Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Journal Name

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Electronic effects on the substitution reactions of benzhydrols and fluorenyl alcohols. Determination of mechanism and effects of antiaromaticity[†]

Stephen R. D. George,^a Timothy E. Elton^a and Jason B. Harper^{a,*}

A range of substituted benzhydrols and fluorenols were prepared and subjected to acid catalysed methanolysis. Analysis of the rates of each of these processes showed correlation with Hammett σ + parameters as is consistent with the significant build-up of positive charge adjacent to the ring. In combination with the similarity of the electronic susceptibility of the processes, these data suggest that both reactions proceed through a unimolecular rate-determining step. This shows that the effect of fusion of the phenyl systems (and hence potentially introducing an antiaromatic carbocation intermediate) is only to slow the rate of reaction rather than change the mechanism of the process.

Introduction

Aromaticity is a well-known (and well exploited) concept in organic chemistry that was first named in 1855 by August Wilheim Hofmann.¹ In particular, aromatic systems have been noted to stabilise neighbouring carbocations through conjugation. Whilst such interactions of aromatic species are well-studied,²⁻⁵ comparatively less attention has been paid to systems with antiaromatic character and their effects on reaction outcome.^{6, 7} A well-known example of an antiaromatic system is the fluorenyl carbocation 1.8-10 Whilst there is obviously a requirement to define an appropriate reference system, the cation 1 has been shown to be substantially destabilised by antiaromaticity through both experimental¹¹ and computational means.¹² Whilst not exceptionally unstable, it is destabilised relative to the corresponding non-fused carbocation 2 by ca. 6 kcal mol^{-1,13} This leads to the central questions of this study, namely what influence does the antiaromatic character of the fluorenyl carbocation have on the reactivity (and possible available mechanistic pathways) at the 9-position of the parent fluorene? Furthermore, what effects does the antiaromatic nature of the system have on the transmission of electronic effects throughout the molecule?

Substitution reactions of fluorenol **3a** provide a logical starting point given that many examples of such processes have

been reported (Scheme 1).¹⁴⁻¹⁸ While used synthetically, it is not immediately clear through which mechanism (either an $S_N 1$ or an $S_N 2$ process) the reactions proceed. Hence, this study sought to understand the mechanism through which the substitution of fluorenol derivatives proceed by considering acid catalysed methanolysis (Scheme 2). Through variation of the substituents on the fluorenols **3**, the electronic susceptibility of the process could be determined and compared to the equivalent requirement for the substituted benzhydrols **7**. This allows comment to be made on the mechanism of the reaction in each case and the effect of potentially proceeding through an anti-aromatic carbocation.

Scheme 1 Some example substitution reactions of fluorenol **3a**. a) PBr_{3} ;¹⁴ b) $POCl_{3}$;¹⁵ c) HCl, Δ ;¹⁶ d) MeOH, H⁺, Δ .^{17, 18}

Scheme 2 The methanolysis of the fluorenois 3 and benzhydrois 7 to the corresponding methyl ethers 6 and 8, respectively.

Page 2 of 6

Results and discussion

ARTICLE

Before the kinetic studies could be performed on the desired substituted benzhydrols 7 and fluorenols 3, they needed to be synthesised. The substituted benzhydrols 7 were obtained either through a) reduction of the appropriate benzophenones 9a and 9b, which were commercially available, with lithium aluminium hydride (to give the unsubstituted 7a and the *p*-methylated 7b) or b) the lithiation of an appropriate aryl bromide 10c-e with ⁿbutyl lithium at -78°C in tetrahydrofuran followed by nucleophilic addition to benzaldehyde (Scheme 3, Table 1). Product identification was achieved through ¹H NMR spectroscopy (taking particular note of the methine signals at δ *ca.* 6) and comparison of physical and spectral data with that reported.¹⁹⁻²⁵

Scheme 3 The synthesis of the substituted benzhydrols 7. a) LiAlH₄, THF, 0°C; b) i) nBuLi, ii) benzaldehyde, THF, -78°C to r.t.

