Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

www.rsc.org/xxxxxx

ARTICLE TYPE

Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones

Marina Y. Fosso,^{*a*} Harry LeVine, 3rd,^{*b*} Keith D. Green,^{*a*} Oleg V. Tsodikov,^{*a*} and Sylvie Garneau-Tsodikova^{*a*, *}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

As the number of individuals affected with Alzheimer's disease (AD) increases and the availability of drugs for AD treatment remains limited, the need to develop effective therapeutics for AD becomes more and more pressing. Strategies currently pursued include inhibiting acetylcholinesterase (AChE) and

¹⁰ targeting amyloid- β (A β) peptides and metal-A β complexes. This work presents the design, synthesis, and biochemical evaluation of a series of chalcones, and assesses the relationship between their structures and their ability to bind metal ions and/or A β species, and inhibit AChE/BChE activity. Several chalcones were found to exhibit potent disaggregation of pre-formed *N*-biotinyl A β_{1-42} (bioA β_{42}) aggregates *in vitro* in the absence and presence of Cu²⁺/Zn²⁺, while others were effective at inhibiting the action of AChE.

15 Introduction

Alzheimer's disease (AD) is a deadly progressive neurodegenerative disorder that manifests itself by the decline in cognitive function and the loss of memory. It is the most common form of dementia and the sixth leading cause of death in the

- ²⁰ United States, affecting one in nine older Americans.¹ The socioeconomic burden associated with AD is estimated to a staggering \$172 billion per year in the USA.^{2, 3} There are currently no medications that can cure AD or stop its progression; only a few have been approved to provide temporary ²⁵ symptomatic relief.⁴⁻⁸ Further research efforts are thus needed to
- develop AD therapeutics. Pathologically, AD is characterized by the deposition of amyloid β -peptide (A β)-rich plaques and the accumulation of hyperphosphorylated tau protein as neurofibrillary tangles in the brain of afflicted patients,⁹⁻¹³ as well 30 as the degeneration of neurons and synapses due to the increased
- activity of cholinesterases.¹³ These hallmarks thus represent potential pharmacological targets for the development of AD therapeutics.

Acetylcholinesterase (AChE) inhibitors are among the ³⁵ commonly investigated treatments for AD.¹⁴⁻¹⁸ Four of the six drugs currently approved for treating AD (tacrine, donepezil, rivastigmine, and galantamine) increase the amount of acetylcholine neurotransmitter in the brain by inhibiting the action of AChE. However, they are only modestly effective at ⁴⁰ alleviating AD symptoms. Aβ accumulation in the cerebral cortex has been suggested to be an early event in AD pathogenesis,¹⁹ and attempts to prevent Aβ oligomerization or disrupt existing

A β aggregates have attracted considerable efforts aiming at slowing down the progression of AD.^{10, 20, 21} Metal ions such as

 $_{45}$ Cu^{2+} and Zn^{2+}, which concentrate in senile plaques, $^{22,\ 23}$ have been shown to interact with A\beta peptides and promote their

assembly into toxic A β oligomers^{24, 25} as well as the formation of reactive oxygen species (ROS).²⁶⁻²⁸ This suggests that small molecule metal chelators capable of targeting A β species and ⁵⁰ inhibiting cholinesterases such as acetylcholinesterase (AChE) and/or butyrylcholinesterase (BChE) could be valuable AD therapeutics.

Chalcones are 1,3-diaryl-2-propen-1-ones with a wide range of interesting biological activities.²⁹ A large number of chalcones ⁵⁵ have been reported as Aβ-imaging tracers with high brain uptake.³⁰⁻³² Chalcones with tertiary amines in their structures, especially the *N*,*N*-dimethyl amino group, have also been shown to exhibit substantial affinities for Aβ plaques.³³ Combining these observations into a single molecule, chalcone **3a** (Fig. 1A), ⁶⁰ containing a metal chelation site and a dimethylamino group, was synthesized. Chalcone **3a** is capable of regulating both metal-free and metal-mediated Aβ aggregation.³⁴ However, its ability to inhibit the action of cholinesterases has never been investigated.

Herein, we present the design, synthesis, metal binding capabilities, and *in vitro* metal-free and metal-induced reactivity towards $A\beta$ and cholinesterase enzymes of a series of chalcones, allowing us to evaluate the structure-activity relationship of chalcones capable of interacting with metal ions and/or $A\beta$ peptides, and inhibiting cholinesterases.

70 Results and discussion

Integrated design and synthesis of chalcones

Chalcones **3a-i** (Fig. 1A) were designed to contain a metal chelation site and an Aβ-binding moiety. This was achieved *via* an integrated approach, whereby part of the known Aβ-⁷⁵ interacting chalcone scaffold was replaced by the appropriate feature, with minimal structural changes. The 2-pyridyl ketone moiety (Fig. 1C) was chosen as the metal chelation site because it had previously been installed in other A β self-assembly inhibitors with favourable results.^{34, 35} Moreover, installation of the *N*,*N*dimethylamino group at the *para*-position in ring II (Fig. 1A) has been shown to improve binding affinity to A β plaques,^{31, 33} and

- s thus any additional substitution was localized on ring I. A methyl group or a bromine atom was thus attached at various positions of ring I of the chalcones **3b-i** (Fig. 1A) to evaluate their effects on metal binding, Aβ modulating properties, and/or cholinesterase inhibitory capabilities. To further investigate the necessity of a
- ¹⁰ metal chelation site in the modulation of metal-A β complexes, chalcones **6a-h** and **7a**, **b**, and **h** (Fig. 1B), with a 2-acyl phenol and a 2-acyl aniline moiety that can form intramolecular hydrogen bonds (Fig. 1C) and prevent metal coordination, respectively, were prepared.

