Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/

Gold(I) catalysed sequential dehydrative cyclisation/ intermolecular [4+2] cycloaddition of alkynyldienols onto activated alkynes/ alkenes: A facile route to substituted norbornadienes/norbornenes

Anasuyamma Uruvakili, G. Gangadhararao and K. C. Kumara Swamy*
One-pot synthesis of highly substituted norbornadienes/ norbornenes via gold-catalysed dehydrative cyclisation of alkynyldienol, followed by intermolecular [4+2] cycloaddition of in situ generated cyclopentadiene and activated alkynes/ alkenes is described. The precursors, alkynyldienols, are obtained via sequential Sonogashira cross-coupling of 3bromoenals, alkyne addition and reduction. Yields of the enynals and multisubstituted norbornadienes in all the cases are good to excellent.

Introduction

In recent years, homogeneous gold catalysis has emerged as a fast growing research area in organic synthesis due to its proven potential as a powerful tool for the construction of carbon-carbon and carbon-heteroatom bonds. ${ }^{1}$ Generally, gold salts activate alkynes, alkenes and allenes towards a variety of organic transformations including cycloaddition, ${ }^{2}$ and cyclisation/ cycloisomerisation. ${ }^{3}$ In particular, [4+2] cycloaddition reactions catalysed by gold salts have been employed effectively for the construction of a huge number of carbo-/hetero-cyclic frameworks from acyclic precursors. ${ }^{4}$ In this context, recently, gold catalysed sequential hydroalkoxylation followed by [4+2] cycloaddition of enyne alcohols with dienophiles leading to oxa bridged tricyclic compounds was reported by Gong and co-workers (Scheme 1a). ${ }^{5}$ Bridged carbo-/heterocycles are important core structures present in many natural products ${ }^{6} /$ pharmaceuticals ${ }^{7}$ and are useful as chiral reagents in organic synthesis. ${ }^{8}$ In particular, norbornadiene and its derivatives are used as precursors to other polycycles/ natural products ${ }^{9}$ and as ligands for metal complexes, which in turn are useful in homogeneous catalysis. ${ }^{10}$ Polymerisation of norbornadiene derivatives is also a subject of recent interest. ${ }^{11}$ Of recent interest is the diaryl substituted norbornadienes with redshifted absorption for molecular solar thermal energy storage. ${ }^{12}$ Even though there are several methods for the preparation of norbornadiene derivatives by cycloaddition of cyclopentadiene and alkynes, ${ }^{13}$ dehydrative intermolecular

[^0]cycloaddition of alkynyldienols via cyclopentadiene as an intermediate, is a point not reported in the literature so far. As part of an ongoing study on gold catalysis for the synthesis of various carbo-heterocycles, ${ }^{14}$ herein, we disclose our results on the formation of functionalized norbornadienes/ norbornenes by using gold(I)-catalysed dehydrative cycloaddition of alkynyldienols with activated alkynes or alkenes (Scheme 1b). This reaction is quite different from that shown in Scheme 1a. The synthesis of precursors, alkynyldienols, by the reduction of the products from an interesting alkyne addition in the Sonogashira coupling is also described.
(a) Cycloisomerisation/ [4+2] Cycloaddition (Gong et al, ref. 5)

(b) Dehydrative Cyclisation/ [4+2] Cycloaddition (This work)

Scheme $1 \mathrm{Au}(\mathrm{I}$-catalysed (a) cycloisomerisation followed by cycloaddition and (b) dehydrative cycloaddition of alkynyldienols.

Results and discussion

(i) Synthesis of alkynyldienals and alkynyldienols

Initially, we performed Sonogashira cross coupling of 3bromoenal (1a) ${ }^{15 a}$ with phenylacetylene $2 a$ (1:1 molar stoichiometry ratio) that led to expected coupling product, alkynylenal (3aa) ${ }^{15}$ along with a trace amount of alkynyldienal (4aa) (Scheme 2). Interestingly, yield of alkynyldienal (4aa) was enhanced by increasing the stoichiometry of phenylacetylene. It is important to note that this type of sequential cross coupling followed by alkyne addition is not reported in the literature. We then applied this method using 3-bromoenals (1a-d) ${ }^{16}$ and terminal alkynes (1:2 molar stoichiometry) to obtain the alkynyldienals (4aa-4da) (Table 1). Yields were good to excellent in all the cases. Using $\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}$ system, ${ }^{17}$ alkynyldienals (4aa-4da) were reduced to the alkynyldienols (5aa-5da) in high yields. The stereochemistry in compounds 4ab and 5aa was confirmed by X-ray crystallography (Figures 1 and S95). It is important to note that in this product, R^{1} and CHO are cis to each other as per literature while the same groups are trans in 1a. It is likely that the initially formed Sonogashira product undergoes further alkyne addition under the conditions employed to lead to compound of type 4. A possible rationalization for the isomerization is that additionelimination of triethylamine to the α, β-unsaturated aldehyde function (a good Michael acceptor) may take place, allowing rotation about the bond to the aldehyde function. ${ }^{18}$

Scheme 2 Reaction of 3-bromoenal (1a) with phenylacetylene (2a) leading to alkynylenal (3aa) and alkynyldienal (4aa).

Table 1 Synthesis of alkynyldienals (4) and alkynyldienols (5) from 3-bromoenals (1) and terminal alkynes (2) using palladium catalysis and NaBH_{4} reduction. ${ }^{a}$

Entry	Aldehyde 1 $\mathrm{R}^{1}=$	Alkyne 2 $\mathrm{R}^{2}=$ or $\mathrm{R}^{2} \neq \mathrm{R}^{2}$	Product $\mathbf{4}$ (yield \%)	Product $\mathbf{5}$ (yield \%)
1	$\mathrm{Ph}(\mathbf{1 a})$	$\mathrm{Ph}(\mathbf{2 a})$	4aa(90)	5aa (97)
2	$\mathrm{Ph}(\mathbf{1 a})$	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 b})$	4ab (91)	$\mathbf{5 a b}(96)$

3	Ph (1a)	$\begin{gathered} p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\ (\mathbf{2 c}) \\ \hline \end{gathered}$	4ac (96)	5ac (99)
4	$\mathrm{Ph}(1 \mathrm{a})$	$m-\mathrm{FC}_{6} \mathrm{H}_{4}(2 \mathrm{~d})$	4ad (95)	5ad (97)
5	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (1b)	$\mathrm{Ph}(2 \mathrm{a})$	4ba (88)	5ba (96)
6	$\begin{gathered} p-\mathrm{MeC}_{6} \mathrm{H}_{4} \\ \text { (1b) } \\ \hline \end{gathered}$	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 b})$	4bb (80)	5bb (96)
7	$p-\mathrm{FC}_{6} \mathrm{H}_{4}(\mathbf{1 c})$	$\mathrm{Ph}(2 \mathrm{a})$	4ca (91)	5ca (97)
8	$p-\mathrm{FC}_{6} \mathrm{H}_{4}(\mathbf{1 c})$	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 b})$	4cb (87)	5cb (96)
9	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ (1d)	Ph (2a)	4da (85)	5da (97)
10	Ph (1a)	Ph (2a) followed by p $\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{2 c})^{a}$	$\begin{aligned} & \hline \text { 4aac } \\ & (88)^{c} \end{aligned}$	$\begin{aligned} & \hline \text { 5aac } \\ & (88)^{c} \end{aligned}$

${ }^{a}$ Reaction conditions: Bromo substrate (1) (1 equiv) and alkyne (2 equiv), $\mathrm{PdCl}_{2}(3 \mathrm{~mol} \%), \mathrm{PPh}_{3}(6 \mathrm{~mol} \%)$ and $\mathrm{Cul}(6 \mathrm{~mol} \%)$ were used. ${ }^{b}$ Isolated yields. ${ }^{\text {Cunsymmetrical alkynyldienal; } 1}$ equiv of $\mathbf{2 a}$ followed by one equiv of $\mathbf{2 c}$ were added.

Fig. 1. ORTEP (probability level 50%) of compound 4ab. Selected bond lengths [\AA] with esds in parentheses: $\mathrm{O}(1)-\mathrm{C}(27)$ $1.209(2), C(7)-C(8) 1.483(2), C(8)-C(9) 1.432(2), C(9)-C(10)$ $1.195(2), C(10)-C(11) 1.430(2), C(8)-C(18) 1.356(2)$.

(ii) Synthesis of norbornadienes 8-23

After having the alkynyldienol precursors in hand, we chose alkynyldienol (5aa) and diethylacetylene dicarboxylate (DEAD) (6a) as model substrates for optimisation studies (Table 2). Initially, we treated 5aa with DEAD in the presence of $\mathrm{AuCl}(10 \mathrm{~mol} \%)$ in dioxane at $80^{\circ} \mathrm{C}$ for 5 h , that resulted in the dehydrative [4+2] cycloaddition product, norbornadiene 8, in 75% yield (entry 1). At room temperature, there was no reaction (entry 2). To our delight, when the reaction was performed at $50^{\circ} \mathrm{C}$ for 5 h , norbornadiene (8) was obtained in excellent yield (86%) (entry 3). In the case of other catalysts like $\mathrm{AuCl}_{3}, \mathrm{PPh}_{3} \mathrm{AuCl}$ and $\mathrm{PPh}_{3} \mathrm{AuCl}_{1} \mathrm{AgSbF}_{6}$, the yield was good (entries 5-7), but marginally lower than that in entry 3 . In the absence of gold catalyst, reaction did not proceed (entry 8). On the other hand, yields of the cycloaddition product 8 did not improve in solvents like THF, toluene, 1,2-dichloroethane, DMF, dichloromethane or nitromethane in place of dioxane (entries 9-13). Thus dioxane was proved to be an efficient reaction medium for this dehydrative cycloaddition. Accordingly, the reaction conditions were optimised as follows: $\mathrm{AuCl}(10 \mathrm{~mol} \%)$ in dioxane at $50^{\circ} \mathrm{C}$.

