This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Direct synthesis of methyl phosphoramidates in carbohydrates†

Vijay M. Dhurandhara,ac Girija Prasad Mishra,ab Sarah Lama and Cheng-Chung Wangac

A direct installation of methyl phosphoramidate group by using methyl benzylphosphoramidochloridate into carbohydrates and amino acid is described. This one-step synthesis is efficient for both primary and secondary alcohols and exhibited excellent regioselectivity and functional group compatibility. Formation of single diastereomer is observed in certain cases. The N-benzyl protecting group on methyl phosphoramidates is easily removed under mild conditions.

Introduction

Campylobacter jejuni (C. jejuni) is a food-borne bacterial pathogen that causes bacterial gastroenteritis worldwide. The outer surface of this gram-negative bacterium is functionalized with various capsular polysaccharides (CPSs), which are responsible for its virulence. O-Methyl phosphoramidate (MeOPN) moiety is commonly found as a modification in these CPSs (Figure 1). However, the role of this O-MeOPN group is not clearly understood; though several reports have postulated that it is crucial for pathogenicity and serum resistance. Although the MeOPN group appears as single diastereomer in CPSs, its exact stereochemistry is unknown.

While diphenyl phosphate group can be directly introduced to carbohydrates by using various P(V) phosphorylating agents, such as phosphoryl chloride, incorporation of MeOPN group cannot be achieved in one step due to the poor electrophilicity of the corresponding P(V) agent. Currently, MeOPN is installed in two steps through a reaction with methyl pivolyl H-phosphonate, a P(III) phosphorylating agent, followed by Atherton–Todd oxidation. This two-step protocol shows low diastereoselectivity and is not compatible with amide, a functional group often found in biologically potent carbohydrate molecules, and azide, which is an important amine protecting group in synthesis of glycoconjugates. Its regioselectivity is not investigated. In addition, to facilitate the synthesis of MeOPN-containing glycoconjugates and to understand their biochemistry, there is a need for more efficient methods to directly install MeOPN into carbohydrates, preferably in a highly diastereoselective manner. Herein, we report the use of methyl benzylphosphoramidochloridate (1) as the phosphorylating reagent for the direct introduction of MeOPN moiety to carbohydrates.

Figure 1 Repeating unit of CPSs from C. jejuni.

Scheme 1 Synthesis of methyl benzylphosphoramidochloridate (1)
Results and discussion

Methyl benzylphosphoramidochloridate (1), the phosphorylating reagent, was readily prepared in one step by using the commercially available methyl dichlorophosphate (2) and benzylamine (Scheme 1). It is stable for 5-6 h only and has to be freshly prepared for phosphorylation. Its reaction was first examined with 2-alcohol 3 in the presence of 1 equiv of DMAP and a base. Compound 3 hardly reacted when pyridine or trimethylamine was used as the base (Table 1, entries 1 and 2). When 1-methylimidazole (NMI) was used as the base, the yield of 4 dramatically increased to 77% (Table 1, entry 3), and reducing the temperature to 0 °C did not improve the yield (Table 1, entry 4). The reaction was further optimized when a larger excess of trimethylamine was used as the base (Table 1, entries 1 and 2). Similarly, when a larger excess of 1 (4 equiv) and NMI (8 equiv) was used to produce a quantitative yield (Table 1, entry 5). Without DMAP, the reaction could still proceed, but in a lower yield (88%) (Table 1, entry 6). Since we were not able to determine the exact diastereochemistry of the two diastereomers, the diastereomeric ratio of 4 in each reaction was determined based on the integration of the downfield to upfield signals in the 31P NMR spectrum. As shown in Table 1, using trimethylamine as the base led to a 1:1 mixture of both MeOPN diastereomers (Table 1, entry 5). When 1-methylimidazole (NMI) was used as the base, the yield of 4 as an inseparable 1:1 mixture of both MeOPN diastereomers (Table 1, entry 5). Without DMAP, the reaction could still proceed, but in a lower yield (88%) (Table 1, entry 6). Since we were not able to determine the exact diastereochemistry of the two diastereomers, the diastereomeric ratio of 4 in each reaction was determined based on the integration of the downfield to upfield signals in the 31P NMR spectrum. As shown in Table 1, using trimethylamine as the base led to a 1:1 mixture of both MeOPN diastereomers. However, when pyridine or NMI was used, the diastereoselectivities improved to 2:1 and 2:7:1 respectively.

Table 1 Optimization of direct synthesis of methyl phosphoramidate 4.