Fig. 1. Synthetic scheme for the formation of A. chalcones 3a-i, and B. chalcones 6a-h, 7a, b, and h. C. Representation of metal (M²⁺) (note either Cu²⁺ or Zn²⁺) chelation by the 2-pyridyl ketone moiety of 3a-i, as well as intramolecular hydrogen bonding preventing metal chelation to ²⁰ the 2-acyl phenol and 2-acyl aniline moieties of 6a-h and 7a, b, and h.

The target chalcones were synthesized according to the known Claisen-Schmidt condensation (Fig. 1). 4-(Dimethylamino)benzaldehyde, **2**, was reacted with various 2acetylpyridines/acetophenones (**1**, **4**, or **5**) in the presence of a ²⁵ base (KOH or NaOH) in ethanol at room temperature. This afforded the chalcones **3a-i**, in yields ranging from 42 to 81%, and the chalcones **6a-h**, **7a-b**, and **h** in 27 to 85%.

Study of the metal (Cu²⁺ and Zn²⁺) binding properties of 30 synthesized chalcones

 Cu^{2+} binding: The ability of **3a-i**, **6a-h**, **7a**, **b**, and **h** to bind Cu²⁺ ions was investigated by UV-Visible spectroscopy (Fig. 2). Upon

addition of 1-5 equivalents of CuCl₂ to an ethanolic solution of chalcone 3a, a distinctive shift of the optical band from ~440 nm $_{35}$ to ~560 nm was observed, suggesting Cu²⁺ binding of **3a** at the metal chelation site formed by the nitrogen and the oxygen atoms from the 2-pyridyl ketone moiety (Fig. 1C), as previously reported.³⁴ When a methyl group was added at the R₁ position in 3b, the optical band at 440 nm did not completely shift to 560 ⁴⁰ nm, even in the presence of 5 equivalents of CuCl₂, implying that the ability to chelate Cu²⁺ in this case was less efficient. This can be attributed to the steric hindrance caused by the methyl group, which perturbs the metal chelation site. This was confirmed when the methyl group was moved further away from the metal $_{45}$ chelation site, as in **3c** and **3d**, and the Cu²⁺ binding properties of these chalcones were regained. Also, replacing R₄ with the methyl group in 3e gave similar results as 3b, although with a less profound decrease in Cu^{2+} interaction.

Substitution of the methyl group by a bromine atom lessened ⁵⁰ the Cu²⁺ interaction of the chalcone in all cases. No optical shift was observed for **3f** and **3i**, although incomplete in the corresponding methyl counterparts **3b** and **3e**, respectively. Moreover, while it took 2 equivalents of CuCl₂ to **3c** and **3d** to completely shift the optical band at 440 nm and thus completely ⁵⁵ bind Cu²⁺ ions, **3g** and **3h** required up to 5 equivalents of CuCl₂. These results stem from the electron-withdrawing effect of the bromine atom. As a matter of fact, Br is a good electronegative atom and pulls electrons away from the nitrogen-donor atom on ring I, thus disrupting the metal chelation site.

As expected, replacement of the 2-pyridyl ketone moiety in chalcones 3a-i by a 2-acyl phenol (6a-h) or a 2-acyl aniline (7a, b, and h) moiety resulted in a complete loss of Cu²⁺ binding property. Intramolecular hydrogen bonding in 6a-h, 7a, b, and h (Fig. 1C) prevents the formation of the characteristic metal ⁶⁵ chelation site observed in 3a-i, and hence their ability to interact with Cu²⁺. Overall, these results demonstrate Cu²⁺ interaction of chalcones 3a-e, 3g and 3h, suggesting that the 2-pyridyl ketone moiety, or another scaffold capable of forming a metal chelation site, is essential for binding metal ions. Furthermore, disruption ⁷⁰ of the metal chelation site either by steric hindrance of bulky substituents (3b and 3e) or by decreasing the electron density with electron-withdrawing substituents (3f and 3i), reduces or nullifies the metal binding capability of chalcones.

 Zn^{2+} binding: We also investigated the Zn^{2+} binding properties 75 of **3a**, **3d**, **3h**, **6a**, and **7a**. Altough Cu²⁺ binding was studied by UV-Visible spectroscopy, which enabled us to perform a quantitative analysis, no optical changes could be observed in this assay when ZnCl₂ was used. Therefore, the standard qualitative ¹H NMR spectroscopy assay was performed to study the Zn²⁺ 80 binding properties of our chalcones (Fig. 3). Upon addition of 3 equivalents of ZnCl₂ to a CD₃CN solution of **3a**, **3d**, and **3h**, distinctive downfield shifts of the peaks corresponding to the pyridyl protons were observed. This implies that the nitrogen atom on ring I is involved in Zn²⁺ binding. It is also noticeable 85 that the peaks associated with protons e and f were displaced, suggesting that the oxygen atom might participate in metal chelation. The effect of the involvement of the oxygen atom in the coordination of metal ions was further extended to ring II as protons g and h also experienced some chemical shifts (Fig. 3; 90 panels A, B, and C). These results confirm that the 2-pyridyl

15

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Fig. 2. Cu^{2+} binding studies by UV-Vis using 0, 1, 2, and 5 equivalents of $CuCl_2$ with 20 μ M of chalcones **3a-i**, **6a-h**, and **7a**, **b**, and **h** dissolved in EtOH at room temperature and incubated for 3 min.