Table 2 Optimisation table for the gold-catalysed dehydrative cycloaddition of alkynyldienol (5aa) with diethylacetylene dicarboxylate (6a) ${ }^{a}$

Entry	Catalyst	Solvent	$\begin{aligned} & \hline \text { Temp }\left({ }^{\circ} \mathrm{C}\right) \\ & \text { /Time (h) } \end{aligned}$	Yield $(\%)^{b}$
1	AuCl	Dioxane	80/5	75
2	AuCl	Dioxane	rt/8	NR
3	AuCl	Dioxane	50/5	86
4^{c}	AuCl	Dioxane	50/5	54
5	AuCl_{3}	Dioxane	50/5	71
6	$\mathrm{PPh}_{3} \mathrm{AuCl}$	Dioxane	50/8	75
7	$\mathrm{PPh}_{3} \mathrm{AuCl} / \mathrm{AgSbF}_{6}$	Dioxane	50/5	79
8^{d}	-	Dioxane	50/6	NR
9	AuCl	THF	50/5	56
10	AuCl	Toluene	50/6	52
11	AuCl	DCE	50/6	51
11	AuCl	DMF	50/5	Trace
12	AuCl	DCM	50/5	Trace
13	AuCl	MeNO_{2}	50/5	51

${ }^{a}$ Reaction conditions: 5aa (1 equiv), 6a (1 equiv), catalyst (10 $\mathrm{mol} \%$) and solvent (2.0 mL) at the specified temperature and time under dry nitrogen. ${ }^{b}$ Isolated yields. ${ }^{c} 5 \mathrm{~mol} \%$ of catalyst was used. ${ }^{d}$ Alkynyldienol (5aa) was completely recovered. NR = No Reaction.

By using above optimal reaction conditions, we then checked its applicability for differently substituted alkynyldienols (5aa-5da and 5aac) and activated alkynes (6a-c). These reactions afforded the functionalized norbornadienes (8-23) in good to excellent yields without any difficulty in isolation (Scheme 3). Alkynyldienol precursors having electron withdrawing groups furnished better yields when compared with those containing electron donating groups. In the present reaction, partially activated alkyne $\mathrm{H}-\mathrm{C}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ was also well tolerated and gave good yield of the corresponding product 18. Less activated alkyne like diphenyl acetylene did not work in this reaction. The structure of compound 15 was proven by X-ray crystallography (Fig. 2).

Scheme 3 Synthesis of functionalized norbornadienes 8-23.

Fig. 2. ORTEP [probability level 30% (left drawing)] of compound 15. Selected bond lengths [Å] with esds in parentheses: $\mathrm{C}(9)-\mathrm{C}(10) 1.569(4), \mathrm{C}(9)-\mathrm{C}(14) 1.348(4), \mathrm{C}(10)-$ C(11) 1.554(4), C(10)-C(32) 1.543(4), C(11)-C(12) 1.328(4), $C(12)-C(13) \quad 1.535(4), \quad C(13)-C(14) \quad 1.539(5), \quad C(13)-C(32)$ 1.531(4). On the picture on the right, norbornene part is highlighted.

(iii) Extension to the synthesis of norbornenes 24-30

Interestingly, the present cycloaddition reaction was successfully extended to activated alkenes. Thus the reaction of alkynyldienols with ethyl acrylate/ dimethyl maleate instead
of alkyne substrate furnished the desired products 24-30 in good yields (Scheme 4). The structure of compound 29 was proven by X-ray crystallography (Fig. 3) that suggests exoisomer. Thus it is possible that the major product in these reactions has a similar stereochemistry. However, it appears that there were diastereomers/isomers (HPLC/ ${ }^{1} \mathrm{H}$ NMR/ X-ray structure of 25, See ESI) although this was not indicated in the structure of 29.

Scheme 4 Reaction of alkynyldienol with ethyl acrylate or dimethyl maleate leading to norbornenes 24-30.

Fig. 3. ORTEP (probability level 30%, left drawing) of compound 29. Selected bond lengths [Å] with esd's in parentheses: $C(8)-C(9) 1.202(2), C(9)-C(10) 1.411(2), C(10)-$ $C(11) 1.543(2), C(11)-C(12) 1.584(2), C(11)-C(34) 1.537(2)$, $C(12)-C(13) \quad 1.568(2), \quad C(13)-C(14) \quad 1.550(2), \quad C(14)-C(15)$ $1.514(2), C(14)-C(34) 1.526(2), C(15)-C(16) 1.468(2)$. On the picture on the right, the exo-stereochemistry in the norbornene part is highlighted.
(iv) Possible pathway for the formation of norbornadienes/ norbornenes via gold catalysis

A plausible pathway for the formation of functionalized norbornadienes 8-30 is shown in Scheme 5. We assume that
this reaction occurs via gold-catalysed dehydration of alkynyldienol followed by [4+2] cycloaddition. ${ }^{19}$ Initially, alkynyl trans-dienol (5) may isomerise to intermediate cisdienol (\mathbf{I}) ${ }^{20}$ then gold catalyst may activate the diene and hydroxyl part. Dehydroxylation ${ }^{21}$ will lead to allylic carbocation (II). This intermediate may undergo cycloisomerisation resulting in cyclic carbocation (III). Subsequent deprotonation furnishes the cyclopentadiene (IV) ${ }^{22}$ formation one of this intermediate could be detected by the HRMS analysis of the crude reaction mixture (see ESI) which then reacts with activated alkynes or alkenes via intermolecular [4+2] cycloaddition ${ }^{23}$ leading to the desired products 8-30. In this reaction, it appears that the alkyne group on the substrate is a requirement for the stabilization of the cationic intermediate. ${ }^{24}$

Scheme 5 Plausible pathway for the formation of functionalized norbornadienes/ norbornenes.

Conclusions

We have developed a new route to norbornadienes/ norbornenes derivatives via dehydrative cyclisation followed by intermolecular [4+2] cycloaddition of alkynyldienols and activated alkynes under mild conditions. The present method was successfully extended to activated alkenes also. Alkynyldienol precursors were synthesized by reduction of corresponding alkynyldienals, which were prepared by the Sonogashira cross coupling followed by alkyne addition of 3bromoenals and terminal alkynes. Strucutral proof has been provided for the key precursors as well as products.

Experimental

General information:

Solvents were dried according to known methods as appropriate. ${ }^{25}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Bruker ${ }^{1} \mathrm{H}-400 \mathrm{MHz}$ or 500 MHz and ${ }^{13} \mathrm{C}-100 \mathrm{MHz}$ or 125 MHz) were recorded using a

400 MHz or 500 MHz spectrometer in CDCl_{3} (unless stated otherwise) with shifts referenced to $\mathrm{SiMe}_{4}(\delta=0)$. IR spectra were recorded on a JASCO FT/IR 5300 spectrophotometer. Melting points were determined by using a local hot-stage melting point apparatus and were uncorrected. Elemental analyses were carried out on a Thermo Finnigan EA1112 analyzer. Mass spectra were recorded using Shimadzu GC-MS or LC-MS instruments. High resolution mass spectra (HR-MS) were performed using a BRUKUR-MAXIS mass spectrometer with ESI-QTOF-II method. Single crystal X-ray data were collected at 298 K on Bruker AXS-SMART or Oxford diffractometer using Mo-K $\alpha_{\alpha}(\lambda=0.71073 \AA$ A $)$ or $\mathrm{Cu}^{2}-\mathrm{K}_{\alpha}(\lambda=$ $1.54184 \AA$ Å) radiation. The structures were solved by direct methods and refined by full matrix least-squares methods using standard procedures. ${ }^{26}$ 3-Bromo-acrylic aldehydes were synthesized by following a literature procedure. ${ }^{15}$

