Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Vinylogous Nicholas Reactions in the Synthesis of Bi- and Tricyclic Cycloheptynedicobalt Complexes

Izabela Kolodziej, James R. Green*a
Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada

Abstract

The Lewis acid mediated intramolecular Nicholas reactions of allylic acetate enyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes afford cycloheptenyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes in three manifestations. Electron rich aryl substituted alkyne complexes give tricyclic $6,7, x$ - benzocycloheptenyne complexes, with $x=$ 5, 6, or 7. Allylsilane substituted complexes afford exo methylene bicyclic x,7-cycloheptenyne complexes ($x=6,7$). The allyl acetate function may also be replaced by a benzylic acetate, to afford dibenzocycloheptyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes. Following reductive complexation, the methodology may be applied to the synthesis of the icetexane diterpene carbon framework.

Introduction

The chemistry of cycloheptyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes is of interest from several aspects. ${ }^{1}$ The ca. 140° bond angle of the alkynedicobalt complex ${ }^{2}$ renders stable complexes of otherwise unstable alkyne functions. The intermediacy of these complexes has proved central in the synthesis of several groups of seven- membered ring containing compounds. ${ }^{3}$ In addition, its presence in compounds with adjacent π-systems have raised important questions in bonding. ${ }^{4}$

Synthesis of this class of compounds has been accomplished in a limited number of cases via ring closing methathesis, ${ }^{5}$ a carbonylative Heck reaction, ${ }^{6}$ Diels-Alder reactions, ${ }^{7}$ HososmiSakurai reactions, ${ }^{8}$ ene- reaction chemistry, ${ }^{3 \mathrm{e}}$ Mukaiyama aldol reactions, ${ }^{9}$ and Michael chemistry, ${ }^{10}$ but most often by intramolecular nucleophilic attack on propargyldicobalt cations (Nicholas reaction chemistry). ${ }^{11,12}$ In some cases they have provided an excellent way of favouring cyclization to the seven- membered ring system over the five membered ring isomer. The potential use of vinylogous Nicholas reaction chemistry for access to cycloheptynedicobalt complexes, however, has not been investigated previously. The use of vinylogous propargyl

[^0]cation complexes in reactions with nucleophiles not only favour remote attack with most nucleophiles, ${ }^{13}$ but competitive proximal attack in substrates such as $\mathbf{1}$ would result in a prohibitively angle strained cyclopentynedicobalt complex. As a result, there is a good likelihood of success for the vinylogous Nicholas reactions $(\mathbf{1} \rightarrow \mathbf{2})$ of allyl propargyl cation complexes to result in the preparation of cycloheptyne complexes (Scheme 1).

3

Scheme 1. Intramolecular vinylogous Nicholas reactions.
Of the tricyclic systems reflected in 2, the $6,7,6$ - system that would result from cyclization reactions with arene nucleophiles, the $\mathrm{n}=1$ systems are heavily encountered in the icetexane and faveline diterpenes. ${ }^{14}$ These classes of compounds have been the subject of a number of different synthetic tactics, ${ }^{15,16,17,18,19,20,21,22}$ but have not been approached by Nicholas reaction chemistry; consequently we were interested in the application of these vinylogous Nicholas reactions in the construction of the icetexane ring system. In addition, we have interest in the viability of nucleophiles other than arenes, particular allylsilane nucleophiles (3), in accomplishing analogous chemistry, to afford bicyclic complexes 4. Finally, it is in principle possible for the use of arenes as opposed to cyclic alkenes as the spacers between the alkynedicobalt complex and leaving group (5) to give dibenzocycloheptyne complexes 6; we wished to determine the viability of this transformation, particularly given the occurrence of
dibenzo[a,d]cycloheptenes in tricyclic antidepressants. ${ }^{23}$ We have reported on some aspects of the chemistry in preliminary fashion ${ }^{24}$ and now describe a complete report.

Results and discussion

The initial attempts at vinylogous Nicholas reaction chemistry involved the choice of electron rich arene nucleophiles (1), with the intent of generation 6,7,x-systems upon cyclization (2). The starting materials for the cyclization precursors were alkynylarenes 7, which were subjected to Sonogashira coupling reactions with 2-bromocyclopentenecarbaldehyde (8a), 2bromocyclohexenecarbaldehyde (8b), or 2-bromocycloheptenecarbaldehyde (8c), to give aryl substituted cyclic enynecarbaldehydes 9 (Scheme 2, Table 1). In three cases, the corresponding(trimethylsilyl)alkynylarene ($7^{\prime} \mathbf{d}, 7^{\prime} \mathbf{i}$) was employed instead, with a desilylative Sonogashira coupling ${ }^{25}$ giving 9e, 9f and 9p in straightforward fashion. Reduction of the aldehyde function and acetylation of resultant alcohol gave acetates $\mathbf{1 0}$, which underwent ready complexation reactions with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ to form the enyne/allylic acetate complexes $\mathbf{1}$ in good to excellent yields.

Scheme 2. Preparation of aryl substituted allylic acetate alkyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes.
Table 1. Preparation of aryl substituted allylic acetate alkyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes.

$\mathbf{7}$	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{R}^{\mathbf{4}}$	$\mathbf{R}^{\mathbf{5}}$	n	$\mathbf{9 , 1 0 , \mathbf { 1 }}$	Yield of $\mathbf{9}(\%)$	Yield of $\mathbf{1 0}(\%)$	Yield of $\mathbf{1}(\%)$
\mathbf{a}	H	H	H	H	H	0	\mathbf{a}	72	89	90
\mathbf{a}	H	H	H	H	H	1	\mathbf{b}	82	86	89
\mathbf{b}	H	H	OMe	H	H	1	\mathbf{c}	74	89	92
\mathbf{c}	H	OMe	OMe	H	H	1	\mathbf{d}	80	89	93
$\mathbf{7} \mathbf{d} \mathbf{d}$	OMe	H	OMe	H	H	0	\mathbf{e}	91^{b}	88	86
$\mathbf{7} \mathbf{d}$	OMe	H	OMe	H	H	1	\mathbf{f}	90^{b}	91	92
\mathbf{e}	OMe	H	H	OMe	H	0	\mathbf{g}	79	90	91
\mathbf{e}	OMe	H	H	OMe	H	1	\mathbf{h}	85	90	83
\mathbf{e}	OMe	H	H	OMe	H	2	\mathbf{i}	74	85	85
\mathbf{f}	H	OMe	OMe	OMe	H	0	\mathbf{j}	86	92	87
\mathbf{f}	H	OMe	OMe	OMe	H	1	\mathbf{k}	82	89	94
\mathbf{f}	H	OMe	OMe	OMe	Me	1	$\mathbf{k k}$	-	89^{b}	91
\mathbf{g}	OMe	OMe	OMe	H	H	0	\mathbf{l}	83	89	89

\mathbf{g}	OMe	OMe	OMe	H	H	1	\mathbf{m}	85	88	86
\mathbf{g}	OMe	OMe	OMe	H	H	2	\mathbf{n}	86	90	92
\mathbf{g}	OMe	OMe	OMe	H	Ph	1	$\mathbf{m m}$	-	80^{c}	87
\mathbf{h}	i-Pr	OMe	OMe	H	H	1	$\mathbf{0}$	86	90	89
$\mathbf{7} \mathbf{i} \mathbf{i}$	3-thienyl			H	H	1	\mathbf{p}	80	94	91

${ }^{a} n$ - $\mathrm{Bu}_{4} \mathrm{NF}$ (TBAF) added in reaction mixture. ${ }^{b}$ Use of MeLi in pace of DIBAL-H. ${ }^{c}$ Use of PhMgBr in place of DIBAL-H.

Experiments on the Lewis acid mediated cyclization reactions were conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.007 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$, with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (3 equiv). The substrates with simple phenyl substituents $(\mathbf{1 a , b})$ on the alkynedicobalt unit failed to give any cyclization products (2); 1a underwent complete decomposition, and the use of TiCl_{4} or SnCl_{4} did not give any improvement. In the case of $\mathbf{1 b}, \mathrm{TiCl}_{4}$ and SnCl_{4} did give the elimination product $\mathbf{1 1 b}$, with SnCl_{4} giving $\mathbf{1 1 b}$ in 52% yield (Equation 1, Figure 1, Table 2). These results were not entirely surprising, as the Mayr electrophilicity (propargyldicobalt cation) and nucleophilicity (benzene) values suggest a too slow reaction of unactivated arenes with propargyldicobalt cations. ${ }^{26}$ In the presence of more electron rich aryls, the cyclizations were much more successful. 3-Methoxy- substituted 1c gave 2c in 82% yield as $4.9: 1$ separable mixture of isomers ($\mathbf{2 c}, \mathbf{2} \mathbf{c}^{\text {' }}$) stemming from reaction at C-6 and $\mathrm{C}-2$ respectively; this isomer ratio improved noticeably with minimal loss in yield when cooling the reaction successively to $-40{ }^{\circ} \mathrm{C}$ and $-78{ }^{\circ} \mathrm{C}$. Similarly, 3,4-dimethoxy- substituted 1d gave $\mathbf{2 d}$ and 2d' as a separable regioisomeric mixture (90% yield, $\mathbf{2 d}: \mathbf{2 d}^{\prime}=8.8: 1$). Amongst the other dimethoxyaryl- substituted substrates, the 3,5-dimethoxyphenyl- substituted cases afforded excellent yields of cyclization products for both cyclopentene- and cyclohexene- containing cases ($\mathbf{2 e}, 85 \%$; 2f, 85%), while the less electron rich 2,5-dimethoxyphenyl- substituted cases worked poorly with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}, \mathrm{SnCl}_{4}$, or TiCl_{4} in the cyclopentene- containing case $(\mathbf{2 g}, 6 \%$ with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$) but very well in the cyclohexene- and cycloheptene- substituted cases ($\mathbf{2 h} \mathbf{8 2 \%} \mathbf{~ ; ~ 2 i}$, 85\%). The trimethoxyphenyl- substituted substrates showed an analogous trend. The less electron rich 2,3,4-trimethylphenyl- cases gave very poor yields in the cyclopentene- cases ($\mathbf{2} \mathbf{j}$, $\mathbf{8 \%}$), and better but still modest yields for the cyclohexene- spacer ($\mathbf{2 k}, \mathbf{3 9 \%} \mathbf{~} \mathbf{2 k k}, \mathbf{3 9 \%}$); these substrates required SnCl_{4} rather than $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ as Lewis acid to give any products whatsoever. Conversely, the more electron rich 3,4,5-trimethoxyphenyl- substituted cases cyclized readily and in good yields regardless of the ring size in which the alkene spacer was present (21 85\%; $\mathbf{2 m}, 86 \% ; \mathbf{2 n}, 84 \%$). Substitution of the reactive site was somewhat detrimental here, however, as allylic benzylic acetate $1 \mathbf{m m}$ gave only 34% of, along with elimination product $\mathbf{1 1 m m}(40 \%)$.