5

Fig. 3. Zn^{2+} binding studies of selected chalcones by ¹H NMR spectroscopy in CD₃CN at room temperature. NMR spectra of chalcone **A. 3a** without (black, 4 mM) and with ZnCl₂ (red, 12 mM), **B. 3d** without (black, 4 mM) and with ZnCl₂ (red, 12 mM), **C. 3h** without (black, 4 mM) and with ZnCl₂ (red, 12 mM), **D. 6a** without (black, 4 mM) and with ZnCl₂ (red, 12 mM), **D. 6a** without (black, 4 mM) and with ZnCl₂ (red, 12 mM), and **E. 7a** without (black, 4 mM) and with ZnCl₂ (red, 12 mM). *Note:* Pictures 5 of NMR tubes for each chalcone without and with ZnCl₂ are presented above their respective spectra. The change in color from yellow to purple is observed for chalcones that bind Zn²⁺.

ketone moiety bears a metal chelation site formed by the nitrogen and the oxygen atoms (Fig. 1C). Interaction of **3a**, **3d**, and **3h** ¹⁰ with Zn²⁺ could also be reaffirmed by the color change of the NMR sample from yellow to deep purple upon addition of ZnCl₂.

On the other hand, treatment of a CD₃CN solution of **6a** and **7a** with 3 equivalents of ZnCl₂ did not exhibit any distinct chemical shift of protons (Fig. 3, panels D and E), suggesting that **6a** and ¹⁵ **7a**, with a 2-acyl phenol and a 2-acyl aniline moiety, respectively, do not interact with Zn²⁺ ions. This was further confirmed as no discrete color change was noticeable upon addition of ZnCl₂ to the CD₃CN solution of **6a** and **7a**. This is in agreement with the observations made in the presence of Cu²⁺ and confirms that the

²⁰ intramolecular hydrogen bonding in **6a** and **7a** (Fig. 1C) prevents the formation of the characteristic metal chelation site. In light of these results, chalcone **3a**, with a 2-pyridyl ketone moiety, and any of its derivatives bearing a substituent at the preferred R_3 positin, such as **3d** and **3h**, are capable of binding Cu²⁺ and

25 Solution speciation studies

To further evaluate the metal ion interaction with our chalcones, we performed UV-visible variable-pH titration of chalcones 3a, 3d, 3h, 6a, and 7a in the absence and presence of Cu^{2+} . The acidity constants (pK_as) of 3a, 3d, 3h, 6a, and 7a were first 30 determined from the solution speciation diagrams obtained from the corresponding UV-visible variable-pH titration spectra in the absence of Cu^{2+} (Fig. 4). For chalcone **3a**, the p K_{a1} (protonation of the pyridyl nitrogen) was found to be 2.87 ± 0.03 and the pK_{a2} (protonation of the N,N-dimethylamino nitrogen) was 4.33 \pm $_{35}$ 0.03, which match previously reported values (p $K_{a1} = 3.23$ and $pK_{a2} = 4.00$).³⁴ The solution speciation diagram we obtained for **3a** was also in agreement with the literature,³⁴ and indicated the presence of three species in solution: neutral (S), monoprotonated (SH), and diprotonated (SH₂). For chalcone **3d**, $pKa_1 = 3.11 \pm$ $_{40}$ 0.07 and pKa₂ = 3.33 ± 0.05 were obtained. Indeed, as the methyl group donates electrons, the basicity of the pyridyl ring increases from **3a** to **3d**, and thus the pK_{a1} value should also increase from 3a to 3d. Similarly, an electron-withdrawing group such as Br would decrease the pK_{a1} value, as it was observed in chalcone **3h**

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Fig. 4. Solution speciation studies of chalcones (S) 3a, 3d, 3h, 6a, and 7a. UV-visible variable-pH titration spectra (left) and solution speciation diagrams (right) of chalcones (S) 3a (20μ M), 3d (50μ M), 3h (50μ M), 6a (20μ M), and 7a (20μ M) at room temperature. Titrations were done from pH 12-2. F_s represents the fraction of species present in solution at the given pH. Acidity constants (pK_as) of chalcones 3a, 3d, 3h, 6a, and 7a are summarized in the s table at the bottom right.

(pKa₁ = 2.73 ± 0.04 and pKa₂ = 5.89 ± 0.04). These results thus suggest that **3a**, **3d**, and **3h** will be present as neutral species at physiological pH (7.4). On the other hand, the pKa values of **6a** and **7a** were determined as follows: **6a**; pKa₁ = 5.09 ± 0.07 and pKa₂ = 10.38 ± 0.01; and **7a**, pKa₁ = 4.93 ± 0.02 and pKa₂ = 10.56 ± 0.04. In this case, the pKa₁ value was relevant to the protonation of the *N*,*N*-dimethylamino nitrogen, while the pKa₂ value was a measure of the ability to protonate the hydroxyl ts oxygen and aniline nitrogen.

Once the acidity constants of chalcones **3a**, **3d**, **3h**, **6a**, and **7a** were determined, we then performed their spectrophotometric titrations in the presence of CuCl₂ (Fig. 5 and Fig. S53). While various differences were noticeable in the UV-visible variable-pH ²⁰ titration spectra of **3a**, **3d**, and **3h** obtained in the absence (Fig. 4) and presence (Fig. 5) of CuCl₂, the spectra for **6a** and **7a** were similar in both cases (Fig. 4 and Fig. S53). For **3a**, we noticed a

decrease in value of the maximum absorbance (at 440 nm) from 0.49 to 0.40 in the presence of CuCl₂. A new peak also appeared ²⁵ at 570 nm in the pH-titration spectrum of **3a** in the presence of CuCl₂. Moreover, there was a subtle shift of the spectrum when

the chalcone **3d** was titrated in the presence of CuCl₂. Finally, the shape of the pH-titration curve of **3h** changed, resulting from a more pronounced decline in absorbance of the chalcone in the ³⁰ presence of CuCl₂ as the pH decreased. Indeed, the absorbance of **3h** decreased from 0.45 to 0.28 at 280 nm, and from 0.37 to 0.20 at 470 nm in the absence of CuCl₂. Meanwhile, the absorbance of **3h** decreased from 0.46 to 0.13 at 280 nm, and from 0.36 to 0.06 at 470 nm in the presence of CuCl₂. All these results support our ³⁵ previous observations that chalcones with a 2-pyridyl ketone moiety, such as **3a**, **3d**, and **3h**, would interact with Cu²⁺ ions, while chalcones with a 2-acylphenol moiety (**6a**) or a 2-acylaniline moiety (**7a**) do not bind Cu²⁺.