General procedure for the synthesis of substituted alkynyldienals 4aa-4da and 4aac: To a stirred solution of (Z)-3-bromo-3-phenylacrylaldehyde $1(5.00 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(16 \mathrm{~mL})$ was added triethylamine (1 mL), $\mathrm{PdCl}_{2}(0.026 \mathrm{~g}, 0.15 \mathrm{mmol})$, $\mathrm{PPh}_{3}(0.079 \mathrm{~g}, 0.30 \mathrm{mmol})$, Cul ($0.057 \mathrm{~g}, 0.30 \mathrm{mmol}$) and terminal acetylene $\mathbf{2}(10.00 \mathrm{mmol})$ at $r t$ and the mixture stirred for 5 h. After completion of the reaction, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) was added followed by extraction with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layer was stripped of the volatiles under vacuum. The crude product was purified by column chromatography using silica gel with hexane/ethyl acetate (10:1) mixture as the eluent. Compounds 4aa-4da and 4aac are new.
(2E,4E)-4-benzylidene-3,6-diphenylhex-2-en-5-ynal 4aa: Yellow solid, yield $1.50 \mathrm{~g}(90 \%)$; m.p. $94-96{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H})$, 7.58-7.56 (m, 2H), 7.51-7.50 (m, 3H), 7.41-7.36 (m, 7H), 7.27$7.26(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 194.2,160.8,143.6,135.4,134.9,131.7$, 130.3, 130.1, 129.9, 129.2, 129.1, 129.0, 128.6, 128.5, 122.8, 122.6, 99.2, 85.6; IR (KBr) v 3079, 2844, 2197, 1666, 1447, 1337, 1129, $751 \mathrm{~cm}^{-1}$; LC/MS m/z: $335[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 89.79 ; \mathrm{H}, 5.43$. Found: C, 89.62; H, 5.51.
(2E,4E)-4-(4-methylbenzylidene)-3-phenyl-6-p-tolylhex-2-en-5-ynal 4ab: Yellow solid, yield 1.65 g (91%); m.p. $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-$ 7.82 (m, 2H), 7.50-7.46 (m, 7H), 7.23-7.21 (m, 4H), 7.18 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70(\mathrm{~s}, 1 \mathrm{H}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 194.2, 161.1, 144.0, 140.4, 139.3, 135.0, 132.8, 131.5, 130.4, 130.2, 129.4, 129.2, 129.0, 128.9, 128.4, 121.8, 119.7, 99.4, 85.3, 21.7,21.6; IR (KBr) v 3057, 2833, 2191, 1660, 1441, 1183, 871, $706 \mathrm{~cm}^{-1}$; LC/MS $\mathrm{m} / \mathrm{z}: 363[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 89.47$; $\mathrm{H}, 6.12$. Found: C, 89.34; H, 6.18.
(2E,4E)-4-(4-methoxybenzylidene)-6-(4-methoxyphenyl)-3-phenylhex-2-en-5-ynal 4ac: Bright yellow solid, yield 1.90 g (96\%); m.p. 109-111 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 9.41 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94-7.92 (m, 2H), 7.55-7.50 (m, 7H), 7.37$6.90(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, ArOCH H_{3}) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 194.2, 161.4,
160.9, 160.1, 142.7, 135.2, 133.1, 131.9, 130.3, 128.9, 128.5 ${ }_{1}$, $128.5_{0}, 128.4,120.4,114.9,114.3,113.9,99.1,84.8,55.4$ IR $(\mathrm{KBr}) \vee 2981,2833,2192,1655,1611,1573,1337,1129,833$, $701 \mathrm{~cm}^{-1}$; LC/MS m/z: $395[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}$, 82.21; H, 5.62. Found: C, 82.91; H, 5.56.
(2E,4E)-4-(4-fluorobenzylidene)-6-(4-fluorophenyl)-3-
phenylhex-2-en-5-ynal 4ad: Yellow solid, yield 1.75 g (95\%); m.p. $106-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) $9.44(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.24(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.91$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (br s, 1H);); ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 193.8,162.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=\right.$ $244.0 \mathrm{~Hz}), 162.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=246.0 \mathrm{~Hz}, \mathrm{FC}\right), 159.9,142.3,142.2$, $137.3\left(\mathrm{~d},{ }^{3} J(\mathrm{~F}-\mathrm{C})=8.0 \mathrm{~Hz}\right), 134.5,130.3\left(\mathrm{~d},{ }^{3} J(\mathrm{~F}-\mathrm{C})=10.0 \mathrm{~Hz}\right)$, $129.9\left(\mathrm{~d},{ }^{3} J(\mathrm{~F}-\mathrm{C})=9.0 \mathrm{~Hz}\right), 129.6,129.3,128.6,127.6,126.3$, $124.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=10.0 \mathrm{~Hz}\right), 123.7,118.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=23.0 \mathrm{~Hz}\right)$, $117.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=21.0 \mathrm{~Hz}\right), 116.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=21.0 \mathrm{~Hz}\right), 116.0$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=22.0 \mathrm{~Hz}\right), 98.4,86.0$; $\mathrm{IR}(\mathrm{KBr}) \vee 3074,2844,2190$, 1666, 1573, 1453, 1129, $877,779 \mathrm{~cm}^{-1}$; LC/MS m/z: $371[\mathrm{M}+1]$ ${ }^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}: \mathrm{C}, 81.07 ; \mathrm{H}, 4.35$. Found: C, 81.19; H, 4.31.
(2E,4E)-4-benzylidene-6-phenyl-3-p-tolylhex-2-en-5-ynal 4ba: Orange solid, yield 1.52 g (87.5\%); m.p. 80-82 ${ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 194.3, 160.9, 143.5, 139.2, 135.5, 131.8, 131.7, 130.4, 130.1, 129.9, 129.2, 129.0, 128.6, 128.4, 122.9, 122.7, 99.1, 85.8, 21.4; IR (KBr) v 3058, 2833, 2181, 1660, 1567, 1179, 1129, 751, $685 \mathrm{~cm}^{-1}$; LC/MS m/z: $349[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 89.62 ; \mathrm{H}, 5.79$. Found: C, $89.45 ; \mathrm{H}, 5.86$.
(2E,4E)-4-(4-methylbenzylidene)-3,6-di-p-tolylhex-2-en-5-ynal 4bb: Bright yellow solid, yield $1.50 \mathrm{~g}(80 \%)$; m.p. $105-107^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-$ $7.83(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 194.3, 161.3, 143.3, 140.3, 139.2, 139.0, 132.9, 132.0, 131.5, 130.4, 130.1, 129.3, 129.2, 129.1, 128.8, 121.9, 119.7, 99.3, 85.4, 21.62, 21.60, 21.4; IR (KBr) v 3019, 2838, 2197, 1665, 1545, 1177, 1128, $668 \mathrm{~cm}^{-1}$; LC/MS m/z: $377[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 89.33 ; \mathrm{H}, 6.43$. Found: $\mathrm{C}, 89.21 ; \mathrm{H}, 6.37$.
(2E,4E)-4-benzylidene-3-(4-fluorophenyl)-6-phenylhex-2-en-5ynal 4ca: Yellow solid, yield $1.60 \mathrm{~g}(91 \%)$; m.p. $101-103{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.44$. (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.93-$ $7.91(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 193.6,163.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=248.0 \mathrm{~Hz}, \mathrm{FC}\right)$, 159.5, 143.4, 135.3, 132.2, 132.1, 131.7, 130.1, 130.0, 129.6, $129.1,128.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=12.0 \mathrm{~Hz}\right), 122.7,122.5,115.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\right.$ C) $=22.0 \mathrm{~Hz}), 99.3,85.5 ; \mathrm{IR}(\mathrm{KBr}) \vee 3069,2838,2190,1666$, 1579, 1332, 1134, 833, $756 \mathrm{~cm}^{-1}$; LC/MS m/z: $353[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{FO}: \mathrm{C}, 85.21 ; \mathrm{H}, 4.86$. Found: $\mathrm{C}, 85.36 ; \mathrm{H}$, 4.91.
(2E,4E)-3-(4-fluorophenyl)-4-(4-methylbenzylidene)-6-p-
tolylhex-2-en-5-ynal 4cb: Yellow solid, yield 1.65 g (87\%); m.p. $102-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.43(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}$,

2H), 7.23-7.18 (m, 6H), $6.96(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$, 2.42 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 194.0,163.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=247.0 \mathrm{~Hz}, \mathrm{FC}\right), 159.9$, 143.2, 140.6, 139.3, 132.7, 132.2, 132.1, 131.5, 131.0, 130.1, 129.4, 129.3, 121.8, 119.6, $115.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=22.0 \mathrm{~Hz}\right), 99.6$, 85.2, 21.62, 21.6; IR (KBr) v 3025, 2832, 2197, 1671, 1507, 1178, 821, $669 \mathrm{~cm}^{-1}$; LC/MS m/z: $381[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{FO}: \mathrm{C}, 85.24 ; \mathrm{H}, 5.56$. Found: C, 85.12; H, 5.48.
(2E,4E)-4-benzylidene-3-(4-methoxyphenyl)-6-phenylhex-2-en-5-ynal 4da: Yellow solid, yield 1.55 g (85\%); m.p. 105-107 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.93-7.92 (m, 2H), 7.60-7.57 (m, 2H), 7.43-7.36 (m, 7H), 7.03 $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 194.1, 160.5, 159.5, 143.5, 136.2, 135.5, 131.6, 130.1, 129.9, 129.6, 129.1, 128.6, 128.4, 122.8, 122.5, 115.8, 114.6, 99.1, 85.6, 55.4; IR (KBr) v 3052, 2833, 2195, 1660, 1485, 1129, 800, $690 \mathrm{~cm}^{-1}$; LC/MS m/z: $365[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 85.69 \mathrm{H}$, 5.53. Found: C, 85.52; H, 5.61.
(2E,4E)-4-benzylidene-6-(4-methoxyphenyl)-3-phenylhex-2-
en-5-ynal (4aac): Yellow solid, yield 1.6 g (88\%); m.p. 115-117
${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 9.45-9.44 (m, 1H), 7.93$7.92(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.94$ $(\mathrm{m}, 3 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 194.2,160.9,160.2,142.9,135.6,134.9,133.2$, $130.3,130.0,129.8,129.2,129.1,128.4_{4}, 128.4_{0}, 123.0,114.7$, 114.3, 99.4, 84.5, 55.4; IR (KBr) v 2827, 2197, 1666, 1606, 1507, 1326, 1288, 1129, $696 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{2}$: 365.1542; Found: 365.1545.

