.5 Hz, 2H), 6.71 – 6.61 (m, 2H),

Methvl

5.13 (s, 1H), 3.62 (d, J = 2.8 Hz, 3H), 2.42 (s, 3H), 2.33 (s, 3H);  $^{13}\text{C}$  NMR (100 MHz, CDCl\_3)  $\delta$  162.8, 145.5, 139.1, 134.7, 132.0, 130.9, 130.3, 130.2, 130.0, 129.9, 129.7, 129.2, 128.5, 128.0, 127.9, 126.7, 123.6 (q, J = 39.5 Hz), 122.8, 120.3 (q, J = 268.8 Hz), 114.9 (q, J = 1.9 Hz), 66.6, 51.6, 21.8, 21.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.13; HRMS (Q-TOF, m/z) calcd for  $C_{28}H_{25}F_{3}NO_{4}S^{+}[M + H]^{+}528.1451$ , found 528.1468.

Methyl 4-phenyl-5-(p-tolyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2d): white solid; 76.5 mg; 73% yield; mp 148–149 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.07 (s, 1H), 7.37 (t, J = 9.4 Hz, 3H), 7.24 – 7.15 (m, 8H), 6.76 - 6.59 (m, 2H), 5.14 (s, 1H), 3.61 (s, 3H), 2.41 (s, 3H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.5, 139.5, 134.7, 132.0, 130.0, 129.92, 129.85, 129.5, 129.2, 128.7, 128.4, 127.9, 127.8, 123.5 (q, J = 39.5 Hz), 122.9, 120.3 (q, J = 268.7 Hz), 114.9 (q, J = 2.0 Hz), 66.4, 51.6, 21.7, 21.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.09; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>25</sub>F<sub>3</sub>NO<sub>4</sub>S [M + H]<sup>+</sup> 528.1451, found 528.1467.

Methyl 5-((2-fluorophenyl)(tosyl)methyl)-4-phenyl-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2f): white solid; 89.8 mg; 84% yield; mp 157–158 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.15 (s, 1H), 7.61 (td, J = 7.6, 1.6 Hz, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.37 - 7.18 (m, 7H), 7.00 (ddd, J = 9.6, 8.3, 0.9 Hz, 1H), 6.76 – 6.66 (m, 2H), 5.61 (s, 1H), 3.63 (s, 3H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 160.6 (d, J = 249.9 Hz), 145.7, 134.2, 131.8, 131.5 (d, J = 8.7 Hz), 130.4 (d, J = 1.9 Hz), 130.1, 129.9, 129.8, 128.5, 127.94, 127.87, 125.1 (d, *J* = 3.7 Hz), 123.8 (q, J = 39.5 Hz), 121.9, 120.2 (q, J = 268.6 Hz), 118.8, 116.2 (q, J = 22.6 Hz), 115.0 (q, J = 2.2 Hz), 59.5, 59.5, 51.6, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.75 (s, 3F), -116.02 (s, 1F); HRMS (Q-TOF, m/z) calcd for  $C_{27}H_{22}F_4NO_4S^+$  [M + H]<sup>+</sup> 532.1200, found 532.1225.

5-((4-fluorophenyl)(tosyl)methyl)-4-phenyl-2-Methyl (trifluoromethyl)-1H-pyrrole-3-carboxylate (2g): white solid; 82.3 mg; 77% yield; mp 165–166 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.11 (s, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.26 - 7.20 (m, 4H), 7.11 - 7.00 (m, 2H), 6.65 (dt, J = 8.3, 1.9 Hz, 2H), 5.15 (s, 1H), 3.62 (s, 3H), 2.43 (s, 3H); <sup>13</sup>C NMR (100 MHz,  $CDCl_3$ )  $\delta$  163.3 (d, J = 250.0 Hz), 162.7, 145.7, 134.4, 131.9, 131.5 (d, J = 8.5 Hz), 130.0, 129.83, 129.79, 128.4, 128.00, 127.95, 126.8 (d, J = 3.4 Hz), 123.7 (q, J = 39.5 Hz), 122.4, 120.2 (q, J = 268.8 Hz), 116.3 (d, J = 21.8 Hz), 115.1 (q, J = 2.1 Hz), 65.9, 51.6, 21.7;  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.66 (s, 3F), -112.03 (s, 1F); HRMS (Q-TOF, m/z) calcd for  $C_{27}H_{22}F_4NO_4S^+$  [M + H]<sup>+</sup> 532.1200, found 532.1202.

Methyl 5-((2-chlorophenyl)(tosyl)methyl)-4-phenyl-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2h): white solid; 100.1 mg; 92% yield; mp 143–144°C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.29 (s, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.28 – 7.16 (m, 7H), 6.75 (d, J = 7.4 Hz, 2H), 6.02 (s, 1H), 3.63 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.8, 145.8, 135.4, 134.3, 131.9, 130.6, 130.3, 130.2, 130.0, 129.9, 129.6, 129.2, 128.7, 128.0, 127.8, 127.7, 123.7 (q, J = 39.5 Hz), 122.4, 120.3 (q, J = 268.7 Hz), 115.2 (q, J = 2.2 Hz), 62.0, 51.6, 21.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.12; HRMS (Q-TOF, m/z) calcd for  $C_{27}H_{22}CIF_{3}NO_{4}S^{+}[M + H]^{+}$  548.0905, found 548.0911.

5-((2-bromophenyl)(tosyl)methyl)-4-phenyl-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2i): white solid; 98.3 mg; 83% yield; mp 146–149 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

δ 10.31 (s, 1H), 7.77 (dd, J = 7.9, 1.5 Hz, 1H), 7.49 - 7.42 (m, 3H), 7.36 (td, J = 7.7, 1.1 Hz, 1H), 7.29 - 7.14 (m, 6H), 6.80 -6.71 (m, 2H), 6.06 (s, 1H), 3.62 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.8, 134.3, 133.6, 131.9, 130.8, 130.7, 130.34, 130.28, 130.1, 129.9, 128.7, 128.2, 128.1, 127.8, 126.4, 123.6 (q, J = 39.5 Hz), 122.4, 120.3 (q, J = 268.9 Hz), 115.1 (q, J = 2.1 Hz), 64.8, 51.6, 21.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.64; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>22</sub>BrF<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 592.0400, found 592.0403.

Methyl 4-phenyl-5-(tosyl(2-(trifluoromethyl)phenyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2j): white solid; 80.0 mg; 69% yield; mp 149–150 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.26 (s, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.60 (dd, J = 17.9, 7.8 Hz, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.45 (t, J = 7.7 Hz, 1H), 7.32 - 7.24 (m, 3H), 7.19 (dd, J = 11.5, 4.4 Hz, 2H), 6.58 (d, J = 7.2 Hz, 2H), 5.86 (s, 1H), 3.61 (s, 3H), 2.44 (s, 3H); <sup>13</sup>C NMR (100 MHz,  $CDCl_3$ )  $\delta$  162.8, 146.1, 134.5, 132.5, 131.6, 130.9, 130.6, 130.3, 130.1, 130.0, 129.8, 129.5, 129.1, 128.8, 127.9, 127.3 (q, J = 5.5 Hz), 123.9 (q, J = 39.5 Hz), 121.7, 120.6 (q, J = 275.0 Hz), 120.3 (q, J = 268.9 Hz), 115.4 (q, J = 2.0 Hz), 61.9, 51.6, 21.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -58.46 (s, 3F), -59.72 (s, 3F); HRMS (Q-TOF, m/z) calcd for  $C_{28}H_{22}F_6NO_4S^+$  [M + H]<sup>+</sup> 582.1168, found 582.1166.

5-(naphthalen-1-yl(tosyl)methyl)-4-phenyl-2-Methyl (trifluoromethyl)-1H-pyrrole-3-carboxylate (2k): white solid; 79.1 mg; 70% yield; mp 169–170 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.29 (s, 1H), 8.03 (d, J = 7.3 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.44 - 7.36 (m, 3H), 7.30 (t, J = 7.4 Hz, 1H), 7.22 - 7.15 (m, 3H), 7.14 - 7.08 (m, 3H), 6.66 (d, J = 7.8 Hz, 2H), 6.16 (s, 1H), 3.62 (s, 3H), 2.32 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.6, 134.7, 134.0, 132.2, 131.3, 130.23, 130.17, 129.8, 129.6, 129.1, 128.5, 128.0, 127.9, 127.44, 127.42, 126.8, 126.0, 125.4, 123.7 (q, J = 39.5 Hz), 123.3, 122.1, 120.3 (q, J = 268.7 Hz), 114.9 (q, J = 2.1 Hz), 61.0, 51.6, 21.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.60; HRMS (Q-TOF, m/z) calcd for  $C_{31}H_{25}F_3NO_4S^{+}$  [M + H]<sup>+</sup> 564.1451, found 564.1461.

Methyl 5-phenyl-4-(o-tolyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2m): white solid; 78% yield; 82.0 mg; mp 152–153 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.25 (s, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.43 (d, J = 8.2 Hz, 2H), 7.25 (dt, J = 21.7, 7.5 Hz, 7H), 7.05 (d, J = 7.3 Hz, 1H), 6.72 (d, J = 6.8 Hz, 2H), 5.53 (s, 1H), 3.62 (s, 3H), 2.41 (s, 3H), 1.69 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 145.6, 137.8, 134.8, 132.4, 131.2, 130.0, 129.9, 129.49, 129.46, 129.4, 128.8, 128.4, 128.1, 127.9, 126.9, 123.41 (q, J = 39.5 Hz), 123.36, 120.3 (q, J = 268.7 Hz), 114.9 (d, J = 2.1 Hz), 62.1, 51.6, 21.8, 19.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.11; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>25</sub>F<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 528.1451, found 528.1456.