Based on the determined pK_a values of chalcones **3a**, **3d**, and **3h** ⁴⁰ above, we were able to find the stability constants (log β) of the complexes formed between Cu²⁺ and our chalcones. For **3a**, log β_1 = 4.63 and log β_2 = 4.66; for **3d**, log β_1 = 4.06 and log β_2 = 4.17; and for **3h**, log β_1 = 5.10 and log β_2 = 5.13. The similarity in log β_1 and log β_2 values explains the fact that protonation of the neutral ⁴⁵ chalcone species first occurs at the *N*,*N*-dimethylamino nitrogen and should not prevent Cu²⁺ from binding at the proposed chelation site of the 2-pyridyl ketone moiety. Based on these log β values, the stability of the Cu²⁺-chalcone complex was increasing in the order **3d**, **3a**, and **3h**, although the variation was not substantial. We were also able to plot the solution speciation ⁵ diagrams based on these log β values (Fig. 5, right columns) and found out that free Cu²⁺, SCu, and SHCu were present in all the chalcone solution. At pH 7, the SCu complexes were present in solution at about 40%, 40%, and 75% for **3a**, **3d**, and **3h**, respectively.

Fig. 5. Solution speciation studies of chalcones (S) 3a, 3d, and 3h in the presence of CuCl₂. UV-visible variable-pH titration spectra (left) and solution speciation diagrams (right) of Cu^{2+} -3a, Cu^{2+} -3d, and Cu^{2+} -3h. 20 μ M (3a) or 50 μ M (3d and 3h) of the chalcone (S) was incubated for 30 ¹⁵ minutes with CuCl₂ ([Cu²⁺]/[S]). Titrations were then performed at room temperature from pH 7-2 for 3a and 3d, and from pH 12-2 for 3h. F_{Cu} represents the fraction of free Cu and SCu complexes present in solution at the given pH. The stability constants (log β) of Cu²⁺-3a, Cu²⁺-3d, and Cu²⁺-3h complexes are summarized in the table at the bottom.

$_{20}$ In vitro study of the effect of chalcones on A β assembly and dissociation in the absence and presence of metal ions

The ability of **3a** to regulate metal-free and metal-induced A β aggregation and dissociation has previously been demonstrated.³⁴ In these studies, A β fibrils, which have been proposed to be an

 $_{25}$ important causal agent of AD, were employed. However, soluble A β oligomeric species have recently been shown to cause more potent neurotoxicity than fibrils.³⁶ This inspired us to evaluate the effects of our chalcones on A β oligomers assembly and disaggregation (Fig. 6). Although A β_{1-40} and A β_{1-42} are the major

- ³⁰ forms of A β peptides, A β_{1-42} is the most abundant^{37, 38} and neurotoxic.³⁹⁻⁴¹ A β_{1-42} in its *N*-biotinylated form (bioA β_{42}) was thus used in our anti-oligomer assays because it readily assembles into oligomers at near-physiologic nanomolar concentrations, while A β_{1-40} forms oligomers only very weakly.⁴²
 - As previously noted, metal ions such as Cu^{2+} and Zn^{2+} have been observed to interact with A β and promote peptide aggregation.²²⁻²⁵ The ability of chalcones **3a-i**, **6a-h**, **7a**, **b**, and **h** to thus modulate not only A β species, but also A β -metal complexes was examined.
 - ⁴⁰ BioA β_{42} oligomer aggregation: The influence of the synthesized chalcones on the self-assembly of bioA β_{42} monomers into oligomers in the absence and presence of metal ions was first examined (Fig. 6A). The inhibition experiment was performed to determine whether chalcones **3a-i**, **6a-h**, **7a**, **b**, and **h** were able to
 - so control the formation of metal-free and metal-associated bioA β_{42} oligomers using a quantitative bioA β_{42} single-site streptavidinbased assay.^{43, 44} Among these chalcones, **3d**, **6f**, and **6g** were the only ones to demonstrate oligomer assembly inhibition (EC₅₀ <50 μ M; Table 1). However, in the absence of metals, they displayed
 - ⁵⁰ EC₅₀ values that were 6-, >36-, and 14-fold greater than that of the known assembly inhibitor clioquinol (EC₅₀ = 1.4 μ M).⁴⁴ Interestingly, **6g**, which does not bind Cu²⁺ ions (Fig. 2), exhibited the greatest reactivity with A β monomers, both in the absence or presence of metal ions. The presence of ZnCl₂ or ⁵⁵ CuCl₂ does not seem to affect the inhibitory capability of **3d** and **6g**. CuCl₂, on the contrary, increases the reactivity of **6f** while metal-free or Zn²⁺-induced A β oligomer assembly were unaffected by the compound. Moreover, chalcone **3a**, which was previously found to exhibit antifibrillogenic activity,³⁴ appears that the ability of chalcones to interact with metal ions might not be an indispensable feature in the prevention the of bioA β_{42} oligomers formation.