General procedure for the synthesis of substituted alkynyldienols 5aa-5da and 5aac: To a stirred solution of (2E,4E)-4-benzylidene-3,6-diphenylhex-2-en-5-ynal (2.00 $\mathrm{mmol})$ and $\mathrm{CeCl}_{3} 7 \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{mmol})$ were dissolved in methanol $(15 \mathrm{~mL})$ then the reaction mixture was kept at $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}$ (3.00 mmol) was added mixture stirred further for 1 h . After completion of the reaction, methanol was evoparated then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added followed by extraction with ethylacetate ($3 \times 15 \mathrm{~mL}$). The combined organic layer was stripped of the volatilities under vacuum. The crude product was purified by column chromatography using silica gel with hexane/ethyl acetate (20:1) mixture as the eluent. Compounds 5aa-5da and 5aac are new.
(2E,4E)-4-benzylidene-3,6-diphenylhex-2-en-5-yn-1-ol 5aa: Orange solid, yield 0.650 g (96.7%); m.p. $96-98{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.57(\mathrm{~m}$, $2 \mathrm{H}), 7.46-7.24(\mathrm{~m}, 11 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H})$, 4.13 (d, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.46 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 143.1,137.9,137.3,136.4,131.5,130.5,129.7$, $129.3,128.6,128.4_{7}, 128.4_{6}, 128.3,128.1,127.7,123.4,123.2$, 97.9, 87.1, 60.8; IR (KBr) v 3392, 3052, 2190, 1594, 1490, 1447, 756, $701 \mathrm{~cm}^{-1}$; LC/MS m/z: 337 [M+1] ${ }^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 89.25$; $\mathrm{H}, 5.99$. Found: C, 89.12; H, 5.93.
(2E,4E)-4-(4-methylbenzylidene)-3-phenyl-6-p-tolylhex-2-en-5-yn-1-ol 5ab: Orange gummy solid, yield 0.70 g (96.\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.40(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}$,
$1 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}), 1.65 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 143.3, 138.7, 138.4, 137.7, 137.4, 133.7, 131.4, 129.9, 129.7, 129.3, 129.2, 128.9, 128.4, 127.6, 122.4, 120.3, 98.1, 86.6, 60.9, 21.6, 21.4; IR (neat) v 3413, 2926, 2198, 1611, 1507, 1041, $811 \mathrm{~cm}^{-1}$; LC/MS m/z: $365[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 88.97$; $\mathrm{H}, 6.64$. Found: C, $88.79 ; \mathrm{H}, 6.71$.
(2E,4E)-4-(4-methoxybenzylidene)-6-(4-methoxyphenyl)-3-
phenylhex-2-en-5-yn-1-ol 5ac: Orange gummy liquid, yield $0.78 \mathrm{~g}(98.5 \%) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.82(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.95-$ $6.70(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 1.60(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 159.8, 159.6, 143.5, 137.6, 136.9, 132.9, 130.8, 129.7, 129.4, 128.4, 127.6, 121.3, 115.5, 114.2, 113.6, 97.8, 86.1, 60.9, 55.4, 55.3; IR (neat) v 3408, 2948, 2838, 2194, 1600, 1507, 1255, 1030, $833 \mathrm{~cm}^{-1}$; LC/MS m/z: $397[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 81.79 ; \mathrm{H}$, 6.01. Found: C, 81.62; H, 6.15.
(2E,4E)-4-(3-fluorobenzylidene)-6-(3-fluorophenyl)-3-
phenylhex-2-en-5-yn-1-ol 5ad: Orange solid, yield 0.720 g (96.8\%); m.p. $108-110{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) $7.71(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.96$ $(\mathrm{m}, 1 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 162.6 $\left(\mathrm{d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=244.0 \mathrm{~Hz}, \mathrm{FC}\right), 162.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=244.0 \mathrm{~Hz}\right), 142.5$, $138.4\left(\mathrm{~d},{ }^{3} J(\mathrm{~F}-\mathrm{C})=8.0 \mathrm{~Hz}\right), 136.9,136.8,131.3,130.2\left(\mathrm{~d},{ }^{3} J(\mathrm{~F}-\mathrm{C})\right.$ $=9.0 \mathrm{~Hz}), 129.7,129.5,128.6,127.9,127.5,125.5,124.7(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{~F}-\mathrm{C})=9.0 \mathrm{~Hz}\right), 124.3,118.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=23.0 \mathrm{~Hz}\right), 116.2(\mathrm{~d}$, $\left.{ }^{2} J(F-C)=21.0 \mathrm{~Hz}\right), 115.5,115.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=22.0 \mathrm{~Hz}\right), 97.2,87.4$, 60.8; IR (KBr) v 3578, 2195, 1611, 1583, 1441, 1178, 1019, 959, $712 \mathrm{~cm}^{-1}$; LC/MS m/z: $373[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}$: C, 80.63; H, 4.87. Found: C, 80.76; H, 4.81 .
(2E,4E)-4-benzylidene-6-phenyl-3-p-tolylhex-2-en-5-yn-1-ol 5ba: Orange solid, yield 0.670 g (95.7\%); m.p. $100-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-$ $7.56(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 143.1,137.8,137.4,136.5,134.2,131.6,130.4$, 129.6, 129.3, 129.1, 128.6, 128.5, 128.3, 128.1, 123.5, 123.3, 97.8, 87.2, 60.9, 21.3; IR (KBr) v 3397, 3013, 2865, 2192, 1490, 1446, 1095, 1013, 755, 685 cm ${ }^{-1}$; LC/MS m/z: $351[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 89.11 ; \mathrm{H}, 6.33$. Found: C, 89.23; H, 6.41.
(2E,4E)-4-(4-methylbenzylidene)-3,6-di-p-tolylhex-2-en-5-yn-1-ol 5bb: Orange solid, yield 0.730 g (96.4\%); m.p. $108-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 8 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.41(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 143.3,138.6,138.3,137.6,137.3,134.3$, 133.8, 131.4, 129.8, 129.6, 129.3, 129.2, 129.1, 128.9, 122.6, 120.3, 98.1, 86.7, 60.9, 21.6, 21.4, 21.3; IR (KBr) v 3403, 2915, 2197, 1611, 1512, 1025, 959, $811 \mathrm{~cm}^{-1}$; LC/MS m/z: 377 [M-1] ${ }^{+}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 88.85 ; \mathrm{H}, 6.92$. Found: C, 88.74; H, 6.85 .
(2E,4E)-4-benzylidene-3-(4-fluorophenyl)-6-phenylhex-2-en-5-yn-1-ol 5ca: Orange solid, yield $0.690 \mathrm{~g}(97.4 \%)$; m.p. 112-114 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.56-7.55 (m, 2H), 7.34-7.28 (m, 6H), 7.22-7.19 (m, 2H), 7.167.12 (m, 2H), 6.74 (t, J = $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.39(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $162.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=246.0 \mathrm{~Hz}, \mathrm{FC}\right), 142.1,137.8,136.2,133.1$, $131.6,131.5,131.4,130.9,129.3,128.6\left(\mathrm{~d},{ }^{3} J(\mathrm{~F}-\mathrm{C})=14.0 \mathrm{~Hz}\right)$, 128.2, 123.3, 123.1, 115.5 ($\left.\mathrm{d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=21.0 \mathrm{~Hz}, \mathrm{FC}=C\right)$, 98.1, 86.9, 60.8; IR (KBr) v 3260, 2367, 2193, 1594, 1501, 1222, 1013, $844,696 \mathrm{~cm}^{-1}$; LC/MS m/z: $355[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{FO}: \mathrm{C}, 84.72 ; \mathrm{H}, 5.40$. Found: C, $84.56 ; \mathrm{H}, 5.48$.
(2E,4E)-3-(4-fluorophenyl)-4-(4-methylbenzylidene)-6-p-tolylhex-2-en-5-yn-1-ol 5cb: Orange solid, yield 0.730 g (95.5\%); m.p. $115-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 7.75 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21-7.12 (m, $8 \mathrm{H}), 6.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 162.3$, (d, ${ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=245.0 \mathrm{~Hz}$), $142.3,138.8,138.6,137.6,133.5,133.3,131.4,\left(\mathrm{~d},{ }^{3}\right)(\mathrm{F}-\mathrm{C})=6.0$ Hz), 130.4, 129.3, 128.9, 122.4, 120.2, 115.5, (d, ${ }^{2} J(\mathrm{~F}-\mathrm{C})=21.0$ $\mathrm{Hz}), 98.3,86.5,60.8,21.6,21.4$; IR (KBr) v 3567, 3019, 2192, 1600, 1512, 1157, $822 \mathrm{~cm}^{-1}$; LC/MS m/z: $383[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FO}: \mathrm{C}, 84.79 ; \mathrm{H}, 6.06$. Found: C, 84.65; $\mathrm{H}, 6.13$. (2E,4E)-4-benzylidene-3-(4-methoxyphenyl)-6-phenylhex-2-
en-5-yn-1-ol 5da: Orange solid, yield 0.71 g (97\%); m.p. 114$116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2H), 7.59-7.57 (m, 2H), 7.42-7.28 (m, 6H), 7.18-7.16 (m, 2H), $7.00-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right) 1.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 159.1,142.8,137.8,136.5,131.5,130.9$, $130.5,129.4,129.3,128.5_{4}, 128.5_{0}, 128.3,128.2,123.7,123.3$, 113.9, 97.9, 87.3, 60.9, 55.3; IR (KBr) v 3414, 2915, 2185, 1611,1512, 1485, 1255, 1025, 751, $696 \mathrm{~cm}^{-1}$; LC/MS m/z: 367 $[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 85.22 ; \mathrm{H}, 6.05$. Found: C , 85.36; H, 6.12.
(2E,4E)-4-benzylidene-6-(4-methoxyphenyl)-3-phenylhex-2-en-5-yn-1-ol (5aac): Pale yellow solid, yield 0.65 g (88\%); m.p. $121-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.86(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.94(\sim \mathrm{~d}, \mathrm{~J} \sim 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$ 1.80 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 159.9$, 143.1, 137.4, 137.2, 136.6, 130.5, 129.8, 128.5, 128.2, 128.1, 127.7, 123.6, 115.4, 114.2, 98.1, 85.9, 60.8, 55.4; IR (KBr) v 3671, 1649, 1600, 1507, 1293, 1162, 1060, $690 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z[M+N a]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}$: 389.1517; Found: 389.1516.

Synthesis of substituted bicyclo[2.2.1]hepta-2,5-diene carboxylates 8-30: General Procedure: To a stirred solution of ($2 E, 4 E$)-4-benzylidene-3,6-diphenylhex-2-en-5-yn-1-ol (0.5 $\mathrm{mmol})$, dialkyl dicarboxylate (0.5 mmol) in dioxane (2 mL) was added $\mathrm{AuCl}(0.05 \mathrm{mmol})$ at rt under nitrogen atmosphere. The solution was stirred at $50{ }^{\circ} \mathrm{C}$ till the starting material was consumed [Note: The reaction mixture using 5bb in the absence of DMAD, showed a peak in HRMS at 361.1958 that corresponds to $[\mathrm{M}+\mathrm{H}]^{+}$peak (calcd: 361.1912) for the
corresponding cyclopentadiene]. Solvent was removed under vacuum and the crude product was purified by column chromatography using silica gel with hexane/ethyl acetate $(10: 1)$ mixture as the eluent to obtain one of the products 8 30.