<table>
<thead>
<tr>
<th>Entry</th>
<th>n</th>
<th>Base</th>
<th>T (°C)</th>
<th>Yield (%)d</th>
<th>d.r. d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>pyridine</td>
<td>rt</td>
<td>33 [2:1]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Et$_3$N</td>
<td>rt</td>
<td>27 [1:1]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>NMI</td>
<td>rt</td>
<td>77 [1:7:1]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>NMI</td>
<td>0</td>
<td>78 [2:3:1]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>NMI</td>
<td>-20</td>
<td>98 [2:5:1]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>NMI</td>
<td>rt</td>
<td>quant. [2.6:1]</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>4</td>
<td>NMI</td>
<td>rt</td>
<td>88 [2:7:1]</td>
<td></td>
</tr>
</tbody>
</table>

a Yield of isolated 4. b 52% 3 recovered. c Without DMAP. d Based on the 31P NMR integration of the downfield vs. upfield signals.

After obtaining the optimized reaction conditions, we explored the scope of the reaction by using different substrates (Table 2). The reactions with primary alcohols in protected glucose and galactose were clean, and moderate to excellent yields of MeOPNs were obtained. Various functionalities, including benzyl ether, acetoxy, and acid-sensitive trimethylsilyloxy and isopropylidene, were well tolerated under this mild reaction condition (Table 2, entries 1–4). Similar to the reaction of 3 yielding 4 (Table 1), the reaction of secondary 3-OH in 14 (Table 2, entry 6) was successful, and a satisfactory yield of MeOPN was obtained. However, this phosphorylation was highly sensitive to the steric environment around the reaction centre. Sterically crowded 4-OH in 16 reacted slowly (Table 2, entry 7), and most of 12 remained unreacted even after the addition of excess reagent and a prolonged reaction time (Table 2, entry 5), probably because the β-1-Stol group in 12 imposed severe steric hindrance around 2-OH; thus rendering the 2-OH less accessible for reaction with 1. Although the reaction rates were greatly influenced by the steric hindrance, 13 (Table 2, entry 5) and 17 (Table 2, entry 7) were formed as single diastereomer as shown in their NMR spectra. The reaction was not limited to the pyranose form of carbohydrates. Furanose 18 and amino acid derivative 20 were also phosphorylated efficiently, but with moderate yields (Table 2, entries 8 and 9). The relatively poor reactivity of the amino acid derivative 20 compared with the other primary alcohols is due to the deactivation imposed by the unfavourable hydrogen bonding between the carbamate and hydroxyl group.8

The regioselectivity of the phosphorylation of diols was investigated. Only mono-phosphoramidate was formed in all cases. The primary 6-OH was phosphorylated in preference to the secondary 4-OH in 22 and 24a and a single regioisomer was afforded in a satisfactory yield in both cases (Table 2, entries 10 and 11). In addition, the regioselectivity depended on the relative steric hindrance at different reaction sites. Phosphorylation occurred exclusively at the O2 position in 2,3-diol 26 (Table 2, entry 12) but at the O3 position in 28 (Table 2, entry 13) to afford 27 and 29, respectively, despite these substrates differ only at the anomeric positions that is remote from the reaction centre, in excellent yields and surprisingly with excellent diastereoselectivities.

Here, we obtained 13 and 17 as single diastereomer and 27 with excellent diastereoselectivity. However, it is difficult to unambiguously confirm their P stereochimistries using X-ray crystallography as none of these methyl phosphoramidates is solid. The nOe correlations between benzyl protons and H2, methoxy protons and H5 observed in the NOESY spectrum of 13 is shown in Figure 2. However, only the signals of an average rotameric conformation are shown in NMR studies.10 Therefore, even with the NOESY spectra of 13, 17 and 27 (See Supplementary Information), we still could not confirm their stereochimistries.

Table 2 Substrate scope of direct synthesis of methyl phosphoramidates.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>t (h)</th>
<th>Yield (%)d</th>
<th>d.r. d</th>
</tr>
</thead>
</table>

a Yield of isolated 4. b 52% 3 recovered. c Without DMAP. d Based on the 31P NMR integration of the downfield vs. upfield signals.
Yield of isolated products (In the brackets is the yield based on the recovered starting material). Extra 3 equiv 1 and 6 equiv NMI added. Product was directly derivatized into 8 by using Ac₂O for isolation. Contained less than 10% of the other diastereomer. Additional 4 equiv of 1 and 8 equiv of NMI were added after 2 h. Based on the ³¹P NMR integration of the downfield vs. upfield signals.

Figure 2 Selected nOe enhancements observed for 13.

The utility of this one-step installation of MeOPN group was demonstrated with 30, a galactofuranose moiety present in a CPS from *C. jejuni* 11168H and 32, a protected galactose component in a CPS from *C. jejuni* 81-176 (Figure 1). Both 30 and 32 underwent phosphorylation efficiently, yielding methyl phosphoramidates 31 and 33 respectively in excellent yield (Table 2, entries 14 and 15). Of note, the reactive azide group at the C2-position of 30 was well tolerated and remained intact after phosphorylation. Thus, this mild phosphorylation condition enables late stage introduction of MeOPN in nitrogen-functionalized carbohydrate synthesis.