Methyl 5-(phenyl(tosyl)methyl)-4-(m-tolyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2n): white solid; 88.5 mg; 84% yield; mp 132–133 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.08 (s, 1H), 7.41 - 7.33 (m, 7H), 7.22 (d, J = 8.2 Hz, 2H), 7.11 (dd, J = 11.8, 7.4 Hz, 2H), 6.52 (d, J = 7.1 Hz, 1H), 6.33 (s, 1H), 5.16 (s,

1H), 3.63 (s, 3H), 2.43 (s, 3H), 2.23 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.8, 145.5, 137.4, 134.7, 131.9, 131.2, 130.5, 130.0, 129.9, 129.6, 129.4, 129.3, 128.7, 128.5, 127.9, 127.1, 123.5 (q, *J* = 39.5 Hz), 122.7, 120.3 (q, *J* = 268.9 Hz), 114.9 (q, *J* = 2.1 Hz), 66.7, 51.6, 21.8, 21.4; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.10; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>28</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S [M + NH<sub>4</sub>]<sup>+</sup> 545.1716, found 545.1728.

### Methyl 5-(phenyl(tosyl)methyl)-4-(p-tolyl)-2-(trifluoro-

**methyl)-1***H*-**pyrrole-3-carboxylate (20)**: white solid; 90.3 mg; 86% yield; mp 122–123 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.07 (s, 1H), 7.41 – 7.32 (m, 7H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.55 (d, *J* = 8.0 Hz, 2H), 5.19 (s, 1H), 3.63 (s, 3H), 2.42 (s, 3H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.9, 145.5, 137.6, 134.6, 131.1, 129.9, 129.8, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.5, 123.5 (q, *J* = 39.5 Hz), 122.6, 120.3 (q, *J* = 268.8 Hz), 114.9 (q, *J* = 2.2 Hz), 66.6, 51.6, 21.7, 21.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.66; HRMS (Q-TOF, m/z) calcd for  $C_{28}H_{25}F_3NO_4S^+$  [M + H]<sup>+</sup> 528.1451, found 528.1471.

Methyl 4-(4-fluorophenyl)-5-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (2p): white solid; 78.0 mg; 73% yield; mp 173–174 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.13 (s, 1H), 7.43 – 7.27 (m, 7H), 7.21 (d, J = 8.1 Hz, 2H), 6.94 (t, J = 8.6 Hz, 2H), 6.67 (dd, J = 8.4, 5.5 Hz, 2H), 5.11 (s, 1H), 3.64 (s, 3H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 162.5 (d, J = 247.5 Hz), 145.7, 134.5, 131.7 (d, J = 8.1 Hz), 131.4, 131.0, 129.9, 129.53, 129.49, 129.3, 128.7, 128.5, 127.9 (d, J =3.3 Hz), 123.8 (q, J = 39.6 Hz), 122.9, 120.2 (q, J = 268.9 Hz), 115.04 (d, J = 21.5 Hz), 66.7, 51.3, 21.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.19 (s, 3F), -113.92 (s, 1F); HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>22</sub>F<sub>4</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 532.1200, found 532.1210.

Methyl 4-(4-chlorophenyl)-5-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (2q): white solid; 90.8 mg; 83% yield; mp 157–158 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.15 (s, 1H), 7.41 – 7.32 (m, 5H), 7.31 – 7.26 (m, 2H), 7.25 – 7.26 (m, 4H), 6.64 (d, J = 8.3 Hz, 2H), 5.10 (s, 1H), 3.64 (s, 3H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.6, 145.7, 134.4, 134.1, 131.4, 131.0, 130.5, 129.9, 129.5, 129.3, 128.5, 128.5, 128.33, 128.27, 123.9 (q, J = 39.5 Hz), 122.9, 120.2 (q, J = 269.0Hz), 114.9 (q, J = 2.0 Hz), 66.7, 51.7, 21.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.20; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.12; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>22</sub>ClF<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 548.0905, found 548.0908.

Methyl5-(phenyl(tosyl)methyl)-4-propyl-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate(2r): white solid;95.9 mg; 71% yield; mp 143–144 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)δ 10.02 (s, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.35 (s, 5H), 7.22 (d, J = 8.1 Hz, 2H), 5.37 (s, 1H), 3.80 (s, 3H), 2.46 – 2.29 (m, 5H) (3H +2H), 1.09 (dd, J = 14.7, 7.3 Hz, 2H), 0.66 (t, J = 7.4 Hz, 3H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>) δ 163.4, 145.7, 134.6, 131.2, 129.9,129.7, 129.4, 129.2, 129.0, 128.6, 123.5 (q, J = 39.1 Hz), 121.5,120.4 (q, J = 268.6 Hz), 114.6 (q, J = 1.9 Hz), 66.9, 51.5, 26.3,23.9, 21.7, 13.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.23; HRMS (Q-TOF, m/z) calcd for C<sub>24</sub>H<sub>28</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 497.1722, found497.1732.

Methyl4-butyl-5-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate(2s): white solid;74.4 mg; 75% yield; mp 89–90 °C;  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 

### ARTICLE

10.04 (s, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.36 (s, 5H), 7.23 (d, J = 8.1 Hz, 2H), 5.36 (s, 1H), 3.80 (s, 3H), 2.45 – 2.32 (m, 5H), 1.09 – 1.02 (m, 2H), 0.96 – 0.82 (m, 2H), 0.73 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.4, 145.7, 134.6, 131.1, 129.9, 129.7, 129.4, 129.3, 129.2, 128.6, 123.5 (q, J = 39.3 Hz), 121.4, 120.4 (q, J = 268.5 Hz), 114.5 (q, J = 1.9 Hz), 66.8, 51.5, 32.9, 24.1, 22.5, 21.7, 13.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.23; HRMS (Q-TOF, m/z) calcd for C<sub>25</sub>H<sub>30</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 511.1873, found 511.1922.

Methyl 4-cyclohexyl-5-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (2t): white solid; 48.8 mg; 47% yield; mp 151–152 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.04 (s, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.37 (s, 5H), 7.24 (d, *J* = 8.1 Hz, 2H), 5.60 (s, 1H), 3.81 (s, 3H), 2.79 – 2.67 (m, 1H), 2.39 (s, 3H), 1.62 (d, *J* = 6.3 Hz, 3H), 1.33 – 1.21 (m, 3H), 1.20 – 1.13 (m, *J* = 22.4, 5.9 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.1, 145.7, 134.8, 132.8, 131.1, 129.92, 129.89, 129.4, 129.2, 128.6, 122.9 (q, *J* = 39.0 Hz), 120.9, 120.5 (q, *J* = 268.2 Hz), 114.8 (q, *J* = 2.0 Hz), 67.4, 51.7, 36.0, 32.4, 32.2, 27.2, 27.1, 26.1, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.04; HRMS (Q-TOF, m/z) calcd for  $C_{27}H_{32}F_3N_2O_4S^+$  [M + NH<sub>4</sub>]<sup>+</sup> 537.2029, found 537.2046.

Methyl 5-((4-fluorophenyl)(phenylsulfonyl)methyl)-4phenyl-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (2u): white solid; 73.6 mg; 71% yield; mp 138–139 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.08 (s, 1H), 7.63 (t, J = 7.3 Hz, 1H), 7.52 (d, J = 7.3 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.31 (td, J = 8.9, 6.3 Hz, 3H), 7.23 (t, J = 7.4 Hz, 2H), 7.06 (t, J = 8.5 Hz, 2H), 6.63 (d, J = 7.0 Hz, 2H), 5.17 (s, 1H), 3.61 (s, 3H);  $^{13}\text{C}$  NMR (100 MHz, CDCl\_3)  $\delta$ 163.4 (d, J = 250.3 Hz), 162.7, 137.4, 134.5, 131.8, 131.6 (d, J = 8.5 Hz), 130.0, 129.9, 129.4, 128.4, 128.1, 128.0, 126.7 (d, J = 3.5 Hz), 123.9 (q, J = 39.6 Hz), 122.2, 120.2 (q, J = 268.9 Hz), 116.4 (d, J = 21.9 Hz), 115.1 (q, J = 2.2 Hz), 65.9, 51.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.17 (s, 3F), -111.24 (s, 1F); HRMS (Q-TOF, m/z) calcd for  $C_{26}H_{20}F_4NO_4S^+$  [M + H]<sup>+</sup> 518.1044, found 518.1050.

Methyl 5-((2-bromophenyl)(phenylsulfonyl)methyl)-4phenyl-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (2v): white solid; 91.1 mg; 79% yield; mp 146–147 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.26 (s, 1H), 7.77 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.65 – 7.56 (m, 3H), 7.47 – 7.37 (m, 4H), 7.29 – 7.17 (m, 4H), 6.79 – 6.71 (m, 2H), 6.07 (s, 1H), 3.63 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.8, 137.3, 134.6, 133.7, 131.9, 130.9, 130.7, 130.5, 130.4, 130.1, 129.3, 128.7, 128.3, 128.2, 127.9, 126.4, 123.8 (q, *J* = 39.5 Hz), 122.2, 120.3 (q, *J* = 268.7 Hz), 115.3 (q, *J* = 2.1 Hz), 64.8, 51.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.17; HRMS (Q-TOF, m/z) calcd for C<sub>26</sub>H<sub>20</sub>BrF<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 578.0243, found 578.0246.

**Procedure for the Crossover Experiment.** To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, **1g** (53.2 mg, 0.1 mmol), **1v** (57.8 mg, 0.1 mmol), AgOOCCF<sub>3</sub> (2.2 mg, 5 mol%), and DMF (0.5 mL) were added. The resulting mixture was stirred at 80 °C under argon atmosphere for 24 h. After cooling down to room temperature, the mixture was diluted with acetonitrile (5 mL), and the products were determined by HPLC. **2g:2v:2u:2i** = 25:27:21:27 (the ratio of peak area in HPLC of the corresponding product).

General Procedure for Synthesis of Pyrroles 3. To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, starting material 1 (0.2 mmol), CsOPiv (4.7 mg, 10 mol%) and DMF (1 mL) were added. The resulting mixture was stirred at 100 °C under argon protection for 24 h. After cooling down to room temperature, the solvent was removed under vacuum. The residue was directly purified by silica gel flash column chromatography eluting with petroleum ether/ethyl acetate (20 : 1, v/v) to give the desired pyrroles 3.