Compound 8: Orange gummy liquid, yield $0.205 \mathrm{~g}(84 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 11 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}$, $2 \mathrm{H}), 4.16-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.4,163.1,160.0,158.0,143.7$, 136.1, 134.9, 131.1, 130.4, 128.6, 128.4, 128.3 3, 128.3 , 128.0, 127.9, 127.6, 126.9, 123.6, 105.0, 86.3, 73.5, 70.7, 61.3, 61.2, 52.0, 14.1, 14.0; IR (neat) \vee 3052, 2981, 1737, 1715, 1627, 1447, 1370, 1030, $756 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{O}_{4}$: 489.2067; Found: 489.2066 .
Compound 9: Orange gummy solid; yield $0.193 \mathrm{~g}(84 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.8,163.5$, 160.1, 157.7, 143.7, 135.9, 134.7, 131.6, 131.1, 130.4, 128.6, 128.5, 128.3, 128.0, 127.8, 127.7, 126.9, 123.6, 105.1, 86.1, 73.6, 70.7, 54.0, 52.2, 51.9; IR (neat) v 3055, 2983, 2172, 1725, 1703, 1627, 1442, 1378, 1036, $758 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ H^{+}calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{O}_{4}$: 461.1754; Found: 461.1750 .
Compound 10: Orange solid; yield $0.23 \mathrm{~g}(89 \%)$; m.p. 128-130 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.12-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.63-$ $7.12(\mathrm{~m}, 11 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.14(\mathrm{~m}$, $2 \mathrm{H})$, 2.91-2.90 (m, 1H), 2.73-2.71 (m, 1H), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.33(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 166.5, 163.1, 160.2, 157.5, 143.6, 138.5, 137.1, 135.0, 133.1, 131.0, 130.7, 129.2, 129.1, 128.7, 128.4, 127.8, 127.0, 120.7, 105.1, 85.8, 73.3, 70.7, 61.3, 61.1, 51.9, 21.6, 21.2, 14.1, 14.0; IR (KBr) 2975, 2871, 2193, 1745, 1715, 1638, 1370, 1310, 1036, $767 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}: 539.2199$; Found: 539.2196.
Compound 11: Orange gummy solid, yield $0.232 \mathrm{~g}(85 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 8.11-8.09 (m, 2H), 7.56-7.54 $(\mathrm{m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.17-$ $4.14(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (s, 3H, ArOCH3), 3.83 (s, 3H, ArOCH_{3}), 2.90 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.3 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 166.5, 163.1, 160.2, 159.7, 159.0, 156.7, 143.5, 135.0, 132.5, 130.9, 129.1, 128.4, 128.0, 127.9,126.8, 115.9, 114.0, 113.3, 105.1, 85.2, 72.9, 70.7, 61.2, 61.1, 55.3 ${ }_{1}, 55.3_{0}, 51.8,14.1$, 14.0; IR (neat) v 3046, 2931, 2832, 2180, 1731, 1715, 1604, 1468, 1369, 1177, 1029, $827 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{O}_{6}$: 549.2278; Found: 549.2272.
Compound 12: Yellow solid, yield 0.215 g (83\%); m.p.120-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52-7.29 (m, 7H), 6.99 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right)$, $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCOOCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCOOCH}_{3}\right), 2.89(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
(ppm) 167.0, 163.5, 160.3, 159.8, 159.1, 156.5, 143.6, 134.9, 132.6, 130.9, 129.0, 128.4 $4_{4} 128.4$, 128.2, 126.8, 115.8, 114.1, $113.4,105.4,85.1,73.0,70.7,55.3_{2}, 55.3_{0}, 52.2,51.8$; IR (KBr) v 3003, 2942, 2175, 1732, 1715, 1605, 1507, 1118, 1036, 827, 762, $696 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{O}_{6}$: 521.1965; Found: 521.1963.

Compound 13: Yellow solid, yield 0.235 g (92\%); m.p. 125-127 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.08-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.26(\mathrm{~m}, 7 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 4 \mathrm{H}), 4.61-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.15$ $(\mathrm{m}, 4 \mathrm{H})$, 2.93-2.90 (m, 1H), 2.75-2.70 (m, 1H), 1.34-1.28 (m, $3 \mathrm{H})$, 1.17-1.10 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $166.1,162.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=243.0 \mathrm{~Hz}, \mathrm{FC}\right), 162.9,162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=\right.$ $245.0 \mathrm{~Hz}, \mathrm{FC}), 159.2,143.8,138.5,136.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=8.0 \mathrm{~Hz}\right.$, $\mathrm{FC}), 130.0,129.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=8.0 \mathrm{~Hz}, \mathrm{FC}\right), 129.0,128.6,127.0$, $125.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=10.0 \mathrm{~Hz}, \mathrm{FC}\right), 123.6,117.8,117.6,115.7(\mathrm{~d}$, $\left.{ }^{2} J(F-C)=21.0 \mathrm{~Hz}, F C\right), 115.5\left(\mathrm{~d},{ }^{2} J(F-C)=22.0 \mathrm{~Hz}, F C\right), 114.7(\mathrm{~d}$, $\left.{ }^{2} J(F-C)=21.0 \mathrm{~Hz}, F C\right), 103.7,86.8,73.6,72.8,70.7,61.5,61.3$, 52.1, 14.1, 14.0; IR (KBr) v 3069, 2975, 2191, 1723, 1704, 1633, 1485, 1364, 1249, 1135, 784, $696 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ H^{+}calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{O}_{4}$: 525.1878; Found: 525.1875.
Compound 14: Orange gummy liquid, yield $0.220 \mathrm{~g}(88 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.11-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.51-7.25(\mathrm{~m}, 11 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 2 \mathrm{H})$, $4.16-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 1 H), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.34-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.08$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.4,163.1,160.0,158.1$, 143.6, 138.7, 136.2, 132.1, 131.0, 129.2, 128.7, 128.4, 128.3, 128.0, 127.9, 127.6, 126.9, 123.8, 104.7, 86.5, 73.4, 70.7, 61.2, 61.1, 51.9, 21.4, 21.2, 14.1; IR (neat) v 3063, 2986, 2932, 2191, 1732, 1716, 1633, 1370, 1260, 1107, $762 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{4}$: 503.2223; Found: 503.2221.
Compound 15: Orange solid, yield 0.20 g (84.5\%); m.p. 118$120{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 8.00-7.97 (m, 2H), 7.58-7.57 (m, 2H), 7.47-7.39 (m, 3H), 7.32-7.25 (m, 7H), 4.59 (s, 1 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 166.9, 164.0, 160.2, 157.8, 143.7, 138.8, 136.0, 132.0, 131.0, 129.2, 128.5, 128.3, 128.2, 128.0, 127.9, 127.7, 126.8, 123.7, 105.0, 86.3, 73.4, 70.7, 52.3, 51.9, 21.5; IR (KBr) v 2980, 2942, 2193, 1725, 1709, 1638, 1325, 1260, 1117, 761, $690 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI): $m / z\left[M+\mathrm{H}^{+}\right.$calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{4}$: 475.1909; Found: 475.1908.
Compound 16: Orange gummy solid, yield $0.236 \mathrm{~g}(89 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}$, $1 \mathrm{H}), 4.33-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1 H), $2.70(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.36-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.5,163.1$, 160.2, 157.5, 151.8, 143.6, 138.5, 138.3, 137.0, 132.2, 130.1, 129.1, 129.0, 128.6, 127.8, 126.8, 120.8, 104.8, 86.0, 73.2, 70.7, 63.0, 61.2, 61.0, 51.9, 21.4, 21.2, 14.1, 14.0, 13.9; IR (neat) v 2975, 2916, 2193, 1752, 1715, 1622, 1512, 1260, 1107. $816 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right.$; calcd. for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{O}_{4}$: 531.2535; Found: 531.2529.

Compound 17: Orange solid, $0.21 \mathrm{~g}(84 \%)$; m.p. $113-115{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}$,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.37(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 167.0,163.6$, 160.4, 157.3, 143.6, 138.6, 138.4, 137.2, 133.0, 132.1, 131.3, 131.0, 129.5, 129.2, 129.1, 128.7, 127.7, 126.8, 120.7, 105.1, 85.8, 73.2, 70.7, 52.2, 51.8, 21.6, 21.5, 21.3; IR (KBr) v 3025, 2943, 2194, 1742, 1715, 1644, 1518, 1321, 1118, $816 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z[M+]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{4}$: 503.2223; Found: 503.2220.

Compound 18: Orange solid, yield 0.168 g (76%; purity ca $96 \%)$; m.p. $118-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.84$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 ($\mathrm{d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32-7.13 (m, 9H), $4.18(\mathrm{t}, \mathrm{J} \sim 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 165.3,158.1,153.9$, $150.3,138.3,138.2,136.2,135.1,132.5,131.0,130.1,129.1_{2}$, $129.1_{0}, 128.6,128.2,126.0,121.0,104.5,86.8,73.3,70.3,51.9$, 51.4, 21.6, 21.4, 21.2; IR (KBr) v 3025, 2915, 2186, 1720, 1605, 1436, 1179, 822, $734 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{2}$: 445.2168; Found: 445.2167. The assignment is tentative but a triplet with a small J value of 1.6 Hz at $\delta 4.18$ (for $\mathrm{CH}-\mathrm{CH}_{2}$) is indication that the olefinic proton is 4 -bonds away as assigned.
Compound 19: Orange solid, yield $0.22 \mathrm{~g}(92 \%)$; m.p. 125-127 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 8.08-8.05 (m, 2H), 7.58$7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 166.8, 164.0, $162.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=248.0 \mathrm{~Hz}, \mathrm{FC}\right), 160.2$, $156.7,143.5,135.8,131.6,131.1,130.0_{1}, 130.0_{0}, 128.7,128.4$, 128.1, 127.8, 126.9, 123.4, $115.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=22.0 \mathrm{~Hz}, \mathrm{FC}\right)$, 105.1, 85.8, 73.5, 70.7, 52.4, 52.3; IR (KBr) v 3058, 2948, 2195, 1732, 1715, 1644, 1605, 1227, 1129, $762 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FO}_{4}: 479.1659$; Found: 479.1656.
Compound 20: Yellow solid, yield 0.235 g (93\%); m.p. 120-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.57-4.52$ $(\mathrm{m}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.4,164.0,161.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=\right.$ $291.0 \mathrm{~Hz}, \mathrm{FC}), 157.5,156.5,143.4,138.6,137.2,133.0,130.1$, $129.2,128.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=13.0 \mathrm{~Hz}, \mathrm{FC}\right), 127.8,126.8,120.5$, $115.4\left(\mathrm{~d}^{2}{ }^{2} J(\mathrm{~F}-\mathrm{C})=21.0 \mathrm{~Hz}, \mathrm{FC}\right), 114.9,114.7,105.0,85.5,73.3$, 70.7, 61.3, 61.2, 52.0, 21.6, 21.2, 14.1, 14.0; IR (KBr) v 2975, 2926, 2186, 1725, 1715, 1655, 1600, 1512, 1266, 1019, 833 cm^{-1}; HRMS (ESI): m/z $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{FO}_{4} \mathrm{Na}$: 557.2104; Found: 557.2102.