However, switching the Lewis acid to SnCl_{4}, under otherwise identical conditions gave $\mathbf{2 m m}$ as the sole tractable product in 79% yield. Isopropyldimethoxy- substituted $\mathbf{1 0}$ underwent cyclization quite smoothly to give a 79% yield of a mixture of isomers, with the site p - to the methoxy function reacting preferentially to that p - to the isopropyl $\left(\mathbf{2 0 : 2 0}^{\mathbf{\prime}}=14: 1\right)$. Finally, 3thienyl substituted $\mathbf{1 p}$ gave excellent yields of $\mathbf{2 p}$ (90%), with cyclization occurring solely through C-2 of the thiophene unit.

Table 2. Intramolecular vinylogous Nicholas reactions of 1

Starting material	Time (h)	Product	Yield (\%)
1b	2	11b	$52^{\text {a }}$
1c	1.5	$\begin{aligned} & 2 \mathrm{c} \\ & \mathbf{2 c}, \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 14 \end{aligned}$
1c	$2^{\text {b }}$	$\begin{array}{\|l} \mathbf{2 c} \\ \mathbf{2 c}, \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & 10 \end{aligned}$
1c	$3^{\text {c }}$	$\begin{aligned} & \hline \mathbf{2 c} \\ & \mathbf{2 c}, \end{aligned}$	$\begin{aligned} & \hline 72 \\ & 9 \end{aligned}$
1d		$\begin{array}{\|l\|} \hline 2 \\ \hline 2 d^{\prime} \\ \hline \end{array}$	$\begin{aligned} & \hline 81 \\ & 9 \\ & \hline \end{aligned}$
1e	0.75	2e	85
1f	0.75	2 f	85
1 g	2	2g	6
1h	1	2h	82
1i	1	2 i	85
1j	1	2j	$8^{\text {a }}$
1k	1	2k	$39^{\text {a }}$
1kk		2kk	$39^{\text {a }}$
11	0.5	21	85
1m	0.5	2m	86
1mm	1	2mm	$79^{\text {a }}$
1n	0.5	2n	84
10		$\begin{array}{\|l\|} \hline 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \hline 74 \\ & 5 \end{aligned}$
1p	0.67	2p	90

${ }^{a} \mathrm{SnCl}_{4}$ as Lewis acid. ${ }^{b}$ at $-40^{\circ} \mathrm{C}$. ${ }^{c}$ at $-78{ }^{\circ} \mathrm{C}, 2.15 \mathrm{~h}$; warmed to $0{ }^{\circ} \mathrm{C}$
Figure 1. Tricyclic 6,7,x-benzocycloheptenyne complexes prepared via Equation 1

2c, $R^{2}=H$

2c', $\mathrm{R}^{2}=\mathrm{H}$ 2d' $\mathrm{R}^{2}=\mathrm{OMe}$

$\mathbf{2 e}, \mathrm{n}=0$
$\mathbf{2 f}, \mathrm{n}=1$

$2 \mathrm{~g}, \mathrm{n}=0$
2h, n = 1

2I, $n=0, R^{5}=H$
$2 m, n=1, R^{5}=H$

20
20'

2p

2j, $n=0, R^{5}=H$
2k, $n=1, R^{5}=H$
2kk, $n=1, R^{5}=M e$

11b, $R^{1}=R^{2}=R^{5}=H, R^{3}=O M e$
$11 \mathrm{~mm}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{OMe}, \mathrm{R}^{5}=\mathrm{Ph}$

Some trends become apparent among the above results. The intramolecular Nicholas reactions can succeed with each of 5-, 6- and 7- membered cycloalkene spacers separating the allylic acetate and alkynedicobalt function, but the yields of cyclopentene- containing products become compromised more readily as the arene nucleophiles become less electron rich. This is likely due to greater angle strain caused by the five membered ring on the incipient cycloheptyne complexes relative to the six- and seven- membered homologues.

Secondly, the results with the allylic phenyl- substituted $1 \mathbf{m m}$ were of additional interest. Reactions conducted with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ at lower temperature $\left(-50--60{ }^{\circ} \mathrm{C}\right)$ revealed greater amounts of elimination product $\mathbf{1 1 \mathbf { m m }}$ relative to $\mathbf{2 m m}$. This suggests that $\mathbf{1 1 \mathbf { m m }}$ is actually the dominant initial product of reaction of $\mathbf{1 m m}$ in all cases, but in the presence of liberated acid during the reaction it may be in equilibrium with the allyl propargyl cation complex, which can in turn ultimately funnel towards $\mathbf{2 m m}$. The stronger acid generated in the SnCl_{4} mediated cases then allows this latter process to go to completion. The use of enyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes as propargyldicobalt cation precursors is well established, particularly by Smit and Caple. ${ }^{27}$

We wished to demonstrate the ability of allylsilanes to participate in this type of intramolecular vinylogous Nicholas reactions chemistry ($\mathbf{3} \rightarrow \mathbf{4}$, Scheme 1), and as a result targeted complexes $\mathbf{3 a}$ and $\mathbf{3 b}$ as potential substrates (Scheme 3). These cyclization precursors could be prepared from bromocycloalkene carbaldehydes $\mathbf{8 a , b}$. The Sonogashira reactions of $\mathbf{8}$ with trimethylsilylacetylene afforded 2-alkynylcyclohexenecarbaldehyde 12a (85\% yield) and 2alkynylcycloheptenecarbaldehyde 12b (90% yield) readily. Attempts to desilylate 12a,b at this point gave materials which decomposed rapidly after isolation, and consequently the aldehyde
functions of $\mathbf{1 2}$ were reduced with DIBAL-H and the products immediately acetylated, to give allylic alcohols 13a (91\% yield) and 13b (94\%). Desilylation of these intermediates with KF$2 \mathrm{H}_{2} \mathrm{O}$ then gave terminal alkynes $\mathbf{1 4 a}$ (88% yield) and $\mathbf{1 4 b}$ (82% yield), which were subjected to Sonogashira coupling with 2-bromoallyltrimethylsilane, affording 15a (86% yield) and 15b (90% yield) in excellent yields. Complexation of alkyne functions of 15 then gave 3a (92% yield) and 3b (93\% yield).

$8 \mathrm{Ba}, \mathrm{n}=1$
$\mathbf{8 b}, \mathrm{n}=2$
8b, $\mathrm{n}=2$
$\xrightarrow[0^{\circ} \mathrm{C}-\mathrm{rt}]{\mathrm{KF}-2 \mathrm{H}_{2} \mathrm{O}, \text { DMF }}$
 $\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}-\mathrm{THF}$

14a, $n=1,88 \%$ 14b, $n=2,82 \%$

12a, $n=1,85 \%$
12b, $n=2,90 \%$

15a, $n=1,86 \%$
15b, $n=2,90 \%$

13a, $n=1,91 \%$
13b, $n=2,94 \%$

Scheme 3. Preparation of allylsilane substituted allylic acetate alkyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes.
The attempts at Lewis acid mediated cyclizations were less straightforward than the best cases of the $\mathbf{1} \rightarrow \mathbf{2}$ transformation. The use of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ in cyclization of $\mathbf{3 a}$ gave $\mathbf{4 a}$ contaminated with double bond isomer 16a (Equation 2). The use of TiCl_{4} and SnCl_{4} gave successively smaller amounts of impurity $\mathbf{1 6 a}$, and the use of SnCl_{4} (3 equiv) in the presence of $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (1.5 equiv) afforded $\mathbf{4 a}$ (79% yield) devoid of any $\mathbf{1 6 a}$ impurity. Employing analogous reaction conditions on $\mathbf{3} \mathbf{b}$ resulted in the formation of $\mathbf{4 b}(83 \%)$ as the sole isolable product.
i- $\mathrm{Pr}_{2} \mathrm{NEt}$ (1.5 equiv) 3a,b
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$ 0.007 M

16a

As an extension to the ability of vinylogous propargyldicobalt cations to undergo intramolecular Nicholas reaction chemistry, a more stringent test would be to determine whether
the analogous benzylic cations, i.e., 17, could lead to dibenzocycloheptynedicobalt complexes ($\mathbf{5}$ $\rightarrow \mathbf{6}$, Scheme 1). While it is highly unlikely that such cations would have the same stability as simple propargyldicobalt cations, alkynedicobalt complexes are known as activating groups in electrophilic aromatic substitution, ${ }^{28}$ and benzylic cation generation under reasonably mild conditions has become a subject of recent interest. ${ }^{29}$

17
For investigation of this possibility, a number of ortho- arylalkynylbenzyl acetates 5a-d were targeted. Beginning with 2-ethynylbenzaldehyde (Scheme 4), Sonogashira reaction with 3iodoanisole then afforded 18a (84% yield), while the use of 1-bromo-3,5-dimethoxybenzene gave 18b (79% yield). Reduction with DIBAL-H followed by acetylation produced 19a (85\% yield) and 19b (85% yield) from 18a and 18b, respectively. Finally, complexation of 19a and $\mathbf{1 9 b}$ with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ resulted the production of $\mathbf{5 a}(94 \%$ yield) and $\mathbf{5 b}$ (94% yield), respectively.