Methyl5-phenyl-4-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (3a): white solid;78.6 mg; 77% yield; mp 210–211 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) $\delta$  8.93 (s, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H),7.24 (d, J = 7.8 Hz, 2H), 7.19 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 8.1Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 7.05 – 6.96 (m, 4H), 6.68 (s, 1H),3.74 (s, 3H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.9,144.3, 136.1, 135.3, 133.1, 130.7, 130.3, 129.8, 129.3, 129.2,129.0, 127.93, 127.85, 127.6, 121.7 (q, J = 39.3 Hz), 120.3 (q, J= 268.7 Hz), 116.4 (q, J = 2.0 Hz), 115.3, 65.8, 51.7, 21.6; <sup>19</sup>FNMR (376 MHz, CDCl<sub>3</sub>) δ -59.11; HRMS (Q-TOF, m/z) calcd forC<sub>27</sub>H<sub>26</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 531.1560, found 531.1588.

Methyl4-(phenyl(tosyl)methyl)-5-(*m*-tolyl)-2-(trifluoromethyl)-1*H*-pyrrole-3- carboxylate (3c): white solid; 77.3 mg; 73% yield; mp 214–215 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.89 (s, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 7.5 Hz, 2H), 7.12 (t, *J* = 9.3 Hz, 5H), 7.03 (t, *J* = 7.5 Hz, 2H), 6.95 – 6.85 (m, 1H), 6.62 (d, *J* = 8.5 Hz, 2H), 3.73 (s, 3H), 2.36 (s, 3H), 2.19 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.9, 144.2, 137.5, 136.1, 135.6, 133.2, 131.2, 130.1, 129.9, 129.8, 129.3, 129.0, 127.9, 127.8, 127.6, 121.54 (q, *J* = 39.3 Hz), 127.51, 120.3 (q, *J* = 268.5 Hz), 116.4 (q, *J* = 2.0 Hz), 115.1, 65.8, 51.7, 21.6, 21.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.08; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>25</sub>F<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 528.1451, found 528.1453.

Methyl 4-(phenyl(tosyl)methyl)-5-(*p*-tolyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3d): white solid; 61.6 mg; 58% yield; mp 233–234 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.74 (s, 1H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 7.5 Hz, 2H), 7.12 (dd, *J* = 14.8, 7.7 Hz, 3H), 7.03 (t, *J* = 6.9 Hz, 4H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.67 (s, 1H), 3.76 (s, 3H), 2.36 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.9, 144.2, 139.3, 136.2, 135.4, 133.3, 130.6, 129.9, 129.3, 129.0, 128.7, 127.9, 127.6, 127.4, 121.6 (q, *J* = 39.4 Hz), 120.4 (q, *J* = 268.4 Hz), 116.4 (q, *J* = 2.3 Hz), 115.3, 65.9, 51.7, 21.7, 21.5; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.16; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>25</sub>F<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 528.1451, found 528.1459.

Methyl 5-(2-fluorophenyl)-4-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3f): white solid; 56.2 mg; 53% yield; mp 218–219 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.85 (s, 1H), 7.35 (d, J = 8.2 Hz, 2H), 7.17 – 7.11 (m, 1H), 7.07 – 7.03 (m, 2H), 6.99 – 6.89 (m, 4H), 6.98 – 6.90 (m, 3H), 6.67 (t, J = 9.0 Hz, 1H), 6.60 (s, 1H), 3.55 (s, 3H), 2.17 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.6, 161.0 (d, J = 249.1 Hz), 144.4, 135.9, 134.1, 132.9, 131.6 (d, J = 8.2 Hz), 129.6, 129.3, 129.1, 128.5, 127.9, 127.6, 123.6 (d, J = 3.6 Hz), 122.5 (q, J = 39.2 Hz), 120.2 (q, J = 268.6 Hz), 117.5, 116.2 (q, J = 2.1 Hz), 115.3, 115.1, 65.2, 51.6, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.39 (s, 3F), -112.29 (s, 1F); HRMS (Q-TOF, m/z) calcd for  $C_{27}H_{25}F_4N_2O_4S^+$  [M + NH<sub>4</sub>]<sup>+</sup> 549.1466, found 549.1487.

Methyl 5-(4-fluorophenyl)-4-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3g): white solid; 63.6 mg; 60% yield; mp 219–220 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.83 (s, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.18 (t, J = 8.2 Hz, 4H), 7.11 – 6.96 (m, 5H), 6.92 – 6.85 (m, 2H), 6.81 (s, 1H), 3.77 (s, 3H), 2.37 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.8, 163.4 (d, J= 249.4 Hz), 144.4, 136.0, 134.1, 133.1, 133.0, 129.7, 129.4, 129.1, 127.9, 127.6, 126.4 (d, J = 3.4 Hz), 121.8 (q, J = 39.4 Hz), 120.3 (q, J = 268.8 Hz), 116.24 (q, J = 2.3 Hz), 116.16, 114.9 (d, J= 21.7 Hz), 65.4, 51.7, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.22 (s, 3F), -111.54 (s, 1F); HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>21</sub>F<sub>4</sub>NO<sub>4</sub>SNa<sup>+</sup> [M + Na]<sup>+</sup> 554.1020, found 554.1023.

Methyl 5-(2-chlorophenyl)-4-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3h): white solid; 68.1 mg; 62% yield; mp 224–225 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.91 (s, 1H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 7.0 Hz, 1H), 7.30 (td, *J* = 7.7, 1.8 Hz, 1H), 7.26 – 7.20 (m, 1H), 7.19 – 7.10 (m, 5H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.92 (t, *J* = 7.7 Hz, 2H), 6.86 (s, 1H), 3.78 (s, 3H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.8, 144.3, 135.90, 135.86, 134.9, 132.1, 131.6, 131.0, 129.8, 129.4, 129.22, 129.20, 128.9, 127.8, 127.6, 126.2, 122.2 (q, *J* = 39.5 Hz), 120.3 (q, *J* = 268.4 Hz), 118.9, 115.9 (q, *J* = 2.2 Hz), 65.3, 51.7, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.30; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>25</sub>ClF<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 565.1170, found 565.1181.

Methyl 5-(2-bromophenyl)-4-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (3i): white solid; 67.7 mg; 57% yield; mp 211–212 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.86 (s, 1H), 7.59 (d, J = 8.2 Hz, 3H), 7.31 (t, J = 6.7 Hz, 2H), 7.26 – 7.20 (m, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.13 – 6.99 (m, 3H), 6.90 (dd, J = 13.4, 5.6 Hz, 3H), 3.79 (s, 3H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.8, 144.3, 135.9, 135.0, 133.1, 132.0, 131.8, 131.3, 131.2, 130.0, 129.4, 129.2, 127.8, 127.6, 126.7, 126.1, 122.1 (q, J = 39.3 Hz), 120.3 (q, J = 268.9 Hz), 116.1, 115.8 (q, J = 2.3 Hz), 65.4, 51.7, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.26; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>25</sub>BrF<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 609.0665, found 609.0678.

Methyl 4-(phenyl(tosyl)methyl)-2-(trifluoromethyl)-5-(2-(trifluoromethyl)phenyl)-1*H*-pyrrole-3-carboxylate (3j): white solid; 90.4 mg; 78% yield; mp 198–199 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.07 (s, 1H), 8.13 – 7.47 (m, 5H), 7.41 (d, *J* = 5.8 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 20.3 Hz, 4H), 6.81 (t, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.0, 144.3, 135.8, 131.1, 130.5, 130.3, 130.0, 129.93, 129.90, 129.4, 129.1, 128.0, 127.6, 127.5, 125.9, 125.8, 123.2 (q, *J* = 274.8 Hz), 122.1 (q, *J* = 39.4 Hz), 120.2 (q, *J* = 268.6 Hz), 116.3, 116.2 (q, *J* = 1.2 Hz), 65.5, 51.7, 21.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ 5-93.37; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>25</sub>F<sub>6</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 599.1434, found 599.1454.

### **Methyl 5-phenyl-4-(o-tolyl(tosyl)methyl)-2-(trifluoromethyl)-1H-pyrrole-3-carboxylate (3m)**: white solid; 85.3 mg; 81% yield; mp 212–213 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) $\delta$ 8.91 (s, 1H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.26 (dd, *J* = 9.9, 5.1 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.10 (t, *J* = 7.7 Hz, 2H), 7.00 – 6.86 (m, 5H), 6.55 – 6.47 (m, 1H), 3.74 (s, 3H), 2.36 (s,

3H), 2.07 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.7, 144.2, 136.9, 136.1, 135.8, 131.1, 131.0, 130.4, 130.1, 129.5, 129.32, 129.28, 128.9, 127.6, 127.4, 124.8, 121.4 (q, *J* = 39.3 Hz), 120.4 (q, *J* = 268.5 Hz), 116.2 (q, *J* = 2.2 Hz), 114.4, 62.6, 51.5, 21.6, 19.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -59.10; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>28</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 545.1716, found 545.1733.

Methyl 5-phenyl-4-(*m*-tolyl(tosyl)methyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3n): white solid; 86.3 mg; 82% yield; mp 185–186 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.83 (s, 1H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.23 (dd, *J* = 14.1, 6.2 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.05 (dd, *J* = 6.0, 4.6 Hz, 3H), 7.01 – 6.95 (m, 1H), 6.90 (t, *J* = 6.1 Hz, 2H), 6.71 (s, 1H), 3.76 (s, 3H), 2.36 (s, 3H), 2.07 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.9, 144.2, 137.4, 136.1, 135.2, 132.8, 131.0, 130.6, 130.5, 129.30, 129.27, 129.0, 128.4, 127.82, 127.76, 127.1, 121.6 (q, *J* = 39.3 Hz), 120.3 (q, *J* = 268.4 Hz), 116.3 (q, *J* = 4.1 Hz), 115.6, 65.6, 51.7, 21.7, 21.4; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.15; HRMS (Q-TOF, m/z) calcd for  $C_{28}H_{28}F_{3}N_{2}O_{4}S^{+}$  [M + NH<sub>4</sub>]<sup>+</sup> 545.1716, found 545.1735.