Compound 21: Yellow gummy liquid, yield $0.227 \mathrm{~g}(88 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-$ $7.63(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}$, $1 \mathrm{H})$, 4.29-4.24 (m, 2H), 4.17-4.15 (m, 2H), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right)$, $2.91(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 166.5, 163.2, 160.1, 159.9, 157.8, 143.5, 136.2, 131.0, $128.5,128.3,128.1,128.0,127.9,127.8,127.6,123.8,113.9$,
113.4, 104.3, 86.7, 73.3, 70.5, 61.2, 61.1, 55.4, 52.0, 14.1, 14.0; IR (neat) v 2980, 2898, 2192, 1725, 1704, 1599, 1260, 1035, $755 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{5}$: 519.2172; Found:519.2172.

Compound 22: Orange solid, yield 0.21 g (86\%); m.p. 115-117 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.99-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 2.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 167.0,163.5,159.1,157.7,143.5$, $134.8,131.1,131.0,129.0,128.6,128.5,128.4,128.3,128.0$, $127.8,126.9,113.9,113.4,105.1,86.2,73.3,72.9,70.8,55.3$, 52.3, 51.9; IR (KBr) v 2936, 2833, 2188, 1732, 1715, 1621, 1436, 1260, $762 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{5}$: 491.1859; Found: 491.1854.
Compound 23: Yellow solid, yield 0.20 g (82\%); m.p. 123-125 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.10-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85$ $(\mathrm{m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $2.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.8,163.5,160.1,160.0,156.5,143.8$, 136.0, 134.9, 132.6, 131.1, 130.7, 127.9, 127.6, 126.8, 126.0, 115.8, 114.0, 113.9, 105.4. 85.0, 73.6, 70.7, 55.4, 55.3, 52.1, 51.9; IR (KBr) v 2943, 1765, 1726, 1633, 1600, 1315, 1244, 827, $756 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}$: 513.1678; Found: 513.1677.

Compound 24: Yellow solid, yield 0.150 g (65\%); m.p. 138-140 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.94-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.92-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.28(\mathrm{~m}, 11 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.59$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.33(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 172.9,172.3,151.7,137.3,134.0,131.2$, $128.6,128.5_{0}, 128.5_{0}, 128.4,128.3,128.1,127.6,127.2,126.6$, 123.3, 101.1, 85.6, 66.4, 53.3, 52.1, 51.5, 50.4, 45.8, 45.3; IR (KBr) v 2952, 2192, 1748, 1726, 1436, 1332, 1200, 1025, 756, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: \mathrm{m} / \mathrm{z}$ 485.1729; Found: 485.1729.

Compound 25: Yellow solid, yield 0.145 g (62\%); m.p.146-148 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\sim \mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84-7.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.10(\mathrm{~m}, 11 \mathrm{H}), 3.91-3.90(2 \mathrm{~s}$ or a d, 1 H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.31(2 \mathrm{~s}, 3 \mathrm{H})$, 3.10-3.07 (m, 1H), 2.89-2.86 (m, 1H), 2.40-2.36 (4 s, total 6H), 2.30-2.26 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,172.3$, $151.2,151.1,138.5_{1}, 138.5_{0}, 138.4,137.5,136.5,134.3,134.2$, 131.1, 131.0, 129.2, 129.0, 128.3, 128.2, 127.5, 127.0, 126.52, $126.5_{0}, 120.4,120.3,101.2,85.2,66.3,66.2,53.4,53.3,52.0$, $51.4_{2}, 51.4_{0}, 50.5_{4}, 50.5_{0}, 45.8,45.3,45.2,21.5,21.3,21.2$; IR (KBr) v 2948, 2186, 1737, 1726, 1600, 1430, 1195, 1052, 811 cm^{-1}; HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{O}_{4}\left[\mathrm{M}^{+}+\mathrm{H}\right] \mathrm{m} / \mathrm{z}$ 491.2223; Found: 491.2222. The multiplet pattern observed for this compound may indicate two inseparable diastereomers/isomers, but NMR spectrum of a single crystal also showed the same pattern (ESI and see below for X-ray data).
Compound 26: Yellow gummy solid, yield $0.131 \mathrm{~g}(62 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.72-7.61 (m, 2H), 7.59-7.40 (m, 2H), 7.34-7.22 (m, 5H), 7.08-7.05 (m, 4H), 4.01-3.96 (m, 2H), 3.62-
$3.58(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.82(\mathrm{~m}$, $1 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7$, 151.9, 137.9, 136.8, 136.1, 134.9, 131.0, 130.1, 128.9, 128.5, 128.3, 127.9, 127.5, 127.0, 123.1, 98.6, 87.0, 66.6, 60.4, 56.4, 47.4, 44.7, 33.6, 21.5, 21.1, 13.9; IR (neat) v 2981, 2860, 2203, 1726, 1600, 1266, 1173, $811 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right] \mathrm{m} / \mathrm{z} 469.2144$; Found: 469.2147.
Compound 27: Yellow solid, yield 0.165 g (69\%); m.p. 140-142 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.19(\mathrm{~m}, 12 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.56-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.32(2 \mathrm{~s}, 3 \mathrm{H}), 3.11-3.08(\mathrm{~m}, 1 \mathrm{H})$, 2.91-2.88 (m, 1H), 2.41-2.40 (2 s, 3H), 2.32-2.27 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 172.9,172.3,151.7,151.6$, $138.6,137.4,136.6,134.2,134.1,131.3,131.2,129.3,128.5_{4}$, $128.5_{0}, 128.3_{2}, 128.3_{0}, 127.6,127.2,126.6,126.5,123.4,100.9$, $85.8_{2}, 85.8_{0}, 66.3,66.1,53.4,53.3,52.1,51.6,51.5,50.5,50.4$, 45.8, 45.3, 45.2, 21.4, 21.2; IR (KBr) v 2942, 2196 (w), 1742, 1732, 1430, 1326, 1195, 1041, 756, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right] \mathrm{m} / \mathrm{z}$ 499.1886; Found: 499.1887. The multiplet pattern observed for this compound may indicate two inseparable diastereomers/isomers. Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra $\left(-20-80{ }^{\circ} \mathrm{C}\right.$; toluene- $\left.\mathrm{d}_{8}\right)$ did not show any change. HPLC (isopropanol/hexane; 5:95; chiralpack AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$ flow rate) showed it to be a mixture of isomers/diastereomers.
Compound 28: Yellow solid, yield 0.18 g (75\%); m.p. 148-150 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.94-7.93(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, 7.53-7.28 (m, 10H), 7.16-7.09 (m, 2H), 3.95-3.90 (2 s, 1H), 3.70 $(\mathrm{s}, 3 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.33(2 \mathrm{~s}$, total 3 H$), 3.13-3.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.92-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 172.7,172.2,172.1,162.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=\right.$ $298.0 \mathrm{~Hz}, \mathrm{FC}), 151.8,150.6,137.2,133.9,133.2_{1}, 133.2_{0}, 131.2$, $130.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=8.0 \mathrm{~Hz}, \mathrm{FC}\right), 128.6,128.5,128.4_{2}, 128.4_{0}$, 127.6, 127.3, 126.6, 123.1, $115.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=21.4 \mathrm{~Hz}, F C\right)$, $114.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{~F}-\mathrm{C})=21.1 \mathrm{~Hz}, \mathrm{FC}\right), 101.2,101.1,85.4,66.4,65.7$, $53.4,53.3,52.1,51.6,51.5,50.4_{4}, 50.4$, 45.9, 45.8, 45.5, 45.3; IR (KBr) v 2997, 2942, 2186, 1748, 1726, 1600, 1436, 1337, 1195, 833, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{FO}_{4} \mathrm{Na}$ $\left[\mathrm{M}^{+}+\mathrm{Na}\right] \mathrm{m} / \mathrm{z} 503.1635$, Found 503.1635. The multiplet pattern observed for this compound may indicate two inseparable diastereomers/isomers, but NMR spectrum of a single crystal also showed the same pattern.
Compound 29: Orange yellow solid, yield 0.156 g (62\%); m.p. $148-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.83(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.33(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 173.0,172.4,151.1,138.4_{3}$, $138.4_{2}, 136.5,134.4,131.3,131.1,129.2,129.1,128.3,128.2$, 127.3, 126.5, 120.4, 101.0, 85.4, 66.0, 53.4, 52.0, 51.5, 50.5, 45.7, 45.2, 21.6, 21.4, 21.2; IR (KBr) v 2942, 1753, 1742, 1435, 1337, 1120, 1052, $816 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{O}_{4}$ $\left[\mathrm{M}^{+}+\mathrm{H}\right] \mathrm{m} / \mathrm{z}$ 505.2379; Found 505.2376. Chiral HPLC (isopropanol/hexane; 5:95; chiralpack AS-H column; 0.5 $\mathrm{mL} / \mathrm{min}$ flow rate) trace showed it to be a mixture of
suggested the presence of two isomers (enantiomers). X-ray structure was determined for this compound.
Compound 30: Orange yellow solid, yield 0.170 g (69\%); m.p. $158-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.93(\mathrm{~d}, \mathrm{~J} \sim 8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.21(\mathrm{~m}$, $2 \mathrm{H}), ~ 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 172.9,172.3,159.8,150.4,137.5,134.2$, $132.8,128.5_{2}, 128.5_{0}, 128.4,128.3,127.6,127.2,126.5,115.4$, 114.0, 101.4, 84.5, 66.4, 55.3, 53.3, 52.1, 51.5, 50.5, 45.7, 45.2; IR (KBr) v 2943, 1743, 1740, 1600, 1436, 1249, 1025, 838, 701 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right] \mathrm{m} / \mathrm{z} 515.1835$; Found 515.1836.
Compound 31: The precursor $\alpha, \beta, \gamma, \delta$-unsaturated aldehyde was synthesized by following literature procedure. ${ }^{27}$ Reduction of the aldehyde by using $\mathrm{NaBH}_{4} / \mathrm{MeOH}$ afforded compound 31. Oily liquid, yield 0.39 g (by starting with 2 mmol of the corresponding aldehyde, 89%), ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 7.55-7.51 (m, 1H), 7.43-7.38 (m, 3H), 7.12-7.10 (m, 2H), $6.26(\mathrm{t}, \mathrm{J} \sim 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J} \sim 15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J \sim 6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.73$ (s, 3H), 1.71 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 167.5,147.6,140.9,138.9,135.5,129.0,128.6,128.0$, 120.9, 60.2, 51.5; IR (neat) v 2942, 1720, 1621, 1435, 1314, $1167 \mathrm{~cm}^{-1}$; HRMS ESI: Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}$ 219.1021; Found: 219.1025.