Scheme 4. Preparation of benzylic acetates complexes.
Substrates with thiophene and furan spacers between the potential acetate leaving group and the alkynedicobalt complex were prepared in a similar manner, starting with 3-bromothiophene-2-carbaldehyde or 3-bromofurancarbaldehyde. Desilylative Sonogashira reactions with 7'd gave 18c (77\% yield) and 18d (82\% yield) (Scheme 5). DIBAL-H reduction and acetylation afforded benzylic acetates 19c (93% yield) and 19d (88% yield), and
complexation of these alkynes with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ gave 5c (84% yield) and $\mathbf{5 d}$ (96% yield), respectively.

18c, $\mathrm{X}=\mathrm{S}, 77 \%$
19c, $X=S, 93 \%$
19d, $X=O, 88 \%$
18d, $X=0,82 \%$
19d, $X=O, 88 \%$

Scheme 5. Preparation of heterocyclic benzylic acetate complexes.
Initial attempts at the Lewis acid mediated cyclization of $\mathbf{5 a}$ were unsuccessful. The use of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (3 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave complete decomposition of the substrate, and the additional presence of $i-\mathrm{Pr}_{2} \mathrm{NEt}$, the use of a Bronsted acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in place of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$, or the employment of 1,1,1,3,3,3-hexafluoroisopropanol as solvent did not improve the results. Conversely, the use of SnCl_{4} as Lewis acid (3 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}$) induced the conversion of 5 a into $6 \mathbf{a}$ (66% yield), as a mixture of regioisomers resulting from reactions para- ($6 \mathbf{a}$) and ortho- $\left(\mathbf{6 a} \mathbf{a}^{\prime}\right)$ to the methoxy group $\left(\mathbf{6 a :} \mathbf{6 a} \mathbf{a}^{\mathbf{\prime}}=3.7: 1\right)($ Scheme 6$)$. Under these conditions, $\mathbf{5 b}$ also transformed into $\mathbf{6 b}$, in moderate yield (51%).

The thienyl- and furyl- analogues $\mathbf{5 c}, \mathbf{d}$ were also subjected to these reaction conditions, and underwent starting material consumption somewhat more rapidly. Thienyl substrate $\mathbf{5 c}$ gave tricyclic complex $\mathbf{6 c}$ in good yield (73%), but even under these condition the furyl substrate $\mathbf{5 d}$ gave significant amounts of decomposition; nevertheless, a small amount of tricycle $\mathbf{6 d}$ (17% yield) could be isolated.

Scheme 6. Intramolecular vinylogous Nicholas reactions of benzylic acetate complexes (5).
Studies on reductive removal of the $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ unit focused on 2d (Scheme 7). The use of our hydrosilylation-protodesilylation modification ${ }^{3 c, d}$ of the Isobe hydrosilylation protocol ${ }^{30}$ was investigated first. Addition of $\mathrm{Et}_{3} \mathrm{SiH} /$ bis(trimethylsilylacetylene) (BTMSA) at $65^{\circ} \mathrm{C}$, followed by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ at room temperature gave successful removal of the hexacarbonyldicobalt group, but resulted in overreduction of any initial alkene products and isolation of $\mathbf{2 0}(81 \%$ yield $)$ as a ca. 1:1 diastereomeric mixture. Separation of the process in the two discrete steps was more successful, as the $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{BTMSA} / 1,2$-dichloroethane protocol gave vinylsilane 21 in 86% yield, as a (94:6) mixture of vinylsilane regioisomers (major shown); subjecting this compound mixture to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ then afforded diene 22 in 97% yield. Alternatively, the use of $\mathrm{NaH}_{2} \mathrm{PO}_{2}-\mathrm{H}_{2} \mathrm{O} / 2-$ methoxyethanol ${ }^{31}$ also gave $\mathbf{2 2}$ from $\mathbf{2 d}$ in a one pot procedure (76% yield).

Scheme 7. Reductive decomplexation of 2d.
Application of this vinylogous Nicholas reaction chemistry to the synthesis of the icetexane framework of pisferin essentially originated with gemdimethyltetrahydrobenzodioxinone 23, itself prepared by dimethylation of $24 .{ }^{32}$ Addition of (trimethylsilyl)ethynyllithium to 23, followed by acidic workup, afforded enynone $\mathbf{2 5}$ in 84%
yield (Scheme 8). Straightforward desilylation (26, 88\% yield), followed by Sonogashira reaction with iodoisopropylanisole 27, gave 28 (70% yield). Alcohol acetylation of 28 gave 29 (94\% yield).

Scheme 8. Preparation of icetexane ring systems precursors.
Attempted $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ based complexation of 29 presumably resulted in the formation of 30, but this material possessed very limited stability and decomposed by the concentration phase of a typical workup. Attempts at cyclization reactions with either $\mathrm{BF}_{3}-\mathrm{OEt}_{2}, \mathrm{SnCl}_{4}$ or $\mathrm{Bu}_{2} \mathrm{BOTf}$ without isolation and purification of $\mathbf{3 0}$ gave in turn material with a limited lifetime. As a result, we chose to adapt the one pot complexation-Nicholas reaction-decomplexation tactic employed by the Tyrrell group ${ }^{33}$ to our needs. Reaction of a slight excess of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 29 for 3 h was followed by addition of $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (1.5 equiv) and SnCl_{4} (3 equiv) at $0{ }^{\circ} \mathrm{C}-\mathrm{rt}$. When monitoring by TLC indicated that the presumed 30 had been consumed (15 h), workup and filtration through a short plug of silica gel, with subsequent reductive decomplexation using $\mathrm{NaH}_{2} \mathrm{PO}_{2}-\mathrm{H}_{2} \mathrm{O}$ in 2-methoxyethanol, gave icetexane framework structure $\mathbf{3 1}$ in a modest yield (28\%) (Equation 3).

Conclusion

In conclusion, we have demonstrated the utility of vinylogous Nicholas reaction chemistry in the preparation of cycloheptynedicobalt complexes. Arene nucleophiles work well given sufficient electron richness, affording tricyclic $6,7, x$ - systems ($x=5,6,7$), and allylsilanes also serve as acceptable nucleophiles to give bicyclic cycloheptynes. In some cases, aromatic spacers may be used in place of alkene spacers, although the yields are variable. Finally, the icetexane ring system may be constructed by the chemistry by way of a one pot complexation-Nicholas reaction-reductive decomplexation protocol, although the steric hindrance imposed by the gemdimethyl groups appears to limit the yields in this construction.

Experimental Section

General Methods: All reaction solvents were used after passage through a solvent purification system. Commercial $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ was distilled and stored under nitrogen. All reactions were conducted under a nitrogen atmosphere unless otherwise noted. Flash chromatography was performed as described by Still using silica gel 60 (230-400 mesh). ${ }^{34}$ All new compounds are $>95 \%$ purity as determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. NMR spectra were run on Bruker Avance 500 or 300 spectrometers at 500 MHz or 300 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz or 75 MHz for ${ }^{13} \mathrm{C}$ in CDCl_{3} unless otherwise stated; chemical shifts are given in ppm and coupling constants (J) are given in Hz. High resolution mass spectra were run on a Waters/Micromass GCT (time of flight) mass spectrometer, in EI mode, at 70 eV .

2-(Phenylethynyl)cyclopent-1-enecarbaldehyde (9a)

General Procedure A: To a mixture of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1699 \mathrm{~g}, 0.147 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and CuI ($0.0467 \mathrm{~g}, 0.245 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added a solution of 2-bromocyclopent-1-ene-1carbaldehyde $(\mathbf{8 a})^{35}(1.2860 \mathrm{~g}, 7.3496 \mathrm{mmol})$ in DMF (5 mL), followed by a solution of phenylacetylene (7a) ($0.5000 \mathrm{~g}, 4.900 \mathrm{mmol}$) in DMF (5 mL). Triethylamine (32 mL) was added, and the reaction mixture stirred at $75{ }^{\circ} \mathrm{C}$ for 20 h . The mixture was filtered through Celite ${ }^{\circledR}$ and subjected to a conventional extractive workup $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Compound $9 \mathbf{9}$ was isolated by preparative $\operatorname{TLC}\left(25: 1\right.$ hexanes: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ as a yellow oil $(0.6907 \mathrm{~g}, 3.522 \mathrm{mmol}, 72 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $10.16(\mathrm{~s}, 1 \mathrm{H}), 7.49$ (apparent dd, $2 \mathrm{H}, \mathrm{J}=7.6, \mathrm{~J}=1.8$), 7.33-7.38 (m, 3 H),
$2.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9), 2.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9), 1.98$ (apparent pentet, $2 \mathrm{H}, \mathrm{J}=7.9$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.9, 148.1, 143.2, 132.0, 129.5, 128.7, 122.2, 100.8, 83.4, 39.1, 29.8, 22.3; IR (KBr): 3312, 3081, 2969, 2850, 2811, 2722, 2199, 1676, 1353; HRMS: m/e for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}$ calculated $196.0888\left(\mathrm{M}^{+}\right)$, found 196.0883.

2-[(3-Methoxyphenyl)ethynyl]cyclohex-1-enecarbaldehyde (9c)

Compound 9c was synthesized according to General Procedure A from 7b ${ }^{36}$ ($0.4596 \mathrm{~g}, 3.480$ mmol) and 2-bromocyclohex-1-ene-1-carbaldehyde $\mathbf{8 b}(0.9918 \mathrm{~g}, 5.220 \mathrm{mmol})$. The product was isolated as a yellow oil ($0.6204 \mathrm{~g}, 2.584 \mathrm{mmol}, 74 \%$) via preparative TLC (20:1 hexanes: $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.32(\mathrm{~s}, 1 \mathrm{H}), 7.26$ (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0$), 7.07 (d of $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6, \mathrm{~J}=1.2$), $6.99(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.5, \mathrm{~J}=1.4), 6.93(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.3, \mathrm{~J}=2.6, \mathrm{~J}=$ 0.9), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 193.0, 159.5, 142.8, 140.0, 129.7, 124.3, 123.4, 116.4, 115.9, 98.6, 86.2, 55.4, 32.4, 22.2, 22.0, 21.2; IR (KBr): 2937, 2835, 2194, 1673, 1212; HRMS: m/e for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ calculated $240.1150\left(\mathrm{M}^{+}\right)$, found 240.1158.