Table 1 The	vields of the substitut	ed benzhvdrols 7	utilising the me	thodology above.
	ficial of the substitut	ca benenya. 010 .	active the time	

Compound	\mathbf{R}^{1}	\mathbb{R}^2	Yield (%)
	From substitute	ed benzophe	enones 9
7a	Н	Н	95
7b	Н	CH_3	79
	From substitute	d bromober	zenes 10
7c	CH ₃	Н	49
7d	Н	CF ₃	87
7e	OCH ₃	Н	53

The fluorenols **3** were prepared through the corresponding fluorenones, themselves generated from the appropriate biphenyl carboxylic acids. A range of commercially available starting materials **11-14** were used to access the required substituted biphenyl carboxylic acids **15** (Scheme 4, Table 2) with all pathways utilising Suzuki coupling chemistry.²⁶ Again, ¹H NMR spectroscopy and melting point comparisons were used to confirm the identity of the products,²⁷⁻³⁰ with only the dimethylated species **15g** requiring full characterisation due to its novelty.

Having obtained the required substituted biphenyl benzoic acids 15, Friedel-Crafts chemistry was used to cyclise the systems to the corresponding substituted fluorenones 16, which were subsequently reduced with lithium aluminium hydride to give the desired fluorenols 3 (Scheme 5, Table 3). With the unsubstituted fluorenol 3a being the only previously fully characterised species,^{31, 32} all of the remaining substituted fluorenols 3 were fully characterised to ensure identity.

A further fluorenol **3i** was prepared through reaction of a substituent on a fluorenone. This species was prepared through oxidation of 3-methylfluorenone **16h** followed immediately by esterification in acidic methanol and subsequent selective reduction using sodium borohydride (Scheme 6).¢ Again, this species is novel and was fully characterised.

Scheme 4 The formation of the substituted biphenyl carboxylic acids 15. a) cat. H_2SO_4 , MeOH, Δ ; b) ArB(OH)₂, SPhos, Pd(OAc)₂, Na₂CO₃, CH₃CN/H₂O, Δ ; c) NaOH, EtOH, Δ , then acid work-up; d) KMnO₄, Py/H₂O, Δ ; e) Tf₂O, NEt₃, DCM, 0^oC.

 Table 2 The yields (over multiple steps) resulting from the synthetic protocols shown in

 Scheme 4.

No.	\mathbf{R}^{1}	R ²	R ³	\mathbf{R}^4	R ⁵	Yield (%)
	From 2-bror	nobenzoic	acid 11			
15c	Н	CH ₃	Н	Н	Н	23
15d	Н	CF ₃	Н	Н	Н	70
	From 4-bror	noanisole	12			
15e	Н	OCH ₃	Н	Н	Н	92
	From 4-met	hylsalicyli	c acid 1	3		
15f	Н	Н	Н	Н	CH ₃	72
	From methy	12-iodobe	nzoate	14		
15g	CH ₃	Н	Η	CH_3	Н	78
15h	Н	Н	Н	CH ₃	Н	50

With the necessary species in hand, kinetic experiments were carried out to determine the observed first order rate constant (k_{obs}) for the methanolysis of the benzhydrols 7.\$ Determined in a manner analogous to described previously using ¹H NMR spectroscopy,³³ the observed rate constant is a function of the extent of protonation of the alcohol and the acid concentration. As also detailed previously, variation in the former can be considered negligible and all changes in the observed rate constant attributed to changes in the substrate affecting the stabilisation of the intermediate carbocation.

The methanolysis of benzhydrol **7a** has been reported previously at 23.8°C, with an observed rate constant of 6.16(6) x 10^{-5} s⁻¹.³³ The same process was undertaken with the series of substituted benzhydrols **7b-7e** and the rate constants are shown in Table 4 (which is ordered by the electronic nature of

the substituent). Note that for the case with the extremely electron-withdrawing substituent (the trifluoromethyl derivative 7e), as the reaction was very slow, it was carried out in a temperature controlled water bath rather than *in situ* in the spectrometer.