Inhibition experiments

A. ASSEMBLY:

Chalcone 50-0.78 μM)	±/-	CuCl ₂ or ZnCl ₂	5 min	monomeric	1. 30 min, rt	measure
	••	(25 µM)	rt	(10 nM)	2. Tween 20	content

B. DISSOCIATION:

Chalcone (50-0.78 μM)	CuCl ₂ +/- or ZnCl ₂	5 min	pre-formed + oligomeric bioAβ ₄₂	18 h	measure oligomer
	(25 μM)	rt	(2.8 nM)	rt	content

 $_{65}$ Fig. 6. Schematic representation of the inhibition experiments of assembly and dissociation of bioA β_{42} in the presence or absence of metal salts.

 $A\beta_{42}$ oligomer dissociation: The influence of the synthesized ⁷⁰ chalcones on the dissociation of pre-formed A β oligomers in the absence and presence of metal ions was also investigated (Fig. 6B). The experiment was performed, in this case, to assess the ability of chalcones **3a-i**, **6a-h**, **7a**, **b**, and **h** to disassemble preformed bioA β_{42} oligomers in the absence or presence of metal ⁷⁵ ions. BioA β_{42} oligomers, of size similar to that of A β_{42} oligomers from AD brain,⁴⁵ were used in this study. In general, all the chalcones were better at disassembling bioA β_{42} oligomers than preventing their formation from monomers (Table 1). Chalcones **3a-i**, which bear the 2-pyridyl ketone moiety, showed greater reactivity in the absence of metal ions. Incubation of these chalcones with metal ions prior to the addition of pre-formed bioA β_{42} oligomers may allow them to first interact with the metal

- s ions, which could then distort the structural backbone known to bind A β species, and thus disassemble less effectively pre-formed bioA β_{42} oligomers. Furthermore, while the EC₅₀ values of the chalcones obtained in the presence of ZnCl₂ were comparable (although slightly higher) to those in metal-free conditions, there
- ¹⁰ was a significant increase in EC_{50} values of the chalcones in Cu^{2+} -treated bioA β_{42} oligomer dissociation. Cu^{2+} ions thus seem to provide a greater barrier to chalcones than Zn^{2+} ions in the dissociation of bioA β_{42} oligomers, suggesting that these chalcones may interact better with Cu^{2+} than Zn^{2+} . This may ¹⁵ result from the fact that chelation of Zn^{2+} is more pronounced in
- nitrogen-rich environment.^{46, 47} The metal ions could also be binding to the $A\beta$ oligomers stabilizing their structure.

Table 1. EC₅₀ values (in μ M) for chalcones in the absence or presence of metal (ZnCl₂ or CuCl₂) for prevention of bioA β_{42} oligomers self-assembly and for dissociation of pre-formed bioA β_{42} oligomers.

Cpd	No metal	ZnCl ₂	CuCl ₂		
d	19.25 ± 0.96	20.00 ± 0.01	19.88 ± 0.63		
f	>50	>50	16.63 ± 5.68		
g	8.93 ± 0.38	9.25 ± 0.96	9.83 ± 0.62		
Dissociation of pre-formed bioA _{β42} oligomers					
pd	No metal	ZnCl ₂	CuCl ₂		
a	1.04 ± 0.09	1.10 ± 0.07	2.63 ± 0.93		
b	3.13 ± 0.61	4.30 ± 0.84	>50		
e	1.25 ± 0.10	1.58 ± 0.29	2.45 ± 0.44		
d	1.70 ± 0.41	4.14 ± 1.47	>50		
e	1.53 ± 0.39	1.45 ± 0.30	3.70 ± 0.49		
f	6.50 ± 1.05	5.38 ± 0.81	8.25 ± 0.50		
g	9.33 ± 1.67	11.13 ± 0.63	18.50 ± 2.38		
h	10.50 ± 2.52	11.50 ± 2.52	33.25 ± 0.96		
i	10.25 ± 0.29	11.00 ± 0.71	13.75 ± 1.50		
a	1.15 ± 0.06	1.88 ± 0.15	1.93 ± 0.30		
b	2.05 ± 0.06	2.25 ± 0.19	2.08 ± 0.10		
c	2.68 ± 0.49	3.68 ± 0.62	3.20 ± 0.58		
d	2.33 ± 0.15	2.43 ± 0.26	2.53 ± 0.46		
e	2.85 ± 0.31	2.55 ± 0.17	2.93 ± 0.41		
f	2.35 ± 0.44	2.40 ± 0.08	2.38 ± 0.62		
g	1.28 ± 0.17	1.45 ± 0.10	3.78 ± 1.30		
h	2.58 ± 0.39	2.50 ± 0.36	2.53 ± 0.42		
a	>50	>50	>50		
b	>50	>50	>50		
h	15.50 ± 2.38	>50	>50		

In both the absence and presence of metal ions, chalcones **3f-i**, ²⁰ with a Br substituent on the pyridyl moiety, were less efficient at dissociating bioA β_{42} oligomers than their methyl counterparts **3be**. Since the former are poorer metal chelating agents than their methyl counterparts, they would be expected to bind bioA β_{42} oligomers better in accordance with previous observations. This

- $_{25}$ reinforces the fact that assembly of A β species is a complex process. Finally, no direct correlation was observed between the substitution pattern on ring I of these chalcones and their ability to dissociate bioA β_{42} oligomers.
- Chalcones **6a-h** exhibited EC₅₀ values that were quite constant ³⁰ both in metal-free and metal-treated studies. Also, substitution on ring I only seems to slightly reduce the efficacy of the chalcones

(6a versus 6b-h). When compared to 3a-i, chalcones 6b, 6f, 6g, and 6h demonstrated better reactivity at disassembling $bioA\beta_{42}$ oligomers than their 2-pyridyl ketone counterparts in the absence ³⁵ and presence of metal ions.

Chalcones **7a**, **b**, and **h** were the least potent of the synthesized molecules as they showed poor reactivity (EC₅₀ >50 μ M). **7h** was only able to dissociate bioA β_{42} oligomers in the absence of metal ions.