It was reported that the N-benzyl group on MeOPN is stable under standard hydrogenolytic conditions using hydrogen and palladium on carbon. We found that when switching to palladium hydroxide on carbon, not only the O-benzyl groups in 6 were cleaved, the N-benzyl protected MeOPN was concomitantly deprotected and gave 34 quantitatively (Scheme 2a). The N-benzyl protecting group on MeOPN in different carbohydrates can be removed under biphasic conditions using sodium bromate and...
sodium dithionite (NaBrO₃/Na₂S₂O₄). Under the same conditions, the MeOPN in 8 was deprotected to give 35 (76%) (d.r. 1:1.5) and all the acetyl groups that remained intact was subsequently removed by reaction using methanol-water-triethylamine to give 34, but the product was contaminated with inseparable triethylamine salts (Scheme 2b). Instead, removing the acetyl groups of 8 using methanol-water-triethylamine first gave 36 in 85% or using K₂CO₃ in methanol-water condition also produced 36 in 74% and the following hydrogenolysis using hydrogen and palladium hydroxide on carbon gave clean 34 quantitatively (Scheme 2b). On the other hand, the azide group in 31 was found to be compatible with the typical deprotection conditions using NaBrO₃/Na₂S₂O₄ to afford 37 in 81% (d.r. 1:1.6) and the unprotected MeOPN was stable in the ensuing hydrogenolytic reduction of azide and hydrogenolysis using hydrogen and palladium hydroxide on carbon gave clean 34 quantitatively (Scheme 2b).

Conclusions

In conclusion, a one-step direct synthesis of MeOPN by using methyl benzyl phosphoramidochloridate was established. This approach was found to be efficient for both primary and secondary alcohols. Various functionalities were compatible with the mild reaction conditions. This reaction exhibited excellent regioselectivity, and the sterically less hindered hydroxyl group was preferentially phosphorylated. Moreover, in a sterically hindered environment, this direct MeOPN reaction can show excellent diastereoselectivity as this reaction is highly sensitive to the steric environment around the reaction centre. Also, removal of protecting groups in several N-benzyl protected methyl phosphoramidates was demonstrated. Continuing studies to control the diastereoselectivity and applications of this direct introduction of MeOPN to syntheses of oligosaccharides, such as the repeating unit of CPS from C. jejuni 11168H, are currently underway in our laboratory.

Experimental

Methyl benzyl phosphoramidochloridate (1).
To the solution of benzylamine (710 mg, 740 μL, 6.71 mmol) in dry CH₂Cl₂ was added triethylamine (680 mg, 940 μL, 6.71 mmol) at rt. The mixture was cooled to -78 °C. Methyl dichlorophosphate (1.0 g, 670 μL, 6.71 mmol) was added dropwise to the mixture over 20 min. After complete addition, the temperature was raised to rt and stirred for additional 1 h, and the reaction was monitored by TLC using Nihydrin as the stain. Upon completion, the CH₂Cl₂ was evaporated under reduced pressure and a white solid was obtained, which was re-suspended with diethyl ether. The undesired solid was filtered off, and the diethyl ether filtrate was concentrated under a reduced pressure to afford 1 as a colorless oil (1.45 g, 98%); IR (CHCl₃) ν 3199, 1496, 1252, 1026, 732, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 5H, ArH), 4.15 (d, J = 11.6 Hz, 2H, PhCH₂), 3.81 (d, J = 13.7 Hz, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 137.8 (d, J = 8.5 Hz, C), 128.6 (CH x 2), 127.7 (CH), 127.4 (CH x 2), 54.0 (d, J = 6.1 Hz, CH₂), 45.7 (CH₂); ³¹P NMR (161.97 MHz, CDCl₃) δ 16.8; HRMS (ESI) calc'd for C₈H₁₄NO₃P [M+H]⁺ 220.0294, found 220.0290.

General procedure for direct synthesis of methyl phosphoramidates:
To a solution of an alcohol (100 mg) and DMAP (1.0 equiv) in dry CH₂Cl₂ (2 mL) was added NMI (N-methylimidazole) (8.0 equiv) at rt. Methyl benzyl phosphoramidochloridate (1) (4.0 equiv) in CH₂Cl₂ (1 mL) was added dropwise over a period of 2-3 min at rt. The reaction mixture was allowed to stir at rt as the time indicated in Table 2. The reaction was monitored by TLC, and upon completion, the volatiles were removed in vacuo. The residue was purified by column chromatography to afford the desired product in good to excellent yield.

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan (MOST 103-2113-M-001-022) and Academia Sinica.

Notes and references