 $\label{eq:scheme 5} \begin{array}{l} \mbox{Scheme 5} \mbox{ The synthesis of the required fluorenois 3 through Friedel-Crafts ring closure and subsequent lithium aluminium hydride reduction. a) i) SOCl_2, ii) AlCl_3, DCM, 0^{\circ}C; b) LiAlH_4, THF, 0^{\circ}C. \end{array}$

No.	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_4	Yield (%)
3a	Н	Н	Н	Н	99
3b	Н	Н	CH_3	Н	89
3c	Н	CH_3	Н	Н	13
3d	Н	CF ₃	Н	Н	31
3e	Н	OCH ₃	Н	Н	74
3g	CH_3	Н	Н	CH_3	91
3h	Н	Н	Н	CH ₃	87

Scheme 6 The conversion of 3-methylfluorenone 16h to the methyl ester 3i. a) $KMnO_4$, Py/H_2O , Δ ; b) cat. H_2SO_4 , MeOH, Δ ; c) $NaBH_4$, MeOH, $0^{\circ}C$.

Table 4 The observed rate constant for the methanolysis of each of the alcohols 7a-e in acidic methanol at 23.8°C. Uncertainties are reported as half the range of triplicate experiments.

Alcohol	$k_{\rm obs}$ / 10 ⁻⁵ s ⁻¹
7b	142(16)
7c	14(3)
7a	$6.16(0.6)^{33}$
7d	4(1)
7e	0.0206(0.0012)

As can be seen in the data presented in Table 4, there is a significant decrease in the rate constant with increasing electron-withdrawing ability. Whilst the Hammett plot of these

data against σ values³⁴ gave a good correlation (R² = 0.974, Figure S1) unsurprisingly, given the anticipated significant build-up of positive charge as the reaction proceeds, the correlation improves significantly when σ^+ values³⁵ are used (R² = 0.999, Figure 1). This, in combination with the very large electronic susceptibility in this case (a reaction constant, ρ^+ , of -4.15 ± 0.07), is consistent with a significant amount of charge build-up in the transition state as would be anticipated for a process that proceeds through an S_N1 mechanism. The good correlation across all of the substituents considered is also consistent with no change in mechanism across the range of substrates.

Figure 1 Hammett plot (using σ^{+} values) for the methanolysis of the benzhydrols 7 at 23.8°C with errors calculated through standard means.³⁶

Initial studies on the corresponding fluorenols **3** under the same conditions as were used for the benzhydrols **7** showed that the fluorenols **3** did not react to any observable extent in a reasonable time frame. As such, the reactions were repeated at 60.0°C where the reaction rates allowed more practical assessment of reaction progress (with half lives in the order of hours) to give the rate constants shown in Table 5 (once again, ordered by electronic nature of the substituent). It is worth noting that in comparison the methanolysis of benzhydrol **7a** proceeds with a rate constant of 5.44(30) x 10^{-3} s⁻¹ under these conditions.

Table 5 The observed rate constant for the methanolysis of each of the alcohols 3 in acidic methanol at 60.0°C. Uncertainties are reported as half the range of triplicate experiments.€

Alcoho	bl $k_{\rm obs}$ / 10 ⁻⁵ s ⁻¹
3g	348(20)
3b	56(11)
3h	11.7(0.6)
3c	5.73(0.23)
3a	3.14(0.30)
3e	2.36(0.24)
3i	0.0246(0.0025)
3d	0.0448(0.0020)

Once again, there is a clear trend in these data, with marked decreases in the rate constant on increasing the extent of electron withdrawing ability of the substituent. Quantification through a Hammett plot is more complicated in this case as

Journal Name

Even taking into account these complications, the Hammett analysis is fruitful. For the data presented in Table 5, using the Hammett σ values³⁴ gave a reasonable correlation (R² = 0.949, Figure S2) though, again, this improves significantly when σ^+ values³⁵ are used (R² = 0.980, Figure 2).