X-ray Data: X-ray structures for compounds 4ab, 5aa, 15, 25, and 29 were determined. The CCDC numbers are CCDC 1061733-1061737.
Compound 4ab: $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}, M=362.45$, Triclinic, Space group P $1, a=8.7294$ (17) \AA, $b=9.0226$ (18) \AA, $c=13.246(3) \AA$, $\alpha=$ $89.48(3)^{\circ}, \beta=79.49(3)^{\circ}, \gamma=89.81(3)^{\circ}, V=1025.7(3) \AA^{3}, Z=2$, $\mu=0.070 \mathrm{~mm}^{-1}$, data/restraints/parameters: 4022/0/255, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})$): R1 $=0.0463, w R 2$ (all data) $=0.1379, \mathrm{CCDC}$ No. 1061733.
Compound 5aa: $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}, M=336.41$, Monoclinic, Space group $P 2(1) / c, a=20.9391$ (5) \AA, $b=19.6321$ (17) \AA, $c=19.0212$ (5) $\AA, \beta=99.008(2)^{\circ}, V=7722.8(3) \AA^{3}, Z=16, \mu=0.531 \mathrm{~mm}^{-1}$, data/restraints/parameters: 14836/2/945, R indices ($\mathrm{I}>2 \sigma(\mathrm{I})$): $R 1=0.0555, w R 2$ (all data) $=0.1639$, CCDC No. 1061734.
Compound 15: $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{4}, M=474.32$, Monoclinic, Space group $C 2 / c, a=40.6890(12) \AA$ A,$b=7.9939(2) \AA$, $c=15.8777$ (7) \AA, $\beta=$ $101.669(3)^{\circ}, V=5057.7(3) \AA^{3}, Z=8, \mu=0.650 \mathrm{~mm}^{-1}$, data/restraints/parameters: 4029/0/328, R indices ($1>2 \sigma(\mathrm{I})$): $R 1=0.0653, w R 2$ (all data) $=0.2091$. CCDC No. 1061735.
Compound 25: $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{O}, M=490.57$, Triclinic, Space group $P_{-}$$1, a=9.648(4) \AA, b=12.704(5) \AA, c=13.199(5) \AA, \alpha=$ $118.354(5)^{\circ}, \beta=94.509(6)^{\circ}, \gamma=101.854(6)^{\circ}, V=1363.8(8) \AA^{3}, Z$ $=2, \mu=0.077 \mathrm{~mm}^{-1}$, data/restraints/parameters: 4785/0/337, R indices $(I>2 \sigma(I)): R 1=0.1102, w R 2$ (all data) $=0.3477$. The data quality was moderate. Although there were no ' A ' type alerts in checkcif, there was additional residual density near p-position of the phenyl ring connected to alkene, possibly as a result of two isomers/diastereomers crystallizing together. CCDC No. 1061736. The ORTEP is given in the ESI.

Compound 29: $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{4}, M=504.60$, Triclinic, Space group $P_{-}$$1, a=10.0941(5) \AA, b=12.7419(5) \AA, c=13.2345(8) \AA, \alpha=$ 117.981(5) ${ }^{\circ}, \beta=94.366(5)^{\circ}, \gamma=104.498(4)^{\circ}, V=1417.55(12)$ $\AA^{3}, Z=2, \mu=0.077 \mathrm{~mm}^{-1}$, data/restraints/parameters: 5417/0/343, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})): \mathrm{R} 1=0.0497, w \mathrm{R} 2$ (all data) $=$ 0.1563. CCDC No. 1061737.

Acknowledgements

We thank Department of Science and Technology (DST, New Delhi) for Single Crystal X-ray diffractometer facility, and the University Grants Commission (UGC, New Delhi) for financial support and equipment under UPE and CAS programs. We thank Dr. P. Obul Reddy for help in obtaining HPLC data. AU thanks UGC, New Delhi for Dr. D. S. Kothari fellowship. GGR thanks CSIR for fellowship. KCK thanks DST for the J. C. Bose fellowship and UGC for a one time grant.

Notes and references

1 Reviews: (a) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180; (b) Z. Li, C. Brouwer and C. He, Chem. Rev., 2008,108, 3239; (c) A. Arcadi, Chem. Rev.,2008, 108, 3266; (d) J. Muzart, Tetrahedron, 2008, 64, 5815; (e) E. Jimenez-Nunez and A. M. Echavarren, Chem. Rev., 2008, 108, 3326; (f) H. C. Shen, Tetrahedron, 2008, 18, 3885; (g) H. C. Shen, Tetrahedron, 2008, 18, 7847; (h) C. J. Lima and L. Rodriguez, Chem. Soc. Rev., 2011, 40, 5442; (i) A. Corma, A. Leyva-Perez, and M. J. Sabater, Chem. Rev., 2011, 111, 1657; (j) N. Krause and C. Winter, Chem. Rev., 2011, 111, 1994; (k) A. S. K. Hashmi, Acc. Chem. Res., 2014, 47, 864; (I) C. Obradors and A. M. Echavarren, Acc. Chem. Res., 2014, 47, 902; (m) B. Alcaide and P. Almendros, Acc. Chem. Res., 2014, 47, 939.
2 Selected recent literature on cycloaddition reactions: (a) V. Lopez-Carrillo and A. M. Echavarren, J. Am. Chem. Soc., 2010, 132, 9292; (b) A. D. Melhado, G. W. Amarante, Z. J. Wang, M. Luparia and F. D. Toste, J. Am. Chem. Soc., 2011, 133, 3517; (c) W. Rao, D. Susanti, and P. W. Hong Chan, J. Am. Chem. Soc., 2011, 133, 15248; (d) V. V. Pagar, A. M. Jadhav and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 20728; (e) S. A. Gawade, S. Bhunia and R.-S. Liu, Angew. Chem., Int. Ed., 2012, 51, 7835; (f) P. Garcia-Garcia, M. A. Rashid, A. M. Sanjuan, M. A. Fernandez-Rodriguez and R. Sanz, Org. Lett., 2012, 14, 4778; (g) W. Zhou, X.-X. Li, G.-H. Li, Y. Wu and Z. Chen, Chem. Commun.,2013, 49, 3552; (h) J. F. Briones and H. M. L. Davies, J. Am. Chem. Soc., 2013, 135, 13314; (i) Z.-M. Zhang, P. Chen, W. Li, Y. Niu, X.-L. Zhao and J. Zhang, Angew. Chem., Int. Ed., 2014, 53, 4350; (j) W. Yuan, X. Tang, Y. Wei and M. Shi, Chem.-Eur. J., 2014, 20, 3198; (k) S. N. Karad and R.-S. Liu, Angew. Chem., Int. Ed., 2014, 53, 9072; (I) A. L. Siva Kumari and K C Kumara Swamy, J. Org. Chem., 2015, 80, 4084.

3 Selected recent examples: (a) Y. Zou, D. Garayalde, Q. Wang, C. Nevado and A. Goeke, Angew. Chem., Int. Ed., 2008, 47, 10110; (b) R. Balamurugan and V. Gudla, Org. Lett., 2009, 11, 3116 [gold(III)]; (c) F. Liu, D. Qian, L. Li, X. Zhao and J. Zhang, Angew. Chem., Int. Ed., 2010, 49, 6669; (d) H. Gao, X. Zhao, Y. Yu and J. Zhang, Chem.-Eur. J., 2010, 16, 456; (e) G. Cera, P. Crispino, M. Monari and M. Bandini, Chem. Commun., 2011, 47, 7803; (f) C. Shu, M.-Q. Liu, S.-S. Wang, L. Li and L.W. Ye, J. Org. Chem., 2013, 78, 3292; (g) S. Nayak, N. Ghosh and A. K. Sahoo, Org. Lett., 2014, 16, 2996. (h) C. V. Suneel Kumar and C. V. Ramana, Org. Lett., 2014, 16, 4766; (i) T. Matsuda and Y. Sakurai, J. Org. Chem.,2014, 79, 2739; (j) S.