2-[(3,5-Dimethoxyphenyl)ethynyl]cyclopent-1-enecarbaldehyde (9e)

General Procedure B. To a mixture of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1552 \mathrm{~g}, 0.1344 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and CuI ($0.0427 \mathrm{~g}, 0.224 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added 2-bromocyclopent-1-ene-1-carbaldehyde ($\mathbf{8 a}$) $(1.1764 \mathrm{~g}, 6.7213 \mathrm{mmol})$ in THF $(7.5 \mathrm{~mL})$, followed by compound $7^{\prime} \mathbf{d}^{37}(1.0490 \mathrm{~g}, 4.4808$ mmol) in THF (7.5 mL) . After triethylamine (30 mL) was added, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and tetra-n-butylammonium fluoride (TBAF) (1.0 M in THF, $9.0 \mathrm{~mL}, 9.0 \mathrm{mmol}$) was added. After stirring for 10 min , the mixture was warmed to $75^{\circ} \mathrm{C}$ for 20 h . The reaction was filtered through Celite \circledR and subjected to a conventional extractive workup $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. The product $\mathbf{9} \mathbf{e}$ was isolated as a pale yellow solid ($1.0474 \mathrm{~g}, 4.0896 \mathrm{mmol}, 91 \%$) following flash chromatography (10:1 hexanes:Et ${ }_{2} \mathrm{O}$). mp. $120-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.16(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=2.3), 6.50($ apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.3), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6), 2.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6)$, 2.00 (apparent pentet, $2 \mathrm{H}, \mathrm{J}=7.6$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 188.9, 160.7, 148.2, 143.0, 123.3, 109.6, 102.9, 100.9, 82.8, 55.5, 38.9, 29.7, 22.2; IR (KBr): 3080, 2995, 2936, 2838, 2190, 1669, 1587, 1156; HRMS: m/e for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ calculated $256.1099\left(\mathrm{M}^{+}\right)$, found 256.1096.

[2-(Phenylethynyl)cyclopent-1-enyl]methyl acetate (10a)

General Procedure C. To a - $78{ }^{\circ} \mathrm{C}$ solution of compound $9 \mathrm{a}(0.5077 \mathrm{~g}, 2.589 \mathrm{mmol}$) in THF $(30 \mathrm{~mL})$ was added DIBAL-H (1.0 M in THF, $5.2 \mathrm{~mL}, 5.2 \mathrm{mmol}$) in a dropwise fashion. After 1
h at $-78^{\circ} \mathrm{C}$, pyridine ($6.2 \mathrm{~mL}, 78 \mathrm{mmol}$) was added, followed by acetic anhydride ($12.2 \mathrm{~mL}, 130$ $\mathrm{mmol})$ and DMAP ($1.577 \mathrm{~g}, 12.9 \mathrm{mmol}$). The reaction was allowed to warm to room temperature for $20 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}$, sat) was added and the mixture subjected to a conventional extractive workup $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Product 10a was isolated by preparative TLC ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) as a yellow oil ($0.5531 \mathrm{~g}, 2.303 \mathrm{mmol}, 89 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.45 (apparent dd, 2H, J=6.5, J $=3.1), 7.31-7.33(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7), 2.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9), 2.10(\mathrm{~s}, 3 \mathrm{H})$, 1.97 (apparent pentet, $2 \mathrm{H}, \mathrm{J}=7.7$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.2,144.8,131.6,128.4$, $128.3,123.4,123.1,95.0,84.7,62.1,37.1,34.2,22.5,21.0$; IR (KBr): 2960, 2852, 1743, 1225; HRMS: m/e for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ calculated $240.1150\left(\mathrm{M}^{+}\right)$, found 240.1145 .
[2-((3-Methoxyphenyl)ethynyl)cyclohex-1-enyl]methyl acetate (10c)
Compound 9c ($0.6204 \mathrm{~g}, 2.584 \mathrm{mmol}$) was subjected to General Procedure C. The product 10c was isolated as a pale yellow oil ($0.6542 \mathrm{~g}, 2.302 \mathrm{mmol}, 89 \%$) via preparative TLC (10:1 hexanes: $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.22 (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0$), 7.03 (d of $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $7.6, \mathrm{~J}=1.0), 6.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4, \mathrm{~J}=1.4), 6.86(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.4, \mathrm{~J}=2.6, \mathrm{~J}=0.7), 4.90(\mathrm{~s}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 171.3, 159.4, 139.3, 129.4, 124.5, 124.1, 120.0, 116.2, 114.9, 93.1, 88.0, 66.6, 55.4, 30.3, 27.2, 22.2, 22.1, 21.1; IR (KBr): 3002, 2935, 2861, 2198, 1738, 1596, 1230; HRMS: m/e for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ calculated $284.1412\left(\mathrm{M}^{+}\right)$, found 284.1415.

Hexacarbonyl $\left[\mu-\eta^{4}\right.$ (2-(Phenylethynyl)cyclopent-1-enyl $]$ methyl acetate)]dicobalt (1a)

General Procedure D. Compound $10 \mathrm{a}(0.5067 \mathrm{~g}, 2.110 \mathrm{mmol})$ and dicobalt octacarbonyl (excess) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The mixture was allowed to stir at room temperature, for 2 h . The solvent was then removed under reduced pressure, and the solid loaded onto a column of silica. The column was washed with 100% hexanes to remove excess, uncomplexed dicobalt octacarbonyl. Subsequently, elution with $15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$ afforded product 1a, which was isolated as a dark brown solid ($1.002 \mathrm{~g}, 1.9051 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.44-7.47 (m, 2H), 7.30-7.37 (m, 3H), $4.63(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8)$, $2.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9), 2.03$ (apparent pentet, $2 \mathrm{H}, \mathrm{J}=7.9$), $2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 199.4, 170.8, 138.5, 137.6, 137.2, 129.3, 128.9, 127.9, 93.1, 84.7, 61.2, 39.9, 36.3, 21.9, 20.9; IR (KBr): 3077, 2957, 2848, 2089, 2050, 2021, 1745, 1231; HRMS: m/e for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{8}$ calculated $497.9560\left(\mathrm{M}-\mathrm{CO}^{+}\right)$, found 497.9552.

Hexacarbonyl $\left.\left[\mu-\eta^{4}(2-((3-m e t h o x y p h e n y l) e t h y n y l) c y c l o h e x-1-e n y l] m e t h y l ~ a c e t a t e\right)\right] d i c o b a l t ~$

 (1c)Compound 10c ($0.6542 \mathrm{~g}, 2.302 \mathrm{mmol}$) was subjected to complexation as outlined in General Procedure D. The complexed product $\mathbf{1 c}$ was isolated as a dark brown solid (1.2123 g, 2.1269 mmol, 92%) by flash chromatography ($10: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$), after washing through excess, uncomplexed $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with 100% hexanes. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.26(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.9)$, 7.01 (apparent ddd, $1 \mathrm{H}, \mathrm{J}=7.6, \mathrm{~J}=1.6, \mathrm{~J}=0.9$), $6.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4, \mathrm{~J}=1.7$), 6.85 (ddd, $1 \mathrm{H}, \mathrm{J}$ $=8.3, \mathrm{~J}=2.6, \mathrm{~J}=0.9$), $4.55(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0), 2.13(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1), 1.97$ (s, 3H), 1.72-1.79 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 199.6, 170.9, 159.6, 140.2, 133.5, $132.0,129.8,122.0,115.2,113.0,93.5,91.7,65.3,55.3,33.3,28.5,23.4,22.2,20.8$; IR (KBr): 2088, 2049, 2019, 1742, 1230; HRMS: m/e for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Co}_{2} \mathrm{O}_{9}$ calculated $430.0026\left(\mathrm{M}-5 \mathrm{CO}^{+}\right)$, found 430.0021.

Hexacarbonyl $\left[\mu-\eta^{4}([2-((3,5-d i m e t h o x y p h e n y l) e t h y n y l) c y c l o p e n t-1-e n y l m e t h y l ~\right.$ acetate)]dicobalt (1e)

Compound 10e ($1.0852 \mathrm{~g}, 3.6157 \mathrm{mmol}$) was subjected to complexation according to General Procedure D. The complexed compound 1e was isolated via flash chromatography (5:1 hexanes: $\mathrm{Et}_{2} \mathrm{O}$) following removal of excess, uncomplexed $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with 100% hexanes. The product was isolated as a dark brown solid ($1.8212 \mathrm{~g}, 3.1080 \mathrm{mmol}, 86 \%$) . ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 6.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.2), 6.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.1), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 7.8), $2.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9\right.$), 2.02 (apparent pentet, $2 \mathrm{H}, \mathrm{J}=7.9$), $2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 199.9, 170.8, 160.8, 140.5, 137.7, 137.1, 107.6, 99.9, 93.1, 84.6, 61.1, 55.4, 39.8, 36.3, 21.9, 20.7; IR (Pt/diamond ATR): 3020, 2977, 2838, 2087, 2046, 2005, 1989, 1734, 1586, 1205; HRMS: m / e for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Co}_{2} \mathrm{O}_{10}$ calculated $473.9925\left(\mathrm{M}-4 \mathrm{CO}^{+}\right)$, found 473.9930 .