### Methyl 5-phenyl-4-(p-tolyl(tosyl)methyl)-2-(trifluoro-

**methyl)-1***H*-**pyrrole-3-carboxylate (3o)**: white solid; 72.5 mg; 69% yield; mp 226–227 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.82 (s, 1H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 2H), 7.17 – 7.08 (m, 4H), 7.08 – 7.00 (m, 2H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.62 (s, 1H), 3.76 (s, 3H), 2.36 (s, 3H), 2.21 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.9, 144.2, 137.3, 136.2, 135.2, 130.8, 130.4, 129.9, 129.7, 129.3, 129.2, 129.0, 128.6, 127.9, 121.6 (q, *J* = 39.2 Hz), 120.4 (q, *J* = 268.6 Hz), 116.5 (q, *J* = 1.8 Hz), 115.5, 65.7, 51.7, 21.7, 21.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.11; HRMS (Q-TOF, m/z) calcd for C<sub>28</sub>H<sub>28</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 545.1716, found 545.1731.

Methyl 4-((4-fluorophenyl)(tosyl)methyl)-5-phenyl-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3p): white solid; 77.9 mg; 73% yield; mp 221–222 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.76 (s, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.38 (t, J = 7.5 Hz, 1H), 7.28 – 7.14 (m, 6H), 7.08 (d, J = 7.3 Hz, 2H), 6.72 –6.65 (m, 3H), 3.78 (s, 3H), 2.37 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.9, 162.2 (d, J = 247.4 Hz), 144.5, 135.8, 135.2, 131.7 (d, J = 8.2 Hz), 130.9, 130.3, 129.5, 129.4, 129.0, 128.7 (d, J = 3.3 Hz), 128.1, 121.7 (d, J = 39.6 Hz), 120.3 (q, J = 268.5 Hz), 116.3, 115.3, 114.7 (d, J = 21.4 Hz), 65.0, 51.8, 21.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -59.20, -114.30; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>25</sub>F<sub>4</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> 549.1466, found 549.1478.

Methyl 4-((4-chlorophenyl)(tosyl)methyl)-5-phenyl-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3q): white solid; 82.2 mg; 75% yield; mp 219–220 °C; <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ) δ 11.64 (s, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.38 (t, J =7.4 Hz, 3H), 7.32 – 7.23 (m, 4H), 7.10 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 7.5 Hz, 2H), 6.53 (s, 1H), 3.77 (s, 3H), 2.39 (s, 3H); <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ) δ 164.6, 145.5, 137.1, 137.0, 133.8, 133.2, 132.3, 131.5, 131.2, 130.3, 129.7, 129.6, 128.53, 128.45, 122.0 (q, J = 39.3 Hz), 121.6 (q, J = 267.8 Hz), 117.5 (q, J = 2.1Hz), 114.9, 66.2, 52.0, 21.5; <sup>19</sup>F NMR (376 MHz, acetone- $d_6$ ) δ -58.96; HRMS (Q-TOF, m/z) calcd for C<sub>27</sub>H<sub>21</sub>ClF<sub>3</sub>NO<sub>4</sub>SNa<sup>+</sup> [M + Na]<sup>+</sup> 570.0724, found 570.0726.

Methyl 5-(4-fluorophenyl)-4-(phenyl(phenylsulfonyl)-

### ARTICLE

**methyl)-2-(trifluorometh-yl)-1***H***-pyrrole-3-carboxylate (3u):** white solid; 69.0 mg; 67% yield; mp 221–222 °C; <sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>) δ 11.64 (s, 1H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.34 (d, *J* = 7.4 Hz, 2H), 7.16 (t, *J* = 7.2 Hz, 1H), 7.12 – 7.04 (m, 4H), 6.99 (t, *J* = 8.8 Hz, 2H), 6.71 (s, 1H), 3.76 (s, 3H); <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>) δ 164.5, 164.0 (d, *J* = 246.7 Hz), 140.2, 135.8, 134.41, 134.35, 133.9 (d, *J* = 8.6 Hz), 130.5, 129.7, 129.6, 128.6, 128.4, 127.8 (d, *J* = 3.2 Hz), 122.1 (q, *J* = 39.2 Hz), 121.6 (q, *J* = 267.6 Hz), 117.3 (q, *J* = 2.0 Hz), 115.9, 115.2 (d, *J* = 21.8 Hz), 66.4, 52.0; <sup>19</sup>F NMR (376 MHz, acetone-*d*<sub>6</sub>) δ -59.07 (s, 3F), -114.05 (s, 1F); HRMS (Q-TOF, m/z) calcd for C<sub>26</sub>H<sub>19</sub>F<sub>4</sub>NO<sub>4</sub>SNa [M + Na]<sup>+</sup> 540.0863, found 540.0869.

### Methyl 5-(2-bromophenyl)-4-(phenyl(phenylsulfonylmethyl)-2-(trifluoromethyl)-1*H*-pyrrole-3-carboxylate (3v): white solid; 130.9 mg (in 0.4 mmol scale); 57% yield; mp 239–240 °C; <sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>) δ 11.70 (s, 1H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.35 (d, *J* = 4.5 Hz, 3H), 7.22 – 7.03 (m, 3H), 6.91 (d, *J* = 27.9 Hz, 3H), 3.80 (s, 3H); <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>) δ 164.5, 140.0, 135.7, 134.8, 134.6, 134.4, 132.7, 132.6, 131.9, 130.8, 129.8, 129.7, 128.4, 128.3, 127.4, 127.2, 122.3 (q, *J* = 39.0 Hz), 121.6 (q, *J* = 267.8 Hz), 116.7, 116.0, 66.3, 52.0; <sup>19</sup>F NMR (376 MHz, acetone-*d*<sub>6</sub>) δ -59.14; HRMS (Q-TOF, m/z) calcd for C<sub>26</sub>H<sub>19</sub>BrF<sub>3</sub>NO<sub>4</sub>SNa [M + Na]<sup>+</sup> 600.0062, found 600.0068.

Procedure for the Crossover and Competition Experiments. To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, 1g (53.2 mg, 0.1 mmol), 1v (57.8 mg, 0.1 mmol), CsOPiv (4.7 mg, 10 mol%), and DMF (0.5 mL) were added. The resulting mixture was stirred at 100 °C under argon atmosphere for 24 h. After cooling down to room temperature, the mixture was diluted with acetonitrile (5 mL), and the products were determined by HPLC. 3g:3v:3u:3i = 33:18:30:19 (the ratio of peak area in HPLC of the corresponding product). To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, 1i (59.2 mg, 0.1 mmol), PhSO<sub>2</sub>Na (16.4 mg, 0.1 mmol), CsOPiv (2.3 mg, 10 mol%), and DMF (0.5 mL) were added. The resulting mixture was stirred at 100 °C under argon atmosphere for 24 h. After cooling down to room temperature, the mixture was diluted with acetonitrile (5 mL), and the products were determined by HPLC. 3i:3v = 56:44 (the ratio of peak area in HPLC of the corresponding product).

To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, 1v (57.8 mg, 0.1 mmol), ToISO<sub>2</sub>Na (17.8 mg, 0.1 mmol), CsOPiv (2.3 mg, 10 mol%), and DMF (0.5 mL) were added. The resulting mixture was stirred at 100 °C under argon atmosphere for 24 h. After cooling down to room temperature, the mixture was diluted with acetonitrile (5 mL), and the products were determined by HPLC. **3v:3i** = 44:56 (the ratio of peak area in HPLC of the corresponding product).

General Procedure for Preparation the Starting Materials 3-Aza-1,5-enynes 4. Propargyl amines  $9^{15}$  and dimethyl but-2ynedioate 10 (1.2 equiv) were placed in a dried flask under argon atmosphere,  $CH_2Cl_2$  was added until the dissolution of the solid. Subsequenly,  $Cs_2CO_3$  (10 mol%) was added. The resulting mixture was stirred at room temperature until the

### ARTICLE

consummation of popargyl amines detected by TLC (usually 12 hours). The solvent was evaporated under vacuum and the crude product was directly purified by silica gel flash column chromatography eluting with petroleum ether/ethyl acetate (20 : 1, v/v)to give the desired compounds **4**. **4a**<sup>3a</sup> and **4m**<sup>3b</sup> are known compounds.



Dimethyl 2-(4-methyl-N-(1-(o-tolyl)hept-2-yn-1-yl)phenyl-

**sulfonamido)maleate (4b)**: white solid; 0.74 g (in 3.3 mmol scale); 45% yield; mp 104–105 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.85 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.08 (m, 3H), 6.41 (s, 1H), 6.32 (s, 1H), 3.65 (s, 3H), 3.58 (s, 3H), 2.57 (s, 3H), 2.44 (s, 3H), 2.07 – 1.92 (m, 2H), 1.34 – 1.23 (m, 4H), 0.86 (t, *J* = 6.8 Hz, 3H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.8, 164.0, 144.3, 138.5, 137.9, 135.3, 131.9, 131.0, 130.2, 129.3, 129.1, 128.8, 125.4, 123.5, 90.4, 75.1, 53.7, 52.6, 52.2, 30.3, 22.1, 21.7, 19.4, 18.5, 13.6; HRMS calcd for  $C_{27}H_{32}NO_6S$  [M+H]<sup>\*</sup> 498.1945, found 498.1931.