⁴⁰ Overall, chalcones **3a**, **3c**, **3d**, **3e**, **6a**, and **6g** were the best dissociators in the absence of metal ions and they displayed EC_{50} values that were within 2-fold of the EC_{50} value of the dissociator 2,5-dihydroxybenzoic acid (0.7 μ M).⁴⁸ **6b**, **6f**, **6g**, and **6h** also had great effect on the *in vitro* modulation of metal-free and metal-⁴⁵ induced bioA β_{42} dissociation.

Taken together, the results from $bioA\beta_{42}$ oligomer aggregation and $bioA\beta_{42}$ oligomer dissociation studies reveal that **3d** and **6g** are better than the assembly inhibitor clioquinol (that does not work on dissociation)⁴⁴ and the dissociator 2,5-dihydroxybenzoic ⁵⁰ acid (that has no effect on assembly).⁴⁸

In vitro cholinesterase inhibition

AChE and BChE inhibition: Cholinesterases represent another valuable target in the discovery of AD therapeutics. To that effect, we evaluated the potential cholinesterase inhibitory 55 activity of our chalcones **3a-i**, **6a-h**, **7a**, **b** and **h** by determining their individual IC₅₀ values against AChE from *Electrophorus* electricus (EeAChE) and BChE from equine serum (esBChE) (Table 2, Fig. 54) according to Ellman's method.⁴⁹ All our tested chalcones displayed micromolar IC50 values that were in the 60 range of the IC50 value previously observed for the FDAapproved AChE inhibitor rivastigmine.⁵⁰ The IC₅₀ values ranged from $9.55 \pm 1.95 \ \mu\text{M}$ to >200 μM for derivatives **3a-i** with the 2pyridyl ketone moiety, and 1.61 \pm 0.62 μM to >200 μM for derivatives 6a-h with the 2-acylphenol moiety, while 7a, 7b, and 65 **7h**, with the 2-acyl aniline moiety, had IC₅₀ values of 4.00 ± 1.20 μ M, 1.44 \pm 0.48 μ M, and 0.503 \pm 0.154 μ M, respectively. The known chalcone 3a revealed potent AChE inhibitory activity with $IC_{50} = 14.8 \pm 5.6 \mu M$. Methyl substitution at any position of the pyridyl ring does not appear to improve the inhibitory activity of 70 3a against AChE. Meanwhile, the attachment of a bromide atom at the R₁ (**3f**: IC₅₀ = 9.67 \pm 3.00 μ M) or R₂ (**3g**: IC₅₀ = 9.55 \pm 1.95 µM) position seems to enhance its inhibitory activity. For chalcones 6a-h, substitution tends to enhance the inhibitory activity of **6a** against AChE (IC₅₀ = $13.5 \pm 4.4 \mu$ M), except in the 75 case of a methyl substitution at the R_2 position (6c: IC₅₀ >200 μ M) and a bromo substitution at the R₃ position (**6h**: IC₅₀ >200 μ M). Finally, methyl substitution at the R₁ position of chalcone 7a lowers its IC₅₀ value by 2-fold (7a: IC₅₀ = $4.00 \pm 1.20 \mu$ M versus 7b: $IC_{50} = 1.44 \pm 0.48 \mu M$) and bromo substitution at R_3 ⁸⁰ position lowers its IC₅₀ value by 8-fold (7a: IC₅₀ = 4.00 ± 1.20 μ M versus 7h: IC₅₀ = 0.503 ± 0.154 μ M). Overall, chalcones with the 2-acyl aniline moiety (7a, 7b, and 7h) were better in vitro AChE inhibitors than the chalcones with the 2-acyl phenol moiety (6a-h), which in turn were more potent than 3a-i. 85 Furthermore, when compared to other chalcones reported in the literature as potent AChE inhibitors,⁵⁰ 6e, 6g, 7a, 7b, and 7h displayed improved inhibitory activities with $IC_{50} \le 4 \mu M$.

Since BChE is another cholinesterase enzyme associated with $A\beta$ plaques,¹⁸ we tested the inhibitory activity of our synthesized

Page 8 of 9

rganic & Biomolecular Chemistry Accepted Manuscript

chalcones towards BChE. Unfortunately, our tested compounds were in general less effective against BChE than AChE. Nevertheless, **3a**, **3c**, **3e**, **3h**, **6d**, **6f**, **6g**, and **7b** exhibited some potency against BChE, with **3c**, **3e**, and **6f** even showing some s improvement in activity when compared to AChE.

Our synthesized chalcones thus appear to be more active against AChE than BChE, and as a result their inhibitory effect on AChE was also examined in the presence of metal ions.

Table 2. Inhibition (IC₅₀ values (in μ M)) of the activity of AChE alone and in the presence of ZnCl₂ and CuCl₂, and BChE alone by chalcones **3a-i**, **6a-h**, and **7a**, **b**, and **h**.