Hexacarbonyl $\left[\mu-\eta^{4}-((10,11-\eta: 10,11-\eta)-2,3,4,5-t e t r a h y d r o-8-m e t h o x y-1 H-\right.$

dibenzo $[a, d]$ cycloheptene $)]$ dicobalt (2c) and Hexacarbonyl $\left[\mu-\eta^{4}-((10,11-\eta: 10,11-\eta)-2,3,4,5-\right.$ tetrahydro-6-methoxy-1H-dibenzo $[a, d]$ cycloheptene)]dicobalt ($2 \mathrm{c}^{\prime}$)

General Procedure E. To a solution of complexed compound $\mathbf{1 c}(0.0322 \mathrm{~g}, 0.0565 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~mL}, 7 \times 10^{-3} \mathrm{M}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(21 \mu \mathrm{~L}, 0.17 \mathrm{mmol})$. After 1.5 h , starting material consumption was complete and the reaction was subjected to a conventional extractive workup $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The product regioisomers were separable by flash chromatography using 100% hexanes. The major product $2 \mathrm{c}(0.0195 \mathrm{~g}, 0.0382 \mathrm{mmol}, 68 \%)$ eluted as the second band,
and as a dark maroon solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7), 7.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 8.3), $6.84(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4, \mathrm{~J}=2.7), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.8), 2.28(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=6.0$), 1.67-1.78 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.0,159.0,139.0,137.2,130.1,129.9$, $129.3,117.4,113.6,94.9,89.5,55.3,42.1,33.7,30.5,23.0,22.7$; IR (KBr): 2930, 2086, 2046, 2017, 1270; HRMS: m/e for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{7}$ calculated $481.9625\left(\mathrm{M}-\mathrm{CO}^{+}\right)$, found 481.9634 .

Compound $\mathbf{2 c} \mathbf{c}^{\prime}$ eluted as the first band, as a dark maroon solid, and as the minor product (0.0040 $\mathrm{g}, 0.0078 \mathrm{mmol}, 14 \%$). The product ratio of major:minor $\mathbf{2 c}: 2 \mathbf{c}^{\prime}$ (i.e., para attack:ortho attack) was 4.9:1, with a combined yield of 82%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.28(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.9, \mathrm{~J}$ $=1.2), 7.23$ (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8), 6.90(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{~J}=1.1), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H})$, 2.31-2.35 (m, 4H), 1.67-1.77 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.2,155.9,139.6,137.7$, $130.9,127.6,125.4,124.8,110.7,95.2,90.0,56.0,33.8,32.3,30.5,23.1,22.8$; IR (KBr): 2933, 2086, 2046, 2017, 1570, 1262; HRMS: m/e for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{7}$ calculated 481.9611 (M-CO${ }^{+}$), found 481.9624 .

Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(9,10-didehydro-5,7-dimethoxy-1,2,3,4-

tetrahydrobenzo[f]azulene)]dicobalt (2e)

Compound 1e ($0.1874 \mathrm{~g}, 0.3198 \mathrm{mmol}$) was reacted according to General Procedure E using $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(121 \mu \mathrm{~L}, 0.959 \mathrm{mmol})$. The reaction was complete within 45 minutes, as assessed by TLC analysis. The cyclized product (2e) was isolated by flash chromatography (15:1 hexanes: $\mathrm{Et}_{2} \mathrm{O}$) as a maroon solid ($0.1433 \mathrm{~g}, 0.2724 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2), 6.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=7.6$), $2.54\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7\right.$), 2.05 (apparent pentet, $2 \mathrm{H}, \mathrm{J}=7.6$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $199.8,159.3,157.3,142.4,139.6,134.6,116.3,109.3,99.0,91.0,87.8,55.9,55.4,39.4,35.4$, 27.1, 22.6; IR (KBr): 3004, 2956, 2838, 2087, 2047, 2016, 1600, 1458, 1141; HRMS: m/e for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{8}$ calculated $525.9509\left(\mathrm{M}^{+}\right)$, found 525.9510.

Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(10,11-didehydro-2,3,4,5-tetrahydro-7-methoxy-1Hdibenzo[a,d]cycloheptene)]dicobalt (2f)

Compound 1f (see Supporting Information) ($0.0783 \mathrm{~g}, 0.130 \mathrm{mmol}$) was reacted according to General Procedure E using $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$. The reaction was complete within 45 minutes, as assessed by TLC analysis. The cyclized product (2f) was isolated by flash chromatography ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) as a maroon solid ($\left.0.0601 \mathrm{~g}, 0.111 \mathrm{mmol}, 85 \%\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2), 6.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}$,
$2 \mathrm{H}), 2.30-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.0,159.2,156.7$, $140.1,138.2,130.5,118.2,108.0,98.8,95.2,90.4,55.9,55.4,33.7,31.8,30.4,23.0,22.8$; IR (KBr): 3020, 2086, 2046, 2015, 1600, 1279; HRMS: m/e for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{O}_{8}$ calculated 539.9666 $\left(\mathrm{M}^{+}\right)$, found 539.9669.

Hexacarbonyl $\left[\mu-\eta^{4}-((10,11-\eta: 10,11-\eta)\right.$-10,11-didehydro-2,3,4,5-tetrahydro-6,9-dimethoxy-1H-dibenzo[a,d]cycloheptene)] dicobalt (2h)

Compound 1h (see Supporting Information) ($0.3248 \mathrm{~g}, 0.5413 \mathrm{mmol}$) was reacted according to General Procedure E using $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(206 \mu \mathrm{~L}, 1.62 \mathrm{mmol})$. The reaction was complete after 1 h , as assessed by TLC analysis. The cyclized product (2h) was isolated by flash chromatography ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) as a maroon solid $(0.2405 \mathrm{~g}, 0.4454 \mathrm{mmol}, 82 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0), 6.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 2.30-$ $2.36(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.4,154.0$, $150.3,136.3,131.5,127.4,126.6,112.2,108.7,96.0,84.8,56.7,54.7,33.6,32.8,30.5,23.1$, 22.9; IR (KBr): 2924, 2850, 2085, 2046, 2026, 1739, 1463, 1261; HRMS: m/e for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{O}_{8}$ calculated $539.9666\left(\mathrm{M}^{+}\right)$, found 539.9669.

[2-((Trimethylsilyl)ethynyl)cyclohex-1-enyl]methyl acetate (13a)

Compound $\mathbf{1 2 a}^{38}(1.4485 \mathrm{~g}, 7.0277 \mathrm{mmol})$ was subjected to General Procedure C. The product was isolated as a pale yellow oil ($1.6033 \mathrm{~g}, 6.4096 \mathrm{mmol}, 91 \%$) via flash chromatography ($10: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 4.94(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1), 1.91(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.1), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 4 \mathrm{H}),-0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 169.6,140.5$, 119.7, 104.5, 97.7, 66.0, 29.9, 26.7, 21.9, 21.8, 20.1, -0.2; IR (ATR): 2933, 2861, 2140, 1741, 1366, 1227; HRMS: m/e for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$ calculated $250.1389\left(\mathrm{M}^{+}\right)$, found 250.1386 .

(2-Ethynylcyclohex-1-enyl)methyl acetate (14a)

General Procedure F. To a $0{ }^{\circ} \mathrm{C}$ solution of compound $\mathbf{1 3 a}$ ($1.6033 \mathrm{~g}, 6.4096 \mathrm{mmol}$) in DMF (5 $\mathrm{mL})$ was added $\mathrm{KF}-2 \mathrm{H}_{2} \mathrm{O}(0.7843 \mathrm{~g}, 8.332 \mathrm{mmol}, 1.3$ equiv). The mixture was allowed to warm to room temperature over 2 h at which point, TLC analysis showed the desilylation to be complete. The mixture was filtered and the filtrate was subjected to a conventional extractive workup ($\mathrm{Et}_{2} \mathrm{O}$). Compound 14a was isolated as a yellow oil ($1.0047 \mathrm{~g}, 5.6412 \mathrm{mmol}, 88 \%$) following flash chromatography ($10: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 4.84(\mathrm{~s}, 2 \mathrm{H})$, $2.98(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0), 1.89(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-$

NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 169.8, 140.7, 118.7, 82.4, 81.4, 65.9, 29.9, 26.6, 21.8, 21.7, 20.1; IR (ATR): 3286, 2932, 2861, 1736, 1366, 1227; HRMS: m/e for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ calculated 178.0994 $\left(\mathrm{M}^{+}\right)$, found 178.0998.
[2-(3-((Trimethylsilyl)methyl)but-3-en-1-ynyl)cyclohex-1-enyl]methyl acetate (15a)
Compound 14a ($1.0047 \mathrm{~g}, 5.6412 \mathrm{mmol}$) was subjected to Sonogashira conditions according to General Procedure A with 2-bromo-3-(trimethylsilyl)-1-propene ${ }^{39}$ ($1.8413 \mathrm{~g}, 9.5901 \mathrm{mmol}$). The coupled compound 15a was isolated as a yellow oil ($1.4095 \mathrm{~g}, 4.8575 \mathrm{mmol}, 86 \%$) using flash chromatography ($10: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0), 4.98$ $(\mathrm{m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 4 \mathrm{H})$, 0.04 (s, 9H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 171.0, 138.3, 128.8, 120.1, 118.6, 95.3, 87.0, 66.5, 30.1, 28.3, 26.9, 22.1, 22.0, 20.9, -1.6; IR (KBr): 2934, 2894, 2862, 2195, 1743, 1594, 1376, 1232; HRMS: m/e for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$ calculated $290.1702\left(\mathrm{M}^{+}\right)$, found 290.1708.
Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(2-(3-((trimethylsilyl)methyl)but-3-en-1-ynyl)cyclohex-1-enyl)methyl acetate)]dicobalt (3a)