### Dimethyl 2-(4-methyl-N-(1-(m-tolyl)hept-2-yn-1-yl)phenyl-

**sulfonamido)maleate (4c)**: white solid; 0.72 g (in 5.0 mmol scale); 29% yield; mp 101–102 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.31 (m, 4H), 7.20 (t, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.25 (s, 1H), 6.04 (s, 1H), 3.76 (s, 3H), 3.59 (s, 3H), 2.45 (s, 3H), 2.33 (s, 3H), 2.08 – 1.98 (m, 2H), 1.34 – 1.23 (m, 4H), 0.87 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.1, 164.2, 144.5, 139.9, 138.2, 135.5, 134.3, 129.6, 129.2, 128.6, 128.3, 124.9, 116.3, 90.6, 74.0, 54.8, 52.9, 51.9, 30.3, 22.0, 21.7, 21.5, 18.4, 13.6; HRMS calcd for C<sub>27</sub>H<sub>32</sub>NO<sub>6</sub>S [M+H]<sup>+</sup> 498.1945, found 498.1936.

**Dimethyl 2-(4-methyl-***N***-(1-(***p***-tolyl)hept-2-yn-1-yl)phenyl-sulfonamido)maleate (4d)**: white solid; 1.26 g (in 5.0 mmol scale); 51% yield; mp 102–103 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.25 (s, 1H), 6.05 (s, 1H), 3.76 (s, 3H), 3.59 (s, 3H), 2.44 (s, 3H), 2.31 (s, 3H), 2.11 – 1.94 (m, 2H), 1.36 – 1.20 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 164.3, 144.5, 139.9, 138.2, 135.5, 131.4, 129.6, 129.2, 128.6, 127.8, 116.1, 90.5, 74.0, 54.6, 52.9, 51.9, 30.3, 22.1, 21.7, 21.2, 18.4, 13.6; HRMS calcd for C<sub>27</sub>H<sub>32</sub>NO<sub>6</sub>S [M+H]<sup>+</sup> 498.1945, found 498.1933.

**Dimethyl 2-(***N***-(1-(3-methoxyphenyl)hept-2-yn-1-yl)-4methylphenylsulfonamido)-maleate (4f):** white solid; 0.39 g (in 5.0 mmol scale); 15% yield; mp 94–95 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.23 (t, *J* = 7.9 Hz, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 7.11 (s, 1H), 6.25 (s, 1H), 6.04 (s, 1H), 3.80 (s, 6H), 3.59 (s, 3H), 2.45 (s, 3H), 2.10 – 1.93 (m, 2H), 1.37 – 1.21 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 164.3, 159.8, 144.7, 140.1, 135.9, 135.3, 129.6, 129.4, 128.6, 120.1, 115.4, 114.8, 112.5, 90.7, 73.8, 55.4, 54.6, 53.0, 51.9, 30.3, 22.1, 21.8, 18.4, 13.7; HRMS calcd for C<sub>27</sub>H<sub>32</sub>NO<sub>7</sub>S [M+H]<sup>+</sup> 514.1894, found 514.1899.

**Dimethyl 2-(***N***-(1-(2-fluorophenyl)hept-2-yn-1-yl)-4-methyl-phenylsulfonamido)**-maleate (4g): white solid; 1.13 g (in 5.0 mmol scale); 45% yield; mp 95–96 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.54 – 7.45 (m, 1H), 7.31 (d, *J* = 8.0 Hz, 3H), 7.11 – 7.00 (m, 2H), 6.52 (t, *J* = 2.0 Hz, 1H), 6.38 (s, 1H), 3.68 (s, 3H), 3.54 (s, 3H), 2.44 (s, 3H), 2.14 – 2.02 (m, 2H), 1.40 – 1.23 (m, 4H), 0.88 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.8, 163.8, 160.9 (d, *J* = 252.8 Hz), 144.2, 137.6, 135.8, 131.1, 131.0 (d, *J* = 5.9 Hz), 129.4, 128.6, 124.9, 123.6 (d, *J* = 3.7 Hz), 122.3 (d, *J* = 12.8 Hz), 115.7 (d, *J* = 21.0 Hz), 90.2, 74.2, 52.6, 52.2, 50.0 (d, *J* = 3.9 Hz), 30.3, 22.1, 21.7, 18.4, 13.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -100.00; HRMS calcd for C<sub>26</sub>H<sub>29</sub>FNO<sub>6</sub>S [M+H]<sup>+</sup> 502.1694, found 502.1682.

**Dimethyl 2-(***N***-(1-(4-fluorophenyl)hept-2-yn-1-yl)-4methylphenylsulfonamido)-maleate (4h):** white solid; 0.25g (in 5.0 mmol scale); 10% yield; mp 95–96 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 8.3 Hz, 2H), 7.55 (dd, *J* = 8.3, 5.3 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 6.26 (s, 1H), 6.05 (s, 1H), 3.78 (s, 3H), 3.61 (s, 3H), 2.46 (s, 3H), 2.09 – 1.95 (m, 2H), 1.35 – 1.20 (m, 4H), 0.87 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 164.2, 162.8 (d, *J* = 247.5 Hz), 144.7, 139.7, 135.3, 130.2 (d, *J* = 3.0 Hz), 129.8 (d, *J* = 8.4 Hz), 129.7, 128.5, 116.7, 115.4 (d, *J* = 21.8 Hz), 91.0, 73.8, 54.2, 53.0, 52.1, 30.3, 22.1, 21.8, 18.4, 13.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.61; HRMS calcd for C<sub>26</sub>H<sub>29</sub>FNO<sub>6</sub>S [M+H]<sup>+</sup> 502.1694, found 502.1690.

**Dimethyl 2-(N-(1-(4-chlorophenyl)hept-2-yn-1-yl)-4-methyl phenylsulfonamido)-maleate (4i)**: white solid; 1.45 g (in 5.0 mmol scale); 56% yield; mp 87–88 °C;<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 6.24 (s, 1H), 6.05 (s, 1H), 3.77 (s, 3H), 3.61 (s, 3H), 2.45 (s, 3H), 2.09 – 1.98 (m, 2H), 1.34 – 1.22 (m, 4H), 0.86 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.8, 164.1, 144.7, 139.8, 135.2, 134.5, 133.1, 129.6, 129.3, 128.7, 128.5, 116.6, 91.2, 73.5, 54.2, 52.9, 52.0, 30.2, 22.0, 21.7, 18.4, 13.6; HRMS calcd for C<sub>26</sub>H<sub>29</sub>CINO<sub>6</sub>S [M+H]<sup>+</sup>518.1399, found 518.1387.

**Dimethyl 2-(***N***-(1-(4-bromophenyl)hept-2-yn-1-yl)-4-meth-ylphenylsulfonamido)-maleate (4j)**: white solid; 0.44 g (in 2.6 mmol scale); 30% yield; mp 87–89 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 8.3 Hz, 2H), 7.49 – 7.41 (m, 4H), 7.35 (d, *J* = 8.2 Hz, 2H), 6.22 (s, 1H), 6.04 (s, 1H), 3.78 (s, 3H), 3.62 (s, 3H), 2.46 (s, 3H), 2.08 – 1.98 (m, 2H), 1.34 – 1.23 (m, 4H), 0.87 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 164.2, 144.8, 139.8, 135.3, 133.7, 131.7, 129.7, 129.6, 128.6, 122.8, 116.7, 91.2,

73.5, 54.3, 53.0, 52.1, 30.3, 22.1, 21.8, 18.5, 13.6; HRMS calcd for  $C_{26}H_{29}BrNO_6S\left[M+H\right]^+$ 562.0893, found 562.0884.

Dimethyl 2-(4-methyl-N-(1-(2-(trifluoromethyl)phenyl)-

hept-2-yn-1-yl)phenyl-sulfonamido)maleate (4k): white solid; 1.41 g (in 5.0 mmol scale); 51% yield; mp 72–73 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.79 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 6.64 (s, 1H), 6.47 (s, 1H), 3.75 (s, 3H), 3.37 (s, 3H), 2.43 (s, 3H), 2.14 – 2.03 (m, 2H), 1.41 – 1.24 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.6, 163.2, 144.0, 135.2, 135.0, 133.6, 131.8, 131.3, 130.9, 128.9, 128.8, 128.6, 128.3, 126.5 (q, J = 5.8 Hz), 123.7 (q, J = 274.6 Hz), 90.4, 75.2, 52.2, 52.0, 51.5 (q, J = 2.5 Hz), 29.9, 21.8, 21.4, 18.2, 13.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -58.82; HRMS calcd for C<sub>27</sub>H<sub>29</sub>F<sub>3</sub>NO<sub>6</sub>S [M+H]<sup>+</sup> 552.1662, found 552.1651.

**Dimethyl 2-(4-methyl-***N***-(1-(naphthalen-2-yl)hept-2-yn-1yl)phenylsulfonamido)-maleate (4l)**: white solid;1.00 g (in 5.0 mmol scale); 38% yield; mp 138–139 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (s, 1H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.85 – 7.78 (m, 3H), 7.67 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.45 (s, 1H), 6.12 (s, 1H), 3.72 (s, 3H), 3.53 (s, 3H), 2.45 (s, 3H), 2.16 – 2.01 (m, 2H), 1.41 – 1.25 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.0, 164.2, 144.6, 139.9, 135.5, 133.3, 133.0, 132.0, 129.6, 128.6, 128.5, 128.4, 127.8, 127.5, 126.6, 126.3, 125.2, 116.5, 91.0, 74.0, 55.0, 52.9, 51.9, 30.4, 22.1, 21.8, 18.5, 13.7; HRMS calcd for C<sub>30</sub>H<sub>32</sub>NO<sub>6</sub>S [M+H]<sup>+</sup> 534.1945, found 534.1921.