Figure 2 Hammett plot (using σ^+ values) for the methanolysis of the fluorenols **3** at 60.0°C with errors calculated through standard means.³⁶

There are several key points to take away from the correlation presented in Figure 2. Initially the fact that the correlation with σ^+ values, which represent the enhanced resonance properties of the substituents, is better than with σ values is consistent with significant carbocation character developing adjacent to the ring. Once again, this is supported by the magnitude and sign of the slope (-4.27 ± 0.25). Further, the linearity of the data indicates no change in mechanism over the range of species studied.

These data allow the effect of ring fusion of the benzhydrols 7 to give the fluorenols 3 on reactivity to be considered. The goodness of fit with enhanced resonance Hammett sigma parameters in the both cases, and the slopes of said correlations, is consistent with significant build-up of positive charge adjacent to the phenyl ring in the transition state for the fluorenols **3**. This is consistent with both reactions proceeding through an S_N1 mechanism.¥ The similarities in the electronic susceptibilities of the two processes (same given measurement uncertainties) shows that whilst the fusion of the carbon backbone may significantly decrease the overall ability of the system to stabilise the intermediate carbocation (as demonstrated by the relative rates of the two processes shown in Scheme 2 and summarised in Tables 1 and 2), it is has a very minor effect upon the extent to which the electronic nature of the substituents affects reaction outcome.

Conclusions

The above results demonstrate that whilst introducing antiaromatic character into a carbocation intermediate may dramatically affect the rate of reaction, it does not necessarily change the mechanism of reaction where a viable alternative pathway is not available. Further, it demonstrates that the transmission of electronic effects in systems are comparable to those in aromatic systems. This has implications for the reactivity of larger polycyclic hydrocarbons with anti-aromatic character.

Experimental

All chemicals used were purchased from either Sigma-Aldrich, Alfa Aesar, Strem, Boron Molecular or Precious Metals Online and were used without further purification. Organic solvents used in synthesis were either used as received from Ajax Finechem or collected from a Pure Solv MD Solvent Purification System.

NMR spectroscopy was performed using either a Bruker Avance 300 (300.13 MHz, ¹H; 75.5 MHz, ¹³C), an Avance III 400 (400.13 MHz, ¹H; 100.6 MHz, ¹³C) with a Prodigy cryoprobe cppbbo, an Avance III 500 (500.13 MHz, ¹H; 125.7 MHz, ¹³C) with a tbi probe or an Avance III 600 (600.13 MHz, ¹H; 150.9 MHz ¹³C). NMR spectra were processed using the Bruker TOPSPIN 3.0 software.

Full synthetic procedures can be found in the ESI as per the reaction schemes shown throughout the Results and Discussion. The carboxylic acid intermediate **16g** as well as the alcohols **3b** - **3i** had not been previously prepared so were fully characterised, whilst the remainder had physical and spectral data matching that reported in literature (see ESI for full details).

The corresponding methyl ethers (**6a-c** and **6e-h** and **8a-e**) were isolated after being treated with acidic methanol at reflux for 3 hours (full details of the preparation, along with appropriate characterisation, can be found in the ESI).

Kinetic analysis of the methanolysis of alcohols 3 and 7

A solution of sulfuric acid (98% w/w, 35 mg, 360 μ mol) in deuterated methanol (0.6 mL) was generated. Of this, a portion (0.5 mL) was added to an NMR tube that contained the alcohol (28 μ mol) being investigated. The reaction mixture was held at either 23.8°C or 60 °C in an NMR spectrometer or temperature controlled water bath and ¹H NMR spectra taken at appropriate intervals until at least three half lives had been measured. The extent of reaction at a given time was determined through comparing the integration due to a signal corresponding to the starting material relative to the integration of a signal due to the product ether (see ESI). This allowed calculation of observed first order rate constants for the methanolysis of the alcohols under these conditions. The kinetic analysis for each alcohol was carried out in triplicate.