General Procedure G. Compound 15 a ($1.4095 \mathrm{~g}, 4.8575 \mathrm{mmol}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ (dry) $(56.2 \mathrm{~mL})$ along with excess $\mathrm{Co}_{2}(\mathrm{CO})_{8}$. The solution was cooled to $0^{\circ} \mathrm{C}$, and allowed to stir for 1 h at that temperature under a nitrogen atmosphere. Following the hour, the solvent was removed under reduced pressure, and the residue was loaded onto a flash chromatographic column containing neutralized silica. The complexed compound (3a) was isolated by first washing the column with 100% hexanes to remove any excess, uncomplexed $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, followed by $10: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$ to elute the product as a maroon solid $(2.5800 \mathrm{~g}, 4.4791 \mathrm{mmol}$, $92 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9)$, $1.98(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1), 1.85(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$): 200.0, 169.8, 144.1, 133.8, 131.4, 116.0, 100.0, 93.9, 65.0, 33.4, 28.1, 26.8, 23.2, 22.0, 20.1, -1.1; IR (KBr): 2938, 2863, 2087, 2048, 2020, 1744, 1607, 1377, 1231; HRMS: m/e for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Co}_{2} \mathrm{O}_{8} \mathrm{Si}$ calculated $408.0366\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$, found 408.0363 .
Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(8,9-dehydro-2,3,4,5,6,7-hexahydro-7-methylene-1Hbenzo[7]annulene)]dicobalt (4a)
General Procedure H. Complexed compound 3a ($0.1836 \mathrm{~g}, 0.3187 \mathrm{mmol}$) was placed in a round bottom flask, and placed under vacuum for 5 minutes. The flask was then purged with nitrogen. This was repeated two times more. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45.5 \mathrm{~mL})$ was added to the reaction
flask, and the solution was cooled to $0^{\circ} \mathrm{C} . N, N$-Diisopropylethylamine ($83 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) was added to the solution, followed by the dropwise addition of $\mathrm{SnCl}_{4}(112 \mu \mathrm{~L}, 0.956 \mathrm{mmol})$. The reaction was allowed to stir for 20 minutes under nitrogen, at which point TLC analysis showed complete starting material consumption. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq, sat) was added, and the mixture was subjected to a conventional extractive workup $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Flash chromatography on neutralized silica using 100% hexanes eluted compound $4 \mathbf{4}(0.1115 \mathrm{~g}, 0.2512 \mathrm{mmol}, 79 \%)$ as a maroon solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: 5.63-5.64 (m, 1H), 5.24 (apparent $\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=1.3$), 2.34-2.38 $(\mathrm{m}, 2 \mathrm{H}), 2.27-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.39$ (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 200.3,147.7,140.5,128.4,118.9,94.2,89.1,35.9,33.7$, 33.2, 30.2, 22.9, 22.6; IR (KBr): 2933, 2863, 2087, 2053, 1612, 1432, 1237; HRMS: m/e for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{6}$ calculated $415.9505\left(\mathrm{M}-\mathrm{CO}^{+}\right)$, found 415.9513 .

2-[(Methoxyphenyl)ethynyl]benzyl acetate (19a)

Compound 18a ($0.8583 \mathrm{~g}, 3.646 \mathrm{mmol}$) was subjected to General Procedure C. Flash chromatography ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded compound 19a as a pale yellow oil (0.8677 g , $3.098 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.59 (dd, $1 \mathrm{H}, \mathrm{J}=7.4, \mathrm{~J}=1.6$), 7.44 (dd, $1 \mathrm{H}, \mathrm{J}$ $=7.3, \mathrm{~J}=1.2$), 7.31-7.37 (m, 2H), 7.72 (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0), 7.18(\mathrm{~d}$ of apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $7.6, \mathrm{~J}=1.2), 7.11-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.3, \mathrm{~J}=2.6, \mathrm{~J}=1.0), 5.40(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, 3H), 2.13 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 170.8, 159.5, 137.6, 132.3, 129.6, 128.6, 128.5, $128.2,124.2,124.1,122.7,116.4,115.2,94.4,86.5,64.8,55.3,21.0$; IR (ATR): 3002, 2938, 1737, 1573, 1492; HRMS: m/e for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$ calculated $280.1099\left(\mathrm{M}^{+}\right)$, found 280.1100.

Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(2-((methoxyphenyl)ethynyl)benzyl acetate)]dicobalt (5a)

Compound 19a ($0.8677 \mathrm{~g}, 3.098 \mathrm{mmol}$) was subjected to General Procedure D. Following flash chromatography ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) compound $\mathbf{5 a}$ was isolated as a dark brown solid $(1.6404 \mathrm{~g}$, $2.8985 \mathrm{mmol}, 94 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.67 (dd, $1 \mathrm{H}, \mathrm{J}=7.8, \mathrm{~J}=1.4$), 7.43 (dd, 1 H , $\mathrm{J}=7.4, \mathrm{~J}=1.4$), 7.34-7.40 (m, 2H), 7.30 (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0$), $7.07(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=7.6, \mathrm{~J}=1.6$, $\mathrm{J}=0.9$), 7.01-7.02 (m, 1H), $6.91(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.2, \mathrm{~J}=2.5, \mathrm{~J}=0.9), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 2.04 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 199.1, 170.5, 159.8, 140.0, 136.1, 134.5, 132.4, $129.9,129.6,128.8,128.4,121.8,115.0,113.4,95.0,88.9,63.6,55.2,20.8$; IR (ATR): 3019, 2905, 2087, 2048, 2010, 1993, 1748, 1584, 1231; HRMS: m/e for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{9}$ calculated $509.9560\left(\mathrm{M}-2 \mathrm{CO}^{+}\right)$, found 509.9543.

3-[(3,5-Dimethoxyphenyl)ethynyl]thiophene-2-carbaldehyde (18c)

[(3,5-Dimethoxyphenyl)ethynyl]trimethylsilane $\mathbf{7}^{\prime} \mathbf{d}$ ($0.7501 \mathrm{~g}, 3.204 \mathrm{mmol}$) was subjected to tandem desilylation/Sonogashira chemistry according to General Procedure B with 3-bromothiophene-2-carbaldehyde ($1.0648 \mathrm{~g}, 5.6071 \mathrm{mmol}$), with the exception that the reaction was warmed to rt . The product $\mathbf{1 8 c}$ was isolated via flash chromatography ($7: 1$ hexanes $: \mathrm{Et}_{2} \mathrm{O}$) as a colourless solid ($0.6715 \mathrm{~g}, 2.468 \mathrm{mmol}, 77 \%$). mp. 94.5-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $10.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.7), 7.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.7, \mathrm{~J}=5.0), 7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.3)$, $6.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.2), 3.79(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 183.0,160.7,143.7$, 134.0, 131.6, 130.8, 123.2, 109.6, 102.7, 96.2, 81.1, 55.5; IR (ATR): 3008, 2964, 2835, 2209, 1659, 1585, 1203; HRMS: m/e for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$ calculated $272.0507\left(\mathrm{M}^{+}\right)$, found 272.0512.
[3-((3,5-Dimethoxyphenyl)ethynyl)thiophen-2-yl]methyl acetate (19c)
Compound 18c ($0.6715 \mathrm{~g}, 2.468 \mathrm{mmol}$) was reduced and acetylated according to General Procedure C. The product 19 c was isolated as a yellow oil ($0.7250 \mathrm{~g}, 2.294 \mathrm{mmol}, 93 \%$) using flash chromatography ($5: 1$ hexanes:Et ${ }_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0)$, $7.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0), 6.69(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}): 170.7, 160.6, 140.5, 129.7, 125.8, 124.2, 122.4, 109.3, 101.9, 92.9, 82.3, 59.4, 55.4, 20.9; IR (ATR): 3000, 2838, 1736, 1586, 1419, 1155; HRMS: m/e for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ calculated $316.0769\left(\mathrm{M}^{+}\right)$, found 316.0756.

Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(3-((3,5-dimethoxyphenyl)ethynyl)thiophen-2-ylmethyl acetate)]dicobalt (5c)

Compound 19c ($0.7250 \mathrm{~g}, 2.294 \mathrm{mmol}$) was subjected to complexation according to General Procedure D. The product 5c was isolated as a dark brown solid ($1.1616 \mathrm{~g}, 1.9298 \mathrm{mmol}, 84 \%$) using flash chromatography ($5: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$), after removing excess, uncomplexed $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with 100% hexanes. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2), 7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2)$, $6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.3), 6.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.2), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $199.0,170.5,160.9,140.3,136.5,134.9,130.5,126.1,107.5,99.9,93.3,82.4$, 58.6, 55.3, 20.6; IR (ATR): 2966, 2840, 2086, 2044, 1990, 1741, 1579, 1227; HRMS: m/e for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{10} \mathrm{~S}$ calculated $517.9281\left(\mathrm{M}-3 \mathrm{CO}^{+}\right)$, found 517.9290 .

Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(10,11-dehydro-2-methoxy-5H-dibenzo[a,d]cycloheptene)]dicobalt (6a) and Hexacarbonyl $[\mu$-(10,11-dehydro4-methoxy-5H-dibenzo[a,d]cycloheptene)]dicobalt (6a')

Compound 5a ($0.2279 \mathrm{~g}, 0.4027 \mathrm{mmol}$) was reacted according to General Procedure E, using $\mathrm{SnCl}_{4}(141 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$. The reaction mixture was allowed to warm to room temperature over the course of 15 h , at which point the reaction was complete (as determined by TLC). Flash chromatography ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) on neutralized silica afforded compound $\mathbf{6 a}$ as the major product (and the second band on the column) as a dark maroon solid ($0.1060 \mathrm{~g}, 0.2095 \mathrm{mmol}$, 52%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.69-7.71 (m, 1H), 7.32-7.36 (m, 2H), 7.27-7.31 (m, 1H), $7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8), 7.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6), 6.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.5, \mathrm{~J}=2.8), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 199.4,159.2,138.4,137.7,137.1,132.1,130.4,130.0,129.3$, 128.6, 127.7, 117.4, 113.8, 90.8, 55.3, 42.1; IR (ATR): 2942, 2843, 2087, 2048, 2034, 2019, 1995, 1270; HRMS: m/e for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Co}_{2} \mathrm{O}_{7}$ calculated $449.9349\left(\mathrm{M}-2 \mathrm{CO}^{+}\right)$, found 449.9361 .

Compound 6a' was isolated as the minor product (and the first band off the column) as a dark maroon solid ($0.0286 \mathrm{~g}, 0.0565 \mathrm{mmol}, 14 \%$). The combined yield was 66%, with a $3.7: 1$ para:ortho attack (i.e., major:minor products). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 7.68-7.70 (m, 1H), 7.36-7.38 (m, 1H), 7.32-7.34 (m, 3H), 7.29 (apparent t, 1H, J = 8.0), $6.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3), 4.01$ (s, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 199.6,156.3,138.8,137.7,137.6,131.9$, 129.9, 128.6, 127.9, 127.6, 125.7, 124.6, 111.1, 91.2, 90.8, 56.1, 32.2; IR (ATR): 2920, 2839, 2091, 2047, 2018, 2002, 1568, 1254; HRMS: m/e for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Co}_{2} \mathrm{O}_{7}$ calculated 477.9298 (MCO^{+}), found 477.9301.

Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(4,5-dehydro-7,9-dimethoxy-10H-benzo[5,6]cyclohepta[1,2-b]

thiophene)]dicobalt (6c)

Compound 5c ($0.1291 \mathrm{~g}, 0.2145 \mathrm{mmol}$) was subjected to Nicholas reaction chemistry according to General Procedure E, using $\mathrm{SnCl}_{4}(75 \mu \mathrm{~L}, 0.64 \mathrm{mmol})$. The reaction was complete after 10 minutes, as determined by TLC, and the product ($6 \mathbf{c}$) was isolated as a dark maroon solid ($0.0851 \mathrm{~g}, 0.157 \mathrm{mmol}, 73 \%$) using flash chromatography ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.24(1 / 2 \mathrm{ABq}, 1 \mathrm{H}, \mathrm{J}=13.7), 7.18(1 / 2 \mathrm{ABq}, 1 \mathrm{H}, \mathrm{J}=5.4), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.6), 6.53$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.6), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 199.5$, 159.7, 157.1, 134.0, 137.4, 135.8, 129.4, 123.8, 116.0, 109.4, 99.1, 91.2, 84.6, 56.1, 55.4, 25.0; IR (ATR): 2963, 2832, 2086, 2035, 2004, 1567, 1210; HRMS: m/e for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Co}_{2} \mathrm{O}_{8} \mathrm{~S}$ calculated $513.8968\left(\mathrm{M}-\mathrm{CO}^{+}\right)$, found 513.8949 .

2,3,4,5-Tetrahydro-7,8-dimethoxy-10-triethylsilyl-1H-dibenzo[a,d]cycloheptene (21)

To a stirred solution of compound $2 \mathbf{d}(0.1437 \mathrm{~g}, ~ 0.2661 \mathrm{mmol})$ dissolved in degassed 1,2dichloroethane (4.1 mL) was added bis(trimethylsilyl)acetylene ($121 \mu \mathrm{~L}, 0.532 \mathrm{mmol}$) and triethylsilane $(213 \mu \mathrm{~L}, 1.33 \mathrm{mmol})$. The reaction was placed in an oil bath set at $65^{\circ} \mathrm{C}$, and allowed to stir for 6 h under a nitrogen atmosphere. Following the 6 h , the reaction was cooled, dissolved in $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$ and subjected to a conventional extractive workup $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Preparative TLC ($15: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded compound 21 as the major isomer, and as a colourless solid ($0.0862 \mathrm{~g}, 0.233 \mathrm{mmol}, 86 \%$ combined yield). mp. $95-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H})$, $2.33(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, 9 \mathrm{H}, \mathrm{J}=7.8), 0.78(\mathrm{q}, 6 \mathrm{H}, \mathrm{J}=7.8) ; \operatorname{NOE}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Irradiation of the $0.96 \mathrm{ppm}\left(\mathrm{SiEt}_{3}\right)$ resonance gave enhancement of the 6.88 ppm (1.0\%) and $6.51 \mathrm{ppm}(1.0 \%)$ resonances; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 148.2,146.1,142.4$, $138.4,135.5,131.8,131.6,128.4,110.5,110.4,55.9,55.8,40.4,30.9,28.8,22.9,22.8,7.6,4.5$; IR (KBr): 2950, 2932, 2873, 1604, 1508, 1463, 1262; HRMS: m/e for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}$ Si calculated $370.2328\left(\mathrm{M}^{+}\right)$, found 370.2325 .

2,3,4,5-Tetrahydro-7,8-dimethoxy-1H-dibenzo[a,d]cycloheptene (22)

METHOD 1: To a stirred solution of $21(0.0849 \mathrm{~g}, 0.229 \mathrm{mmol})$ in degassed 1,2-dichoroethane (3.5 mL) was added trifluoroacetic acid ($88 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), and the solution was allowed to stir for 3 h at room temperature under a nitrogen atmosphere. The mixture was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ (75 mL) and subjected to a conventional extractive workup ($\mathrm{Et}_{2} \mathrm{O}$). Preparative TLC (15:1 hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded compound 22 as a colourless solid ($0.0570 \mathrm{~g}, 0.222 \mathrm{mmol}, 97 \%$). mp . $88-90^{\circ} \mathrm{C}$.

METHOD 2: To a stirred solution of $\mathbf{2 d}(0.3209 \mathrm{~g}, 0.5943 \mathrm{mmol})$ in degassed 2 methoxyethanol (9.1 mL) was added sodium hypophosphite monohydrate ($0.3149 \mathrm{~g}, 2.972$ mmol). The solution was placed in an oil bath set at $65^{\circ} \mathrm{C}$, and allowed to stir overnight (18 h) under a nitrogen atmosphere. The reaction mixture was filtered through Celite ${ }^{\circledR}$ and subjected to a conventional extractive workup (EtOAc). Preparative TLC afforded compound 22 as colourless crystals ($0.1164 \mathrm{~g}, 0.4544 \mathrm{mmol}, 76 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=11.6), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H})$, $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 149.7,146.9,132.2$, $129.8,129.5,128.8,128.1,110.4,110.1,56.1,40.5,31.6,29.4,23.1,23.0$; IR (KBr): 2998, 2930,

2833, 1605, 1510, 1353, 1263; HRMS: m/e for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ calculated $256.1463\left(\mathrm{M}^{+}\right)$, found 256.1457.

1,2,3,5,-Tetrahydro-8-isopropyl-7-methoxy-1,1,8-trimethyl-4H-Dibenzo[a,d]cyclohepten-4one (31)

Compound 29 ($0.2507 \mathrm{~g}, 0.6809 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(97.2 \mathrm{~mL})$ along with a slight excess of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$. The solution was allowed to stir at room temperature under a nitrogen atmosphere for 2 h . The reaction flask was cooled $0{ }^{\circ} \mathrm{C} . \mathrm{SnCl}_{4}(238 \mu \mathrm{~L}, 2.04 \mathrm{mmol})$ was added dropwise into the reaction, followed by N, N-diisoproplyethylamine ($178 \mu \mathrm{~L}, 1.02$ $\mathrm{mmol})$. The reaction was then allowed to stir under a nitrogen atmosphere for another 15 h , while warming to room temperature. Following the 15 h , TLC analysis showed complete starting material consumption, and $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-}$(aq., sat., 75 mL) was added. The organic portion was rinsed once more with $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-}$(aq., sat., 75 mL) in a separatory funnel, and then with brine (75 mL). The organic fraction was then dried over MgSO_{4}, filtered, removed under reduced pressure, and the remaining residue quickly passed through a short column of silica to remove any excess impurities (100% hexanes, then $3: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$). The collected fraction $(\sim 0.16 \mathrm{~g}$, $\sim 0.27 \mathrm{mmol}$) was dissolved in degassed 2-methoxyethanol (4.1 mL) along with 5 equivalents of $\mathrm{NaH}_{2} \mathrm{PO}_{2}-\mathrm{H}_{2} \mathrm{O}(0.1185 \mathrm{~g}, 1.347 \mathrm{mmol})$. The solution was allowed to stir at $65^{\circ} \mathrm{C}$ for 20 h under a nitrogen atmosphere. The reaction mixture was filtered through Celite ${ }^{\circledR}$, and the collected fraction subjected to a conventional extractive workup (EtOAc). Preparative TLC chromatography ($2: 1$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$) isolated the product as a yellow oil $(0.0592 \mathrm{~g}, 0.191 \mathrm{mmol}$, $28 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=11.9), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.30(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8), 1.82(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8), 1.20(\mathrm{~s}$, $9 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$; NOE ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Irradiation at $\delta 7.14$ resonance gave enhancement of doublet further downfield and isopropyl protons at $\delta 1.21$. Irradiation at $\delta 6.79$ resonance gave enhancement of methoxy protons at $\delta 3.87 ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): 196.3, 158.8, 155.9, $138.4,137.1,134.6,128.3,126.0,125.8,109.3,55.5,37.2,34.8,34.4,30.5,27.6,26.6,22.4$; IR (ATR): 2957, 2923, 2866, 1657, 1496, 1255; HRMS: m/e for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$ calculated 310.1933 $\left(\mathrm{M}^{+}\right)$, found 310.1932.
Acknowledgements. The authors are grateful to NSERC (Canada), the Canada Foundation for Innovation (CFI), and the Ontario Innovation Trust (OIT) for support of this research.

Notes and references

1 For reviews, see: (a) J. R. Green, Eur. J. Org. Chem. 2008, 6053; (b) J. R. Green, Synlett 2012, 23, 1271.

2 M. J. Went, Adv. Organomet. Chem. 1997, 41, 69.
3 (a) T. Nakamura, T. Matsui, K. Tanino, and I. Kuwajima, J. Org. Chem. 2007, 62, 3032; (b) K. Tanino, K. Onuki, K. Asano, M. Miyashita, T. Nakamura, Y. Takahashi, and I. Kuwajima, J. Am. Chem. Soc. 2003, 125, 1498; (c) S. Djurdjevic and J. R. Green, Org. Lett. 2007, 9, 5505; (d) S. Djurdjevic, F. Yang, and J. R. Green, J. Org. Chem. 2010, 75, 8241; (e) Y.-T Lin, F.-Y. Lin, and M. Isobe, Org. Lett. 2014, 16, 5948; (f) S. Djurdjevic and J. R. Green, Synlett 2014, 25, 2467.

4 (a) S. Amiralaei, J. Gauld, and J. R. Green, Chem. - Eur. J. 2011, 17, 4157; (b) S. Amiralaei and J. R. Green, Chem. Commun. 2008, 4971.