**Dimethyl 2-(N-(1,4-diphenylbut-2-yn-1-yl)-4-methylphenyl-sulfonamido)maleate (4n)**: white solid; 0.17 g (in 5.0 mmol scale); 7% yield; mp 85–86 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.26 (m, 6H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 7.0 Hz, 2H), 6.39 (s, 1H), 6.02 (s, 1H), 3.75 (s, 3H), 3.59 (s, 3H), 3.47 (s, 2H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 164.2, 144.7, 139.7, 135.6, 135.2, 134.1, 129.6, 128.7, 128.61, 128.59, 128.5, 127.9, 126.9, 116.7, 88.1, 76.0, 54.7, 53.0, 52.0, 25.1, 21.7; HRMS calcd for C<sub>29</sub>H<sub>28</sub>NO<sub>6</sub>S [M+H]<sup>+</sup> 518.1632, found 518.1617.

**Dimethyl 2-(***N*-(**1**-(**4**-fluorophenyl)hept-2-yn-1-yl)phenylsulfonamido)maleate (**4o**): white solid; 0.31 g (in 4.0 mmol scale); 16% yield; mp 97–98 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.03 – 7.98 (m, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.60 – 7.52 (m, 4H), 7.03 (t, *J* = 8.6 Hz, 2H), 6.27 (s, 1H), 6.07 (s, 1H), 3.77 (s, 3H), 3.62 (s, 3H), 2.05 – 1.96 (m, 2H), 1.33 – 1.24 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.8, 164.1, 162.8 (d, *J* = 247.5 Hz), 139.4, 138.2, 133.7, 130.1 (d, *J* = 3.0 Hz), 129.8 (d, *J* = 8.5 Hz), 129.0, 128.5, 117.6, 115.4 (d, *J* = 21.8 Hz), 91.2, 73.6, 54.3, 53.0, 52.1, 30.2, 22.0, 18.4, 13.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -113.49; HRMS calcd for C<sub>25</sub>H<sub>27</sub>FNO<sub>6</sub>S [M+H]<sup>+</sup> 488.1538, found 488.1524.

 Hz), 140.4, 139.1, 136.6, 129.9, 129.8, 129.3, 118.3, 115.6, 115.4, 91.3, 73.6, 54.4, 53.0, 52.1, 30.2, 22.1, 18.4, 13.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -113.23; HRMS calcd for  $C_{25}H_{26}CIFNO_6S [M+H]^+ 522.1148$ , found 522.1150.

General Procedure for Synthesis of Pyrroles 5. To a glass pressure tube (15 mL) equipped with a magnetic stirrer bar, starting material 4 (0.3 mmol),  $Cs_2CO_3$  (117.3 mg, 0.36 mmol, 1.2 equiv), and THF (1 mL) were added. The pressure tube was closed with a Teflon cap and the resulting mixture was stirred at 80 °C under argon protection for 12 hours. After cooling down to room temperature, the solvent was removed under vacuum. The residue was directly purified by silica gel flash chromatography eluting with petroleum ether/ethyl acetate (10 : 1, v/v) to give the desired pyrroles 5.

(*E*)-Dimethyl 4-(pent-1-en-1-yl)-5-phenyl-1*H*-pyrrole-2,3dicarboxylate (5a): white solid; 84.7 mg; 86% yield; mp 99–100 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.54 (s, 1H), 7.48 (d, *J* = 7.1 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.39 – 7.33 (m, 1H), 6.28 (d, *J* = 16.0 Hz, 1H), 5.90 – 5.78 (m, 1H), 3.91 (s, 3H), 3.78 (s, 3H), 2.13 – 2.04 (m, 2H), 1.46 – 1.35 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 160.8, 133.4, 131.3, 128.9, 128.8, 128.4, 128.3, 121.3, 120.4, 120.0, 119.9, 52.5, 52.2, 35.6, 22.6, 13.7; HRMS calcd for C<sub>19</sub>H<sub>22</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 328.1543, found 328.1552.

(*E*)-Dimethyl 4-(pent-1-en-1-yl)-5-(*o*-tolyl)-1*H*-pyrrole-2,3dicarboxylate (5b): yellow oil; 10.2 mg; 10% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.13 (s, 1H), 7.35 – 7.27 (m, 2H), 7.26 – 7.21 (m, 2H), 6.09 (d, *J* = 16.1 Hz, 1H), 5.62 – 5.53 (m, 1H), 3.93 (s, 3H), 3.79 (s, 3H), 2.21 (s, 3H), 2.01 – 1.94 (m, 2H), 1.33 – 1.26 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.1, 160.6, 137.9, 132.9, 132.2, 131.0, 130.8, 130.6, 129.3, 126.1, 121.0, 120.3, 120.0, 119.8, 52.5, 52.1, 35.6, 22.6, 20.1, 13.6; HRMS calcd for C<sub>20</sub>H<sub>24</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 342.1700, found 342.1695.

(*E*)-dimethyl 4-(pent-1-en-1-yl)-5-(*m*-tolyl)-1*H*-pyrrole-2,3dicarboxylate (5c): white solid; 81.9 mg; 80% yield; mp 78–79 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.08 (s, 1H), 7.35 – 7.27 (m, 3H), 7.19 (d, *J* = 7.0 Hz, 1H), 6.29 (d, *J* = 16.0 Hz, 1H), 5.91 – 5.76 (m, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 2.39 (s, 3H), 2.19 – 2.02 (m, 2H), 1.49 – 1.32 (m, 2H), 0.91 (t, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 160.7, 138.6, 133.7, 133.2, 131.2, 129.2, 128.9, 128.8, 125.5, 121.3, 120.5, 119.9, 119.7, 52.5, 52.1, 35.6, 22.5, 21.5, 13.7; HRMS calcd for C<sub>20</sub>H<sub>24</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 342.1700, found 342.1700.

(*E*)-Dimethyl 4-(pent-1-en-1-yl)-5-(*p*-tolyl)-1*H*-pyrrole-2,3dicarboxylate (5d): white solid; 71.0 mg; 69% yield; mp 109–110°C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.37 (s, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.31 – 6.23 (m, 1H), 5.89 – 5.78 (m, 1H), 3.90 (s, 3H), 3.80 (s, 3H), 2.38 (s, 3H), 2.13 – 2.04 (m, 2H), 1.47 – 1.35 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 160.7, 138.5, 133.6, 133.1, 129.6, 128.4, 128.2, 121.3, 120.5, 119.7, 119.6, 52.5, 52.1, 35.6, 22.6, 21.4, 13.7; HRMS calcd for C<sub>20</sub>H<sub>24</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 342.1700, found 342.1696.

### (*E*)-dimethyl5-(4-methoxyphenyl)-4-(pent-1-en-1-yl)-1*H*pyrrole-2,3-dicarboxylate (5f): white solid; 96.7 mg; 90% yield; mp 93–94 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) $\delta$ 9.70 (s, 1H), 7.32 (t, *J*

= 7.9 Hz, 1H), 7.06 (d, J = 7.7 Hz, 1H), 7.02 (s, 1H), 6.89 (dd, J = 8.2, 2.1 Hz, 1H), 6.29 (d, J = 16.1 Hz, 1H), 5.90 – 5.79 (m, 1H), 3.90 (s, 3H), 3.80 (s, 3H), 3.77 (s, 3H), 2.13 – 2.04 (m, 2H), 1.47 – 1.34 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 160.8, 159.8, 133.4, 133.3, 132.5, 129.9, 121.2, 120.7, 120.4, 119.9, 119.7, 114.1, 113.8, 55.4, 52.5, 52.2, 35.6, 22.5, 13.7; HRMS calcd for C<sub>20</sub>H<sub>24</sub>NO<sub>5</sub> [M+H]<sup>+</sup> 358.1649, found 358.1645.

ARTICLE

(*E*)-Dimethyl 5-(2-fluorophenyl)-4-(pent-1-en-1-yl)-1*H*pyrrole-2,3-dicarboxylate (5g): white solid; 85.3 mg; 82% yield; mp 72–73 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.30 (s, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.36 (dd, *J* = 13.8, 6.9 Hz, 1H), 7.24 – 7.14 (m, 2H), 6.24 (d, *J* = 16.0 Hz, 1H), 5.87 – 5.76 (m, 1H), 3.92 (s, 3H), 3.86 (s, 3H), 2.13 – 2.04 (m, 2H), 1.46 – 1.34 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.0, 160.4, 159.8 (d, *J* = 248.6 Hz), 133.8, 131.4 (d, *J* = 2.4 Hz), 130.3 (d, *J* = 8.4 Hz), 126.8, 124.5 (d, *J* = 3.4 Hz), 121.7, 120.8, 120.5, 120.3, 118.9 (d, *J* = 13.6 Hz), 116.4 (d, *J* = 21.9 Hz), 52.5, 52.2, 35.6, 22.5, 13.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -114.95; HRMS calcd for C<sub>19</sub>H<sub>21</sub>FNO<sub>4</sub> [M+H]<sup>+</sup> 346.1449, found 346.1451.

(*E*)-Dimethyl 5-(4-fluorophenyl)-4-(pent-1-en-1-yl)-1*H*pyrrole-2,3-dicarboxylate (5h): white solid; 84.7 mg, 81.7 mg, 80.7 mg from 2h, 2o, 2p, respectively; 82%, 79%, 78% yield from 2h, 2o, 2p, respectively; mp 120–121 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.64 (s, 1H), 7.49 – 7.42 (m, 2H), 7.16 – 7.08 (m, 2H), 6.22 (d, *J* = 16.1 Hz, 1H), 5.86 – 5.76 (m, 1H), 3.91 (s, 3H), 3.78 (s, 3H), 2.12 – 2.04 (m, 2H), 1.46 – 1.34 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.1, 162.8 (d, *J* = 249.0 Hz), 160.9, 133.7, 132.6, 130.3 (d, *J* = 8.2 Hz), 127.4 (d, *J* = 3.4 Hz), 121.3, 120.1, 120.0, 119.8, 116.0 (d, *J* = 21.7 Hz), 52.5, 52.2, 35.6, 22.5, 13.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -112.52; HRMS calcd for C<sub>19</sub>H<sub>21</sub>FNO<sub>4</sub> [M+H]<sup>+</sup> 346.1449, found 346.1451.