Acknowledgements

Notes and references

Journal Name

^a School of Chemistry, University of New South Wales, UNSW Sydney NSW 2052, Australia. Fax: +61 2 9385 6141; Tel: +61 2 9385 4692; E-mail: j.harper@unsw.edu.au

† Electronic Supplementary Information (ESI) available: Hammett plots of the data presented in Tables 1 and 2 against σ values; Hammett plot of the data presented in Table 2 showing the effect of modifying the effective σ^{+} value for the *ortho*-methyl substituent; general reduction of the ketones 9a,b using lithium aluminium hydride; general reaction of benzaldehyde with in situ generated aryl lithium from the aryl bromides 10c-e; general method for the esterification of benzoic acids; general Suzuki coupling to give methyl biphenyl benzoates; general deprotection of methyl benzoates; formation of the substituted biphenyl-2-carboxylic acids 15g,h; preparation of 2-(4'-methoxy)benzoic acid 15e; general method for the ring closure of the benzoic acids 15 to the fluorenones 16; preparation of compounds 16i and 3i; general method for the formation of the fluorenols 3; general method for the formation of the methyl ethers 6 and 8; kinetic analysis, including all rate data, for the methanolysis of species 3 and 7; ¹H and ¹³C NMR spectra for all novel compounds. See DOI: 10.1039/b00000x/

\$ In determining k_{obs} , no assumption is made on the order of the reaction. If the process is first order with respect to the protonated alcohol species, then $k_{obs} = k_1$, whilst if the process is bimolecular involving the methanol nucleophile, then $k_{obs} = k_2$ [methanol] (the latter concentration term is constant). In either case, subsequent analysis allows determination of reaction order.

¢ Values for related process that proceed through an $S_N l$ reaction mechanism, such as the reaction of (diphenyl)methyl chlorides with alcohols, have reaction constants in range -2 to -5; the value depends on the exact nature of the reagents, along with the temperature and the solvent. For an early review in which this is shown, see the work of Jaffé.³⁷

 \pounds No attempt was made at more complicated analysis, such as that by Fujita and Nishioka,³⁸ though it should be noted that the field effects of a methyl substituent would result in the assumptions used here underestimating the electron donating effect of an *ortho*-methyl substituent. Increasing the electron donating effect (corresponding to decreasing the effective substituent constant) for alcohol **3h** does improve the correlation (Figure S3), with no significant effect on the observed reaction constant.

¥ It is also possible that one or both processes proceed through a bimolecular mechanism with an extremely 'open' or 'loose' transition state,³⁹ though this is considered the less likely of the two possibilities.

€ Due to the symmetry of the system (*i.e.* R_5 is equivalent to R_3 after ring closure), compound **3f** is the same as compound **3b** and is therefore not shown in the table.