Cpd	AChE	AChE + ZnCl ₂	AChE + CuCl ₂	BChE
3a	14.8 ± 5.6	>200	>200	14.3 ± 2.8
3b	16.3 ± 6.3	>200	>200	>200
3c	12.3 ± 1.3	>200	>200	8.24 ± 1.20
3d	>200	a	^a	>200
3e	35.9 ± 7.6	>200	>200	16.4 ± 3.1
3f	9.67 ± 3.00	>200	>200	>200
3g	9.55 ± 1.95	>200	>200	>200
3h	14.9 ± 0.9	>200	>200	39.0 ± 9.8
3i	55.8 ± 16.8	>200	>200	>200
6a	13.5 ± 4.4	9.27 ± 2.28	15.3 ± 7.7	>200
6b	10.1 ± 3.8	3.50 ± 0.81	5.78 ± 1.87	>200
6c	>200			>200
6d	7.14 ± 1.60	>200	>200	34.8 ± 5.0
6e	1.61 ± 0.62	>200	>200	>200
6f	7.76 ± 2.77	>200	>200	2.82 ± 0.29
6g	2.85 ± 0.89	>200	>200	4.32 ± 1.05
6h	>200			>200
7a	4.00 ± 1.20	0.688 ± 0.159	20.2 ± 8.9	>200
7b	1.44 ± 0.48	2.07 ± 0.61	22.5 ± 9.0	3.92 ± 0.90
7h	0.503 ± 0.154	>200	>200	>200

 a These were not detemined as the IC_{50} value against AChE alone was already >200 $\mu M.$

10

Effect of metals on AChE inhibition: The effect of Cu^{2+} and Zn^{2+} on AChE inhibition was tested and, while most of our chalcones suffered a decrease in their activity, displaying IC₅₀ values >200 μ M, **6a**, **6b**, **7a**, and **7b** were still potent, with IC₅₀ values ranging 15 from 5.78 ± 1.87 μ M to 22.5 ± 9.0 μ M in the presence of CuCl₂, and from 0.688 ± 0.159 μ M to 9.27 ± 2.28 μ M in the presence of

ZnCl₂. Cu²⁺ increased the IC₅₀ value of all the chalcones but **6b**. On the other hand, Zn^{2+} actually improved the inhibitory activity of **6a**, **6b**, and **7a**. It thus appears that chalcones bearing a 2-acyl

20 aniline moiety could be important AChE inhibitors.

Conclusions

Three main classes of chalcones have been synthesized and biochemically evaluated *in vitro*. These compounds showed ability to chelate metal ions and/or potent dissociation of

- ²⁵ preformed bioAβ₄₂ aggregates. Chalcones **3a-i** showed the ability to bind metal ions such as Cu²⁺ and Zn²⁺. Additionally, **3d** and **6g** effectively modulated the assembly and disassembly of bioAβ₄₂ oligomers in the presence and absence of metal ions, showing a broader reactivity on Aβ modulation than clioquinol and 2,5-
- ³⁰ dihydroxybenzoic acid. Chalcones **7a**, **7b**, and **7h**, with a 2-acyl aniline moiety, also displayed potent AChE inhibitory activities and thus appear to be a class of compounds worthy of additional studies. Finally, **6g** seems to be a multifunctional compound as it exhibited metal-A β modulator capability and inhibited AChE

35 activity. Further optimization studies are currently underway in our laboratory.

Notes and references

- ^a Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY
- 40 40536-0596, USA. Fax:859-257-7585; Tel: 859-218-1686; E-mail: sylviegtsodikova@uky.edu

^b Department of Cellular and Molecular Biochemistry, Center on Aging, University of Kentucky, 800 South Limestone Street, Lexington, KY 40536-0230, USA.

- $_{45}$ † Electronic Supplementary Information (ESI) available: Experimental procedures for the synthesis and characterization of all novel compounds generated along with their NMR spectra and elemental analysis data, for Cu^{2+} and Zn^{2+} binding studies at various pH, for assays for bioA\beta_{42} oligomer assembly and dissociation, and for cholinesterase inhibition in
- $_{50}$ the presence and absence of CuCl_ and ZnCl_ studies are provided. See DOI: 10.1039/b000000x/
 - 1. A. Association, Alzheimer's & Dementia, 2015, 11, 332-419.
- 55 2. A. Borisovskaya, M. Pascualy and S. Borson, *Curr. Psychiatry Rep.*, 2014, **16**, 470.
 - 3. C. Reitz and R. Mayeux, *Biochem. Pharmacol.*, 2014, **88**, 640-651.
 - 4. R. Schliebs and T. Arendt, J. neural Transm., 2006, 113, 1625-1644.
 - 5. K. P. Kepp, Chem. Rev., 2012, 112, 5193-5239.
- 60 6. L. E. Scott and C. Orvig, *Chem. Rev.*, 2009, **109**, 4885-4910.
- 7. A. Rauk, Chem. Soc. Rev., 2009, 38, 2698-2715.
- A. Corbett, J. Pickett, A. Burns, J. Corcoran, S. B. Dunnett, P. Edison, J. J. Hagan, C. Holmes, E. Jones, C. Katona, I. Kearns, P. Kehoe, A. Mudher, A. Passmore, N. Shepherd, F. Walsh and C. Ballard, *Nature reviews. Drug Discov.*, 2012, 11, 833-846.
- Ballald, *Nature reviews. Drug Discov.*, 2012, 11, 853-640.
 K. Blennow, M. J. de Leon and H. Zetterberg, *Lancet*, 2006, 368, 387-403.
- 10. R. Jakob-Roetne and H. Jacobsen, Angew. Chem., 2009, 48, 3030-3059.
- 70 11. H. W. Querfurth and F. M. LaFerla, New Engl. J. Med., 2010, 362, 329-344.
 - 12. Y. Huang and L. Mucke, Cell, 2012, 148, 1204-1222.
 - 13. M. P. Mattson, Nature, 2004, 430, 631-639.
- S. E. Black, R. Doody, H. Li, T. McRae, K. M. Jambor, Y. Xu, Y.
 Sun, C. A. Perdomo and S. Richardson, *Neurology*, 2007, 69, 459-469
 - S. D. Rountree, W. Chan, V. N. Pavlik, E. J. Darby, S. Siddiqui and R. S. Doody, *Alzheimer's Res. Ther.*, 2009, 1, 7.
- 16. T. J. Eckroat, K. D. Green, R. A. Reed, J. J. Bornstein and S. Garneau-Tsodikova, *Bioorg. Med. Chem.*, 2013, **21**, 3614-3623.
- J. J. Bornstein, T. J. Eckroat, J. L. Houghton, C. K. Jones, K. D. Green and S. Garneau-Tsodikova, *MedChemComm*, 2011, 2, 406-412.
- A. Kochi, T. J. Eckroat, K. D. Green, A. S. Mayhoub, M. H. Lim and S. Garneau-Tsodikova, *Chem. Sci.*, 2013, 4, 4137-4145.
- 19. D. J. Selkoe, Physiol. Rev., 2001, 81, 741-766.