(*E*)-Dimethyl 5-(4-chlorophenyl)-4-(pent-1-en-1-yl)-1*H*pyrrole-2,3-dicarboxylate (5i): white solid; 94.3 mg; 87% yield; mp 132–134 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.83 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 6.22 (d, *J* = 16.1 Hz, 1H), 5.87 – 5.77 (m, 1H), 3.90 (s, 3H), 3.76 (s, 3H), 2.12 – 2.03 (m, 2H), 1.46 – 1.35 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.1, 160.9, 134.4, 133.9, 132.3, 129.68, 129.65, 129.0, 121.4, 120.3, 120.1, 120.0, 52.5, 52.2, 35.6, 22.5, 13.7; HRMS calcd for C<sub>19</sub>H<sub>21</sub>ClNO<sub>4</sub> [M+H]<sup>+</sup> 362.1154, found 362.1146.

(*E*)-Dimethyl **5-(4-bromophenyl)-4-(pent-1-en-1-yl)-1***H***pyrrole-2,3-dicarboxylate (5j)**: white solid;89.6 mg; 74% yield; mp 139–140 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.67 (s, 1H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 6.22 (d, *J* = 16.1 Hz, 1H), 5.88 – 5.78 (m, 1H), 3.90 (s, 3H), 3.78 (s, 3H), 2.12 – 2.03 (m, 2H), 1.47 – 1.34 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.0, 160.8, 134.1, 132.2, 132.0, 130.1, 129.9, 122.6, 121.4, 120.3, 120.2, 120.0, 52.5, 52.3, 35.6, 22.5, 13.7; HRMS calcd for C<sub>19</sub>H<sub>21</sub>BrNO<sub>4</sub> [M+H]<sup>+</sup> 406.0648, found 406.0641.

(E)-Dimethyl 4-(pent-1-en-1-yl)-5-(2-(trifluoromethyl)-

**phenyl)-1***H***-pyrrole-2,3-dicarboxylate (5k)**: yellow oil; 83.2 mg; 70% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.37 (s, 1H), 7.79 (d, J =7.7 Hz, 1H), 7.64 – 7.48 (m, 2H), 7.44 (d, J = 7.4 Hz, 1H), 6.08 (d,  $J = 16.1 \text{ Hz}, 1\text{H}, 5.58 - 5.42 \text{ (m, 1H)}, 3.91 \text{ (s, 3H)}, 3.77 \text{ (s, 3H)}, 2.01 - 1.88 \text{ (m, 2H)}, 1.33 - 1.21 \text{ (m, 2H)}, 0.79 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{ H}); ^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 166.7, 160.4, 133.8, 133.4, 131.9, 130.1 (q, } J = 30.3 \text{ Hz}), 129.9 (q, } J = 2.0 \text{ Hz}), 129.3, 129.2, 126.6 (q, } J = 5.2 \text{ Hz}), 123.8 (q, } J = 273.7 \text{ Hz}), 122.1, 120.4, 119.8, 119.7, 52.4, 52.1, 35.5, 22.5, 13.5; ^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -59.15; \text{ HRMS calcd for } C_{20}\text{H}_{21}\text{F}_3\text{NO}_4 \text{ [M+H]}^+ 396.1417, found 396.1419.$ 

(*E*)-Dimethyl **5-(naphthalen-2-yl)-4-(pent-1-en-1-yl)-1H**pyrrole-2,3-dicarboxylate (5I): white solid; 89.8 mg; 79% yield; mp 111–112 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.45 (s, 1H), 7.93 (s, 1H), 7.89 – 7.84 (m, 3H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.48 (m, 2H), 6.36 (d, *J* = 16.1 Hz, 1H), 5.94 – 5.80 (m, 1H), 3.93 (s, 3H), 3.80 (s, 3H), 2.12 –2.07 (m, 2H), 1.48 – 1.35 (m, 2H), 0.91 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 160.8, 133.8, 133.3, 133.0, 128.7, 128.6, 128.2, 127.9, 127.5, 126.80, 126.77, 125.9, 121.4, 120.41, 120.37, 120.1, 100.1, 52.5, 52.2, 35.6, 22.5, 13.7; HRMS calcd for C<sub>23</sub>H<sub>24</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 378.1700, found 378.1701.

(*E*)-Dimethyl 4-(but-1-en-1-yl)-5-phenyl-1*H*-pyrrole-2,3dicarboxylate (5m): white solid; 76.7 mg; 81% yield; mp 106-107 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.47 (s, 1H), 7.51 – 7.46 (m, 2H), 7.46 – 7.39 (m, 2H), 7.39 – 7.33 (m, 1H), 6.32 – 6.25 (m, 1H), 5.92 – 5.83 (m, 1H), 3.91 (s, 3H), 3.79 (s, 3H), 2.17 – 2.07 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 160.8, 135.0, 133.5, 131.3, 128.9, 128.5, 128.3, 121.2, 119.91, 119.87, 119.2, 52.5, 52.2, 26.6, 13.7; HRMS calcd for C<sub>18</sub>H<sub>20</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 314.1387, found 314.1384.

(*Z/E*)-dimethyl **5-phenyl-4-styryl-1***H***-pyrrole-2,3dicarboxylate (5n):** *Z/E* **= 1:1.4 mixture; white solid; 23.1 mg; 20% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 9.50 (s, 2.38H), 7.51 (d,** *J* **= 7.0 Hz, 2.88H), 7.44 (dt,** *J* **= 13.9, 7.4 Hz, 6.41H), 7.39 – 7.26 (m, 9.21H), 7.22 (d,** *J* **= 7.2 Hz, 1.43H), 7.09 (t,** *J* **= 2.6 Hz, 4.92H), 7.02 (d,** *J* **= 16.5 Hz, 1.46H), 6.77 (d,** *J* **= 16.5 Hz, 1.43H), 6.61 (d,** *J* **= 11.9 Hz, 1.00H), 6.50 (d,** *J* **= 11.9 Hz, 1.00H), 3.95 (s, 4.29H), 3.84 (s, 4.30H), 3.80 (s, 3.20H), 3.57 (s, 3.01H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) \delta 167.1, 165.5, 160.8, 160.6, 137.7, 137.1, 134.8, 133.4, 131.0, 130.4, 129.5, 129.1, 128.83, 128.77, 128.7, 128.6, 128.5, 128.3, 128.1, 127.5, 127.3, 127.2, 127.1, 126.4, 122.1, 121.1, 120.4, 119.7, 119.5, 119.4, 52.7, 52.34, 52.25, 52.0; HRMS calcd for C<sub>22</sub>H<sub>20</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 362.1387, found 362.1386.** 

**Dimethyl 4-benzyl-6-phenylpyridine-2,3-dicarboxylate (6n)**: colorless oil; 10 mg; 9% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.62 (s, 1H), 7.44 (m, 3H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.27 (m, 1H), 7.19 (d, *J* = 7.1 Hz, 2H), 4.14 (s, 2H), 3.99 (s, 3H), 3.88 (s, 3H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.0, 166.0, 158.2, 150.2, 146.7, 137.84, 137.80, 130.0, 129.4, 129.2, 129.02, 128.96, 127.5, 127.1, 124.1, 53.3, 52.9, 38.8; HRMS calcd for C<sub>22</sub>H<sub>20</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 362.1387, found 362.1400.

**Procedure for Synthesis of Intermediate Pa.** To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, 3-aza-1,5-enyne **4a** (0.1 mmol),  $Cs_2CO_3$  (39.1 mg, 0.12 mmol, 1.2 equiv) and THF (1 mL) were added. The resulting mixture was stirred at 40 °C for 30 min under argon protection. After cooling down to room temperature, the solvent was removed under vacuum. The residue was directly purified by silica gel flash column

14 | J. Name., 2012, 00, 1-3

chromatography eluting with petroleum ether/ethyl acetate (20: 1, v/v) to give the desired intermediate **Pa**.

Dimethyl 2-((*Z*)-(1-phenylhept-2-yn-1-ylidene)amino)maleate (Pa): yellow oil; 2.7 mg; 8% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.01 (d, *J* = 7.5 Hz, 2H), 7.43 – 7.28 (m, 3H), 5.46 (s, 1H), 3.79 (s, 3H), 3.67 (s, 3H), 2.42 (t, *J* = 6.9 Hz, 2H), 1.58 – 1.48 (m, 2H), 1.45 – 1.33 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.9, 165.1, 156.2, 152.5, 136.1, 132.1, 128.8, 128.4, 105.5, 104.4, 73.8, 52.8, 51.8, 30.0, 22.0, 19.3, 13.5; HRMS calcd for C<sub>19</sub>H<sub>22</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 328.1543, found 328.1560.

Procedure for Synthesis of Pyrrole 5a-Z/E and Pyridine 6a from Intermediate Pa. To a glass Schlenk tube (10 mL) equipped with a magnetic stirrer bar, intermediate Pa (0.2 mmol; Pa used here was obtained by accumulation through carrying out the above mentioned reaction several times),  $Cs_2CO_3$  (13.0 mg, 0.04 mmol, 20 mol%) and THF (2 mL) were added. The resulting mixture was stirred at 80 °C under argon protection for 12 h. After cooling down to room temperature, the solvent was removed under vacuum. The residue was directly purified by silica gel flash column chromatography eluting with petroleum ether/ethyl acetate (20 : 1, v/v) to give the desired pyrrole 5a-Z/E and pyridine 6a.