Zhu, H. Huang, Z. Zhang, T. Ma and H. Jiang, J. Org. Chem., 2014, 79, 6113; (k) P. Bernal-Albert, H. Faustino, A. Gimeno, G. Asensio, J. L. Mascareñas and F. López, Org. Lett., 2014, 16, 6196; (I) X. Wu, S.-S. Chen, Y. Hu and L.-Z. Gong, Org. Lett., 2014, 16, 3820; (m) J. Carreras, M. Livendahl, P. R. McGonigal and A. M. Echavarren, Angew. Chem., Int. Ed., 2014, 53, 4896; (n) A. Homs, M. E. Muratore and A. M. Echavarren, Org. Lett., 2015, 17, 461; (o) S. Naoe, T. Saito, M. Uchiyama, S. Oishi, N. Fujii and H.Ohno, Org. Lett., 2015, 17, 1774; (p) N. Borrero, L. G. DeRatt, L. F. Barbosa, K. A. Abboud and A. Aponick, Org. Lett.,2015, 17, 1754; (q) P. Nösel, V. Müller, S. Mader, S. Moghimi, M. Rudolph, I. Braun, F. Rominger and A. S. K. Hashmi, Adv. Synth. Cata., 2015, 357, 500; (r) K. Sugimoto, N. Yamamoto, D. Tominaga and Y. Matsuya, Org. Lett., 2015, 17, 1320; (s) J.-M. Yang, X.-Y. Tang and M. Shi, Chem. -Eur. J., 2015, 21, 4534.
4 See, for example: (a) D. J. Gorin and F. D. Toste, Nature, 2007, 446, 395; (b) F. Liu, D. Qian, L. Li, X. Zhao and J. Zhang, Angew. Chem., Int. Ed., 2010, 49, 6669; (c) H. Gao, X. Wua and J. Zhang, Chem. Commun., 2010, 46, 8764; (d) J. Barluenga, J. Calleja, A. Mendoza, F. Rodriguez and F. J. Fananas, Chem.-Eur. J., 2010, 16, 7110; (e) A. Z. Gonzalez and F. D. Toste, Org. Lett., 2010, 12, 2006; (f) T.-M. Teng and R.-S. Liu, J. Am. Chem. Soc., 2010, 132, 9298; (g) H. Gao, X. Wu and J. Zhang, Chem. -Eur. J., 2011, 17, 2838; (h) K. R. Prasad and C. Nagaraju, Org. Lett., 2013, 15, 2778 [gold(III)]; (i) N. Ghosh, S. Nayak and A. K. Sahoo, Chem. -Eur. J., 2013, 19, 9428; (j) B. Liu, K.-N. Li, S.-W. Luo, J.-Z. Huang, H. Pang and L.-Z. Gong, J. Am. Chem. Soc., 2013, 135, 3323; (k) B. Alcaide, P. Almendros and M. T. Quirós, Chem. -Eur. J., 2014, 20, 3384.
5 R. Guo, K.-N. Li and L.-Z. Gong, Org. Biomol. Chem., 2013, 11, 6707.

6 (a) R. A. Volkermann, G. C. Andrews and W. S. Johnson, J. Am. Chem. Soc.,1975, 97, 4777; (b) A. G. Schultz and S. Puig, J. Org. Chem.,1985, 50, 915; (c) M. David, H. Dhimane, C. Vanucci-Bacquée and G. Lhommet, J. Org. Chem., 1999, 64, 8402; (d) B. M. Fraga, Nat. Prod. Rep., 2005, 22, 465.
7 (a) S. Dev, Acc. Chem. Res., 1981, 14, 82; (b) D. J. Augeri, J. A. Robl, D. A. Betebenner, D. R. Magnin, A. Khanna, J. G. Robertson, A. Wang, L. M. Simpkins, P. Taunk, Q. Huang, S.-P. Han, B. Abboa-Offei, M. Cap, L. Xin, L. Tao, E. Tozzo, G. E. Welzel, D. M. Egan, J. Marcinkeviciene, S. Y. Chang, S. A. Biller, M. S. Kirby, R. A. Parker and L. G. Hamann, J. Med. Chem., 2005, 48, 5025; (c) S. D. Banister, S. M. Wilkinson, M. Longworth, J. Stuart, N. Apetz, K. English, L. Brooker, C. Goebel, D. E. Hibbs, M. Glass, M. Connor, I. S. McGregor and M. Kassiou, ACS Chem. Neurosci., 2013, 4, 1081.

8 (a) P. K. Jadhav and H. C. Brown, J. Org. Chem.,1981, 46, 2988; (b) R. Shintani and T. Hayashi Aldrichimica Acta, 2009, 42, 31; (c) R. Shintani, K. Ueyama, I. Yamada and T. Hayashi, Org. Lett., 2004, 5, 3425; (d) B.-M. Fan, Q.-j. Yang, J. Hu, C.-I. Fan, S.-f. Li, L.Yu, C. Huang, W. W. Tsang and F. Y. Kwong, Angew. Chem., Int. Ed., 2012, 51, 7821.
9 (a) T. Mitsudo, T. Suzuki, S.-W. Zhang, D. Imai, K. Fujita, T. Manabe, M. Shiotsuki, Y. Watanabe, K. Wada and T. Kondo, J. Am. Chem. Soc.,1999, 121, 1839; (b) G. Partha, R. J. Weston, R. Timothy and A. Jeffrey, Org. Lett., 2009, 11, 4140; (c) N. Della Ca, G. Maestri, M. Malacria, E. Derat and M. Catellani, Angew. Chem., Int. Ed., 2011, 50, 12257; (d) A. Khanna, I. D. U. A. Premachandra, P. D. Sung and D. L. V. Vranken, Org. Lett., 2013, 15, 3158; (e) N. Aiguabella, C. del Pozo, X. Verdaguer, S. Fustero and A. Riera, Angew. Chem., Int. Ed., 2013, 52, 5355.
10 (a) T. Noel, K. Vandyck and J. Van der Eycken, Tetrahedron, 2007, 63, 12961; (b) J. Zhou and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 12220; (c) D. B. Dell'Amico, L. Labella, F. Marchetti and S. Samaritani, J. Organomet. Chem., 2011, 696

1349; (d) B. K. Keitz, A. Fedorov, and R. H. Grubbs, J. Am. Chem. Soc., 2012, 134, 2040; (e) A. J. Atkin, I. J. S. Fairlamb, J. S. Ward and J. M. Lynam, Organometallics, 2012, 31, 5894.

11 (a) W. P. Forrest, J. G. Weis, J. M. John, J. C. Axtell, J. H. Simpson, T. M. Swager and R. R. Schrock, J. Am. Chem. Soc., 2014, 136, 10910; (b) M. Shiosuki, H. Kai and T. J. Endo, Polymer Sci. A. Polymer Chem., 2014, 52, 2528.
12 V. Gray, A. Lennartson, P. Ratanalert, K. Börjesson and K. Moth-Poulsen, Chem. Commun.,2014, 50, 5330.
13 (a) R. A. Valiulin, T. M. Arisco, and A. G. Kutateladze, J. Org. Chem., 2013, 78, 2012; (b) I. Michieletto, F. Fabris and O. De Lucchi, Tetrahedron Asymmetry, 2000, 11, 2835; (c) S. Kobayashi, T. Tsuchiya, I. Komoto and J. Matsuo, J. Organomet. Chem., 2001, 624, 392; (d) I. Lopez, G. Silvero, M. J. Arevalo, R. Babiano, J. C. Palaciosa and J. L. Bravo, Tetrahedron, 2007, 63, 2901.
14 (a) R. Kotikalapudi and K. C. Kumara Swamy, Tetrahedron, 2013, 69, 8002; (b) R. Kotikalapudi, A. L. S. Kumari and K. C. Kumara Swamy, RSC Adv., 2014, 4, 17717.
15 (a) C. S. Choa and D. B. Patel, Tetrahedron 2006, 62, 6388; (b) Y. Isogai, Menggenbateer, F. N. Khan and N. Asao, Tetrahedron 2009, 65, 9575 (compound 3aa); (c) C. Zheng, W. Yao, Y. Zhang and C. Ma, Org. Lett. 2014, 16, 5028.

16 A. Uruvakilli, R. Kotikalapudi and K. C. Kumara Swamy, Synthesis, 2014, 46, 1197 (compound 3aa).
17 K. Csatayová, S. G. Davies, J. A. Lee, K. B. Ling, P. M. Roberts, A. J. Russell and J. E. Thomson, Tetrahedron, 2010, 66, 8420.

18 We thank a referee for this suggestion. It is also possible that isomerisation takes place via PPh_{3} mediation.
19 It should be noted that the cycloaddition reaction of alkynyldienal (4aa) with diethylacetylene dicarboxylate (6a) under the optimised conditions mentioned in the text did not lead to any product. Even with increase in temperature, starting materials remained unreacted. If we assume that this reaction may go via [4+2] cycloaddition followed by dehydration, we should have obtained the cycloaddition product.

20 (a) M. E. Squillacote and F. Liang, J. Org. Chem., 2005, 70, 6564; (b) H. Kinoshita, T. Tohjima and K. Miura, Org. Lett., 2014, 14, 4762.
21 (a) M. Bandini and A. Eichholzer, Angew. Chem., Int. Ed., 2009, 48, 9533; (b) P. Kothandaraman, S. J. Foo and P. W. Hong Chan, J. Org. Chem., 2009, 74, 5947; (c) B. Biannic and A. Aponick, Eur. J. Org. Chem., 2011, 6605 (microreview).

22 J. Hudon, T. A. Cernak, J. A. Ashenhurst and J. L. Gleason, Angew. Chem., Int. Ed., 2008, 47, 8885.
23 (a) I. Lopez, G. Silvero, M. J. Arevalo, R. Babiano, J. C. Palacios and J. L. Bravo Tetrahedron, 2007, 63, 2901; (b) A. J. Atkin, I. J. S. Fairlamb, J. S. Ward and J. M. Lynam, Organometallics, 2012, 31, 5894; (c) R. A. Valiulin, T. M. Arisco and A. G. Kutateladze, J. Org. Chem., 2013, 78, 2012.
24 This statement is corroborated by the result that compound 31 did not undergo the dehydrative cyclisation/ intermolecular [4+2] cycloaddition with DMAD.

25 D. D. Perrin, W. L. F. Armarego and D. R. Perrin 1986 Purification of Laboratory Chemicals Pergamon: Oxford, UK.
26 (a). G. M. Sheldrick, SHELX-97- A program for crystal structure solution and refinement, University of Göttingen, 1997. (b) G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Correction, University of Göttingen, Germany, 1996. (c) G. M. Sheldrick, SHELXTL NT Crystal Structure Analysis Package, version 5.10; Bruker AXS, Analytical X-ray System: WI, USA, 1999.
27 R. Singha, S. Dhara and J. K. Ray, Tetrahedron Lett., 2013, 54, 4841.

[^0]: School of Chemistry, University of Hyderabad, Hyderabad -500046, Telangana, India.E-mail: kckssc@uohyd.ac.in kckssc@yahoo.com
 Electronic Supplementary Information (ESI) available: [Copies of ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of all new products and CIF data]. See DOI: 10.1039/x0xx00000x