85

- 20. J. Hardy and D. J. Selkoe, Science, 2002, 297, 353-356.
- Y. J. Wang, H. D. Zhou and X. F. Zhou, *Drug Discov. Today*, 2006, 11, 931-938.
- 90 22. M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R. Markesbery, J. Neurol. Sci., 1998, 158, 47-52.
 - E. L. Que, D. W. Domaille and C. J. Chang, *Chem. Rev.*, 2008, 108, 1517-1549.
- 24. M. G. Savelieff, S. Lee, Y. Liu and M. H. Lim, *ACS Chem. Biol.*, 2013, **8**, 856-865.
- 25. H. J. Lee, K. J. Korshavn, A. Kochi, J. S. Derrick and M. H. Lim, *Chem. Soc. Rev.*, 2014, **43**, 6672-6682.
- 26. M. A. Greenough, J. Camakaris and A. I. Bush, *Neurochem. Int.*, 2013, **62**, 540-555.
- 100 27. S. Ayton, P. Lei and A. I. Bush, Free Radical Bio. Med., 2013, 62, 76-89.
 - 28. P. Faller, C. Hureau and G. La Penna, Acc. Chem. Res., 2014, 47, 2252-2259.

- 29. D. I. Batovska and I. T. Todorova, *Curr. Clin. Pharmacol.*, 2010, 5, 1-29.
- 30. T. J. Eckroat, A. S. Mayhoub and S. Garneau-Tsodikova, *Beilstein J. Org. Chem.*, 2013, 9, 1012-1044.
- 5 31. M. Ono, M. Haratake, H. Mori and M. Nakayama, *Bioorg. Med. Chem.*, 2007, **15**, 6802-6809.
- 32. M. Ono, R. Ikeoka, H. Watanabe, H. Kimura, T. Fuchigami, M. Haratake, H. Saji and M. Nakayama, ACS Chem. Neurosci., 2010, 1, 598-607.
- ¹⁰ 33. M. Ono, R. Watanabe, H. Kawashima, Y. Cheng, H. Kimura, H. Watanabe, M. Haratake, H. Saji and M. Nakayama, *J. Med. Chem.*, 2009, **52**, 6394-6401.
- 34. Y. Liu, A. Kochi, A. S. Pithadia, S. Lee, Y. Nam, M. W. Beck, X. He, D. Lee and M. H. Lim, *Inorg. Chem.*, 2013, **52**, 8121-8130.
- ¹⁵ 35. A. S. Pithadia, A. Kochi, M. T. Soper, M. W. Beck, Y. Liu, S. Lee, A. S. DeToma, B. T. Ruotolo and M. H. Lim, *Inorg. Chem.*, 2012, **51**, 12959-12967.
 - 36. D. M. Walsh and D. J. Selkoe, J. Neurochem., 2007, 101, 1172-1184.
 - K. Chauhan, A. Datta, A. Adhikari, K. Chuttani, A. Kumar Singh and A. K. Mishra, Org. Biomol. Chem., 2014, 12, 7328-7337.
 - 38. C. Glabe, *Nature medicine*, 2000, **6**, 133-134.
 - 39. M. Citron, Nature reviews. Drug Discov., 2010, 9, 387-398.
- 40. C. Haass and D. J. Selkoe, *Nature Reviews. Mol. Cell Biol.*, 2007, 8, 101-112.
- 25 41. D. J. Hayne, S. Lim and P. S. Donnelly, Chem. Soc. Rev., 2014, 43, 6701-6715.
- 42. B. Torok, A. Sood, S. Bag, R. Tulsan, S. Ghosh, D. Borkin, A. R. Kennedy, M. Melanson, R. Madden, W. Zhou, H. Levine, 3rd and M. Torok, *Biochemistry*, 2013, **52**, 1137-1148.
- 30 43. H. LeVine, 3rd, Anal. Biochem., 2006, 356, 265-272.
 - H. LeVine, 3rd, Q. Ding, J. A. Walker, R. S. Voss and C. E. Augelli-Szafran, *Neurosci. Lett.*, 2009, 465, 99-103.
 - 45. H. LeVine, 3rd, Analytical biochemistry, 2004, 335, 81-90.
- 46. K. Rurack, J. L. Bricks, G. Reck, R. Radeglia and U. Resch-Genger, J. Phys. Chem., 2000, **104**, 3087-3109.
- 47. L. F. Lindoy, H. C. Lip, J. H. Rea, R. J. Smith, K. Henrick, M. McPartlin and P. A. Tasker, *Inorg. Chem.*, 1980, **19**, 3360-3365.
- H. LeVine, 3rd, L. Lampe, L. Abdelmoti and C. E. Augelli-Szafran, Biochemistry, 2012, 51, 307-315.
- 40 49. G. L. Ellman, K. D. Courtney, V. Andres, Jr. and R. M. Feather-Stone, *Biochem. Pharmacol.*, 1961, 7, 88-95.
- H. R. Liu, X. Q. Huang, D. H. Lou, X. J. Liu, W. K. Liu and Q. A. Wang, *Bioorg. Med. Chem. Lett.*, 2014, 24, 4749-4753.