(*Z/E*)-dimethyl 4-(pent-1-en-1-yl)-5-phenyl-1*H*-pyrrole-2,3dicarboxylate (5a-*Z/E*, *Z/E* = 1:1): white solid; 13.0 mg (0.2 mmol); 20% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.29 (s, 1H), 9.14 (s, 1H), 7.55 – 7.51 (m, 2H), 7.49 – 7.37 (m, 7H), 7.36 – 7.32 (m, 1H), 6.44 – 6.17 (m, 2H), 5.84 (dt, *J* = 16.0, 7.0 Hz, 1H), 5.68 (dt, *J* = 11.2, 7.3 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.85 (s, 3H), 2.09 (qd, *J* = 7.2, 1.5 Hz, 2H), 1.76 (qd, *J* = 7.3, 1.7 Hz, 2H), 1.41 (h, *J* = 7.3 Hz, 2H), 1.17 (h, *J* = 7.3 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.72 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 167.2, 166.0, 160.7, 160.6, 139.4, 136.2, 133.6, 131.5, 131.3, 129.02, 128.96, 128.5, 128.3, 128.2, 127.6, 127.1, 122.7, 122.5, 120.5, 120.3, 120.0, 119.91, 119.87, 119.8, 52.6, 52.3, 52.2, 35.6, 31.0, 22.6, 22.2, 13.8, 13.7 [*Note*: two peaks (2 CO<sub>2</sub>CH<sub>3</sub>) overlapped at 52.22 ppm]; HRMS calcd for C<sub>19</sub>H<sub>22</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 328.1543, found 328.1552.

**Dimethyl 4-butyl-6-phenylpyridine-2,3-dicarboxylate (6a)**: known compound<sup>3d</sup>; 12.2 mg; 19% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.07 – 7.97 (m, 2H), 7.74 (s, 1H), 7.48 (dq, *J* = 6.8, 5.8, 5.1 Hz, 3H), 3.99 (s, 3H), 3.97 (s, 3H), 2.80 – 2.70 (m, 2H), 1.70 – 1.62 (m, 2H), 1.41 (h, *J* = 7.3 Hz, 2H), 0.95 (t, *J* = 7.3 Hz, 3H).

### Acknowledgements

We are grateful to the National Natural Science Foundation of China (21172218) for financial support.

### Notes and references

 (a) V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman and P. Sharma, *RSC Adv.*, 2015, **5**, 15233; (b) H. Fan, J. Peng, M. T. Hamann and J.-F. Hu, *Chem. Rev.*, 2008, **108**, 264; (c) M. d'Ischia, A. Napolitano and A. Pezzella, Pyrroles and their Benzo Derivatives: Applications. In *Comprehensive* *Heterocyclic Chemistry III*, G. Jones and C. A. Ramsden, Eds. Elsevier, Amsterdam, 2008, Vol. 3, pp 353–388; (d) F. Bellina and R.Rossi, *Tetrahedron*, 2006, **62**, 7213.

- For selected reviews on synthesis of pyrroles, please see: (a)
  V. Estévez, M. Villacampa and J. C. Menéndez, *Chem. Soc. Rev.*, 2014, **43**, 4633; (b) A. V. Gulevich, A. S. Dudnik, N. Chernyak and V. Gevorgyan, *Chem. Rev.*, 2013, **113**, 3084; (c)
  S. D. Joshi, U. A. More, V. H. Kulkarni and T. M. Aminabhavi, *Curr. Org. Chem.*, 2013, **17**, 2279; (d) T. Liu and H. Fu, *Synthesis*, 2012, **44**, 2805; (e) V. Estévez, M. Villacampa and J. C. Menéndez, *Chem. Soc. Rev.*, 2010, **39**, 4402; (f) V. M. Muzalevskiy, A. V. Shastin, E. S. Balenkova, G. Haufe and V. G. Nenajdenko, *Synthesis*, 2009, 3905; (g) C. Schmuck and D. Rupprecht, *Synthesis*, 2007, 3095.
- 3 (a) X. Xin, D. Wang, X. Li and B. Wan, Angew. Chem. Int. Ed., 2012, 51, 1693; (b) X. Xin, D. Wang, F. Wu, X. Li and B. Wan, J. Org. Chem., 2013, 78, 4065; (c) X. Xin, D. Wang, F. Wu, C. Wang, H. Wang, X. Li and B. Wan, Org. Lett., 2013, 15, 4512; (d) X. Xin, D. Wang, X. Li and B. Wan, Tetrahedron, 2013, 69, 10245; (e) X. Xin, H. Wang, X. Li, D. Wang and B. Wan, Org. Lett., 2015, 17, 3944.
- 4 (a) B. Pan, C. Wang, D. Wang, F. Wu and B. Wan, *Chem. Commun.*, 2013, **49**, 5073; (b) Y. Hu, C. Wang, D. Wang, F. Wu and B. Wan, *Org. Lett.*, 2013, **15**, 3146; (c) Q. Chong, X. Xin, C. Wang, F. Wu and B. Wan, *Tetrahedron*, 2014, **70**, 490; (d) B. Pan, X. Lu, C. Wang, Y. Hu, F. Wu and B. Wan, *Org. Lett.*, 2014, **16**, 2244; (e) T. Li, X. Xin, C. Wang, D. Wang, F. Wu, X. Li and B. Wan, *Org. Lett.*, 2014, **16**, 4806.
- 5 (a) A. A. Gakh and Y. Shermolovich, *Curr. Top. Med. Chem.*, 2014, **14**, 952; (b) G. Landelle, A. Panossian and F. R. Leroux, *Curr. Top. Med. Chem.*, 2014, **14**, 941; (c) D. Barnes-Seeman, J. Beck and C. Springer, *Curr. Top. Med. Chem.*, 2014, **14**, 855; (d) L. Chu and F.-L. Qing, *Acc. Chem. Res.*, 2014, **47**, 1513; (e) M. A. García-Monforte, S. Martínez-Salvador and B. Menjón, *Eur. J. Inorg. Chem.*, 2012, 4945; (f) O. A. Tomaschenko and V. V. Grushin, *Chem. Rev.*, 2011, **111**, 4475; (g) S. Purser, P. R. Moore, S. Swallowb and V. Gouverneur, *Chem. Soc. Rev.*, 2008, **37**, 320; (h) K. Müller, C. Faeh and F. Diederich, *Science*, 2007, **317**, 1881.
- 6 (a) R. M. Oxborough, R. N'Guessan, R. Jones, J. Kitau, C. Ngufor, D. Malone, F. W. Mosha and M. W. Rowland, *Malaria J.*, 2015, 14, 124; (b) Q. Ma, Y. Liu, P. Zhang, Y. Li, L. Xiong and Q. Wang, *J. Agric. Food Chem.*, 2014, 62, 6072; (c) Y.-X. Liu, P.-X. Zhang, Y.-Q. Li, H.-B. Song and Q.-M. Wang, *Mol. Divers.*, 2014, 18, 593; (d) B. C. Black, R. M. Hollingworth, K. I. Ahammadsahib, C. D. Kukel and S. Donovan, *Pestic. Biochem. Physiol.*, 1994, 50, 115.
- 7 (a) Y. Fukuda, H. Furuta, Y. Kusama, H. Ebisu, Y. Oomori and S. Terashima, J. Med. Chem., 1999, 42, 1448; (b) Y. Fukuda, H. Furuta, F. Shiga, Y. Oomori, Y. Kusama, H. Ebisu and S. Terashima, Bioorg. Med. Chem. Lett., 1997, 7, 1683.
- 8 M. T. Baker and M. N. Attala, WO2003070177.
- 9 (a) N. Simpkins, In Sulfones in Organic Synthesis J. E. Baldwin and P. D. Magnus, Eds. Pergamon Press: Oxford, 1993; (b) E. Block, Reaction of Organosulfur Compounds Academic Press: New York, 1978; (c) P. D. Magnus, Tetrahedron, 1977, 33, 2019.
- (a) J. Su, H. Q. Tang and B. A. McKittrick, *Tetrahedron Lett.*, 2011, **52**, 3382; (b) J. Su, H. Q. Tang, B. A. McKittrick, R. Xu, J. W. Clader, W. J. Greenlee, L. Hyde and L. L. Zhang, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 3447; (c) M. S. Vedula, A. B. Pulipaka, C. Venna, V. K. Chintakunta, S. Jinnapally, V. A. Kattuboina, R. K. Vallakati, V. Basetti, V. Akella, S. Rajgopal, A. K. Reka, S. K. Teepireddy, P. K. Mamnoor, R. Rajagopalan, G. Bulusu, A. Khandelwal, V. V. Upreti and S. R. Mamidi, *Eur. J. Med. Chem.*, 2003, **38**, 811; (d) T. M. Williams, T. M. Ciccarone, S. C. MacTough, C. S. Rooney, S. K. Balani, J. H. Condra, E. A. Emini, M. E. Goldman, W. J. Greenlee, L. R.

Kauffman, J. A. O'Brien, V. V. Sardana, W. A. Schleif, A. D. Theoharides and P. S. Anderson, *J. Med. Chem.*, 1993, **36**, 1291.

- 11 (a) B. Alcaide and P. Almendros, *Acc. Chem. Res.*, 2014, 47, 939; (b) L. Fensterbank and M. Malacria *Acc. Chem. Res.*, 2014, 47, 953.
- 12 CCDC 962702 (**3a**) and CCDC 978572 (**5m**) contain the supplementary crystallographic data for this paper. These datacan be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
- 13 For a different synthesis of pyrroles also involving transient amino allenes, see: (a) B. Alcaide, P. Almendros and M. C. Redondo, *Chem. Commun.*, 2006, 2616; (b) B. Alcaide, P. Almendros, R. Carrascosa and M. C. Redondo, *Chem. Eur. J.*, 2008, **14**, 637.
- 14 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512.
- 15 (a) B. E. Love, P. S. Raje and T. C. Williams II, *Synlett*, 1994, 493; (b) F. Chemla, V. Hebbe and J. F. Normant, *Synthesis*, 2000, 75; (c) A. R. Katritzky, J. Q. Li and M. F. Gordeev, *Synthesis*, 1994, 93.
- 16 (a) R. B. Boers, Y. P. Randulfe, H. N. S. van der Haas, M. van Rossum-Baan and J. Lugtenburg, *Eur. J. Org. Chem.*, 2002, 2094. (b) O. Jeannin and M. Fourmigué, *Chem. Eur. J.*, 2006, 12, 2994.

Page 16 of 16