5 (a) J. R. Green, Synlett 2001, 353; (b) D. G. J. Young, J. A. Burlison, and U. Peters, J. Org. Chem. 2003, 68, 3494.
6 N. Iwasawa and H. Satoh, J. Am. Chem. Soc. 1999, 121, 7951.
7 (a) N. Iwasawa, F. Sakurada, and M. Iwamoto, Org. Lett. 2000, 2, 871; (b) N. Iwasawa, K. Inaba, S. Nakayama, and M. Aoki, Angew. Chem. Int. Ed. 2005, 44, 7447.

8 K. Tanino, T. Simizu, M. Miyama, and I. Kuwajima, J. Am. Chem. Soc. 2000, 122, 6116.
9 K. Tanino, F. Kondo, T. Shimizu, and M. Miyashita, Org. Lett. 2002, 4, 2217.
10 K. Inaba, J. Tanaka, and N. Iwasawa, Chem. Lett. 2007, 36, 474.
11 See reference 3 and: (a) S. L. Schreiber, T. Sammakia, and W. E. Crowe, J. Am. Chem. Soc. 1986, 108, 3128; (b) J. R. Green, Chem. Commun. 1998, 1751; (c) M. M. Patel and J. R. Green, Chem. Commun. 1999, 509; (d) Y. Lu and J. R. Green, Synlett 2001, 243; (e) L. J. Golovko, M. J. Hope-Weeks, M. J. Mays, M. McPartlin, A. M. Sloan and A. D. Woods, New. J. Chem. 2004, 28, 527; (f) Y. Ding and J. R. Green, Synlett 2005, 271; (g) For the corresponding ethers, see: T. Baba, G. Huang, and M. Isobe, Tetrahedron 2003, 59, 6851, and references therein; (h) For the corresponding amides, see: K. D. Closser, M. M. Quintal, and K. M. Shea, J. Org. Chem. 2009, 74, 3680.

12 For recent reviews on the Nicholas reaction, see: (a) N. Kann, Curr. Org. Chem. 2012, 16, 322; (b) K. M. Shea, in Name Reactions for Homologations, Pt. 1, ed. J. J. Li, Wiley,

Hoboken, 2009, p. 284-298; (c) D. D. Diaz, J. M. Betancort and V. S. Martín, Synlett 2007, 343; (d) B. J. Teobald, Tetrahedron 2002, 58, 4133; (e) J. R. Green, Curr. Org. Chem. 2001, 5, 809.

13 (a) S. Padmanabhan and K. M. Nicholas, Tetrahedron Lett. 1982, 23, 2555; (b) S. Shibuya and M. Isobe, Tetrahedron 1998, 54, 6667; (c) E. Álvaro, M. C. de la Torre, and M. A. Sierra, Org. Lett. 2003, 5, 2381; (d) J. DiMartino and J. R. Green, Tetrahedron 2006, 62, 1402, and references therein.

14 (a) E. M. Simmons and R. Sarpong, Nat. Prod. Rep. 2009, 26, 1195; (b) Y. Endo, T. Ohta, and S. Nozoe, Tetrahedron Lett. 1991, 32, 3083.

15 By Friedel Crafts chemistry: (a) A. Carita and A. C. B. Burtoloso, Tetrahedron Lett. 2010, 51, 686; (b) S.-I. Isobe, K. Kubo, T. Thiemann, T. Sawada, T. Yonemitsu, and S. Mataka, Bull. Chem. Soc. Jpn. 2002, 75, 773; (c) T.-L. Ho and C.-K. Chen, Tetrahedron 1995, 51, 5819; (d) A. K. Ghosh, C. Mukopadhyay, and U. R. Ghatak, J. Chem. Soc., Perkin Trans. 1 1994, 327.

16 By conjugate additions: (a) G. Majetich, G. Zou, and J. Grove, Org. Lett. 2008, 10, 85; (b) G. Majetich, R. Hicks, Y. Zhang, X. Tian, T. L. Feltman, J. Fang, and S. Duncan, Jr., J. Org. Chem. 1996, 61, 8169; (c) T. Matsumoto, S. Imai, T. Yoshinari, and S. Matsuno, Bull. Chem. Soc. Jpn. 1986, 59, 3103.

17 By cycloaddition approaches: (a) L. Liu, Y. Gao, C. Che, N. Wu, D. Z. Wang, C.-C. Li, and Z. Yang, Chem. Commun. 2009, 662; (b) M. W. Tucket, W. J. Watkins, and R. J. Whitby, Tetrahedron Lett. 1998, 39, 123; (c) A. Sarkar, G. Saha, and S. Ghosh, J. Org. Chem. 1992, 57, 5771; (d) A. Padwa and M. J. Chughtai, Tetrahedron 2008, 64, 4758; (e) A. Padwa, J. Boosombat, P. Rashatasakhon, and J. Willis, Org. Lett. 2005, 7, 3725; (f) C. H. Oh, S. M. Lee, and C. S. Hong, Org. Lett. 2010, 12, 1308, and references therein; (g) P. G. Sammes and R. J. Whitby, J. Chem. Soc., Perkin Trans. 1 1987, 195.

18 By radical cyclizations: (a) J. Saadi and H.-U. Reissig, Synlett 2009, 2089; (b) G. Schneider, P. Tapolcsányi, J. Wölfling, P. Müller, M. Noltemeyer, and V. Terlau, Synlett 2003, 1494; (c) A. K. Ghosh, J. K. Mukhopadhyaya, and U. R. Ghatak, J. Chem. Soc., Perkin Trans. 1 1997, 2747; (d) S. W. Grant, K. Zhu, Y. Zhang, and S. L. Castle, Org. Lett. 2006, 8, 1867.

19 By Pd catalyzed Heck- and enolate arylation reactions: (a) S. Sengupta, M. G. B. Drew, R. Mukhopadhyay, B. Achari, and A. K. Banerjee, J. Org. Chem. 2005, 70, 7694; (b) H. Maratake, M. Natsune, and H. Nakai, Tetrahedron 2004, 60, 11783.
20 By aldol-type cyclizations: (a) A. D. Payne, B. W. Skelton, D. Wege, and A. H. White, Eur. J. Org. Chem. 2007, 1184; (b) F. M. Hauser and H. Yin, Org. Lett. 2000, 2, 1045.
21 By Barbier- type reactions: X. Wang, X. Pan, Y. Cui, and Y. Chen, Tetrahedron 1996, 52, 10659.

22 By cycloisomerizations and ring expansions: (a) E. M. Simmons, A. R. Hardin, C. Guo, and R. Sarpong, Angew. Chem. Int. Ed. 2008, 47, 6650; (b) E. M. Simmons and R. Sarpong, Org. Lett. 2006, 8, 2883; (c) L. Kurti, B. Czako, and E. J. Corey, Org. Lett. 2008, 10, 5247; (d) B. C. Ranu and U. Jana, J. Org. Chem. 1999, 64, 6380.

23 (a) R. J. Baldessarini, in Goodman and Goodman's The Pharmacological Basis of Therapeutic, ed. L. L. Brunton, J. S. Lazo, and K. L. Parker, McGraw-Hill, New York, $11^{\text {th }}$ edition, 2006, p. 432-433; (b) see also J. M. Bastian, A. Ebnoether, E. Juckr, E. Rissi, and A. Stoh, Helv. Chim. Acta 1971, 54, 277.
24 I. Kolodziej and J. R. Green, Synlett 2011, 2397.
25 Y. Iso, E. Grajkowska, J. T. Wroblewski, J. Davis, N. E. Goeders, K. M. Johnson, S. Sanker, B. L. Roth, W. Tueckmantel, and A. P. Kozikowski, J. Med. Chem., 2006, 49, 1080.

26 O. Kuhn, D. Rau, and H. Mayr, J. Am. Chem. Soc. 1998, 120, 900.
27 (a) W. A. Smit, R. Caple, and I. P. Smoliakova, Chem. Rev. 1994, 94, 2359; (b) H. Mayr, O. Kuhn, C. Schlierf, and R. Ofiala, Tetrahedron 2000, 56, 4219.
28 D. Seyferth, M. O. Nestle, and A. T. Wehman, J. Am. Chem. Soc. 1975, 97, 7417.
29 (a) M. Bandini and M. Tragni, Org. Biomol. Chem. 2009, 7, 1501; (b) M. Kaneko, R.
Hayashi, and G. R. Cook, Tetrahedron Lett. 2007, 48, 7085; (c) I. Iovel, K. Mertins, J. Kischel, A. Zapf, and M. Beller, Angew. Chem. Int. Ed. 2005, 44, 3913; (d) I. Shiina and M. Suzuki, Tetrahedron Lett. 2002, 43, 6391.

30 K. Kira, H. Tanda, A. Hamajima, T. Baba, S. Takai, and M. Isobe, Tetrahedron 2002, 58, 6485.

31 S. Takai, P. Ploypradith, A. Hamajima, K. Kira, and M. Isobe, Synlett 2002, 588.
32 G. Majetich and J. L. Grove, Heterocycles 2012, 84, 983.

33 (a) A. Mann, C. Muller, and E. Tyrrell, J. Chem. Soc, Perkin Trans. 1 1998, 1427; (b) E. Tyrrell and C. Tillett, Tetrahedron Lett. 1998, 39, 9535.

34 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem. 1978, 43, 2923.
35 B. Salem, E. Delort, P. Klotz, and J. Suffert, Org. Lett., 2003, 5, 2307.
36 (a) C. Montalbetti, M. Savignac, F. Bonnefis, and J. P. Genêt, Tetrahedron Lett. 1995, 36, 5891; (b) M. Ghaffarzadeh, M. Bolourtchian' Z. H. Fard, M. R. Halvagar, and F. Mohsenzadeh, Synth. Commun. 2006, 36, 1973.

37 J. Chen, J. W. Kampf, and A. J. McNeil, Langmuir 2010, 26, 13076.
38 K. M. Waddell, T. Bekele, and M. A. Lipton, J. Org. Chem. 2006, 71, 8372.
39 B. M. Trost, T. A. Grese, and D. M. T. Chan, J. Am. Chem. Soc. 1991, 113, 7250.

[^0]: ${ }^{\text {a }}$ Corresponding author. E-mail address: jgreen@uwindsor.ca
 †Electronic supplementary information (ESI) available: Experimental details and spectroscopic data, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds.