1. A. W. Hofmann, Ann. Ch. Pharm., XCVII, 197.

- R. A. McClelland, in Organic Reaction Mechanisms · 2009, John Wiley & Sons, Ltd, 2011, pp. 257-273.
- D. H. Aue, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 487-508.
- M. Pittelkow, J. B. Christensen and T. I. Solling, Org. Biomol. Chem., 2005, 3, 2441-2449.
- P. Buzek, P. v. R. Schleyer and S. Sieber, *Chem. Unserer Zeit*, 1992, 26, 116-128.
- A. D. Allen, J. D. Colomvakos, O. S. Tee and T. T. Tidwell, J. Org. Chem., 1994, 59, 7185-7187.
- 7. G. W. Cowell and A. Ledwith, J. Chem. Soc. B, 1967, 695-697.
- N. S. Mills and S. P. McClintock, *Chem. Commun.*, 2012, 48, 8099-8101.
- H. Jiao, P. v. R. Schleyer, Y. Mo, M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 1997, 119, 7075-7083.
- C. Do, J. Hatfield, S. Patel, D. Vasudevan, C. Tirla and N. S. Mills, J. Org. Chem., 2011, 76, 181-187.
- M. C. Courtney, A. C. MacCormack and R. A. M. O'Ferrall, J. Phys. Org. Chem., 2002, 15, 529-539.
- 12. W. C. Herndon and N. S. Mills, J. Org. Chem., 2005, 70, 8492-8496.
- T. L. Amyes, J. P. Richard and M. Novak, J. Am. Chem. Soc., 1992, 114, 8032-8041.
- 14. J. Wang, W. Wan, H. Jiang, Y. Gao, X. Jiang, H. Lin, W. Zhao and J. Hao, Org. Lett., 2010, 12, 3874-3877.
- K. Venkatesan, S. Dhivya, J. Rethavathi and N. Srinivasan, J. Pharm. Res. Opin., 2012, 2, 191-196.
- E. Gaillard, M. A. Fox and P. Wan, J. Am. Chem. Soc., 1989, 111, 2180-2186.
- O. Toussaint, P. Capdevielle and M. Maumy, *Tetrahedron*, 1984, 40, 3229-3233.
- P. Wan and E. Krogh, J. Chem. Soc., Chem. Commun., 1985, 1207-1208.
- 19. C. S. Marvel and N. A. Hansen, Org. Synth., 1928, 8, 24-25.
- A. G. Davies, J. Kenyon, B. J. Lyons and T. A. Rohan, J. Chem. Soc., 1954, 3474-3479.
- K. Suzuki, T. Arao, S. Ishii, Y. Maeda, K. Kondo and T. Aoyama, *Tetrahedron Lett.*, 2006, 47, 5789-5792.
- V. J. Shiner and C. J. Verbanic, J. Am. Chem. Soc., 1957, 79, 369-373.
- 23. X. Jia, L. Fang, A. Lin, Y. Pan and C. Zhu, Synlett, 2009, 495-499.
- 24. C.-T. Lee and B. H. Lipshutz, Org. Lett., 2008, 10, 4187-4190.
- M. Kuriyama, R. Shimazawa, T. Enomoto and R. Shirai, J. Org. Chem., 2008, 73, 6939-6942.
- S. R. D. George, L. T. Scott and J. B. Harper, *Polcycl. Aromat. Comp.*, 2015, in press.
- 27. D. N. Korolev and N. A. Bumagin, *Tetrahedron Lett.*, 2006, **47**, 4225-4229.
- Y. Li, Y.-J. Ding, J.-Y. Wang, Y.-M. Su and X.-S. Wang, Org. Lett., 2013, 15, 2574-2577.
- 29. N. C. Deno, J. Am. Chem. Soc., 1950, 72, 4057-4059.
- C. Wang, S. Rakshit and F. Glorius, J. Am. Chem. Soc., 2010, 132, 14006-14008.
- Z. Hou, K. Takamine, O. Aoki, H. Shiraishi, Y. Fujiwara and H. Taniguchi, J. Org. Chem., 1988, 53, 6077-6084.
- K. Hattori, H. Sajiki and K. Hirota, *Tetrahedron*, 2001, 57, 4817-4824.

- S. R. D. George, T. D. H. Frith, D. S. Thomas and J. B. Harper, Org. Biomol. Chem., 2015, 13, 9035-9041.
- 34. C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165-195.
- H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 1958, 80, 4979-4987.
- 36. D. C. Baird, *Experimentation: An Introduction to Measurement Theory and Experiment Design*, Pearson Education, New York, 1994.
- 37. H. H. Jaffé, Chem. Rev., 1953, 53, 191-271.
- T. Fujita and T. Nishioka, in *Progress in Physical Organic Chemistry*, ed. R. W. Taft, John Wiley & Sons, New York, 1976, pp. 49-89.
- C. Li, P. Ross, J. R. Szulejko and T. B. McMahon, J. Am. Chem. Soc., 1996, 118.