Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/

Enantioselective organocatalyzed aza-Morita-Baylis-Hillman reaction of isatin-derived ketimines with acrolein

Yasushi Yoshida, ${ }^{a}$ Makoto Sako, ${ }^{a}$ Kenta Kishi, ${ }^{\text {a }}$ Hiroaki Sasai, ${ }^{\text {a }}$ Susumi Hatakeyama ${ }^{\text {b }}$ and Shinobu Takizawa*a
A highly enantioselective aza-Morita-Baylis-Hillman (aza-MBH) reaction of isatin-derived ketimines with acrolein was established using β-isocupreidine (β-ICD) or α-isocupreine (α-ICPN) as a chiral acid-base organocatalyst. The present protocol readily furnished (S) or (R)-aza-MBH adducts with a chiral tetrasubstituted carbon stereogenic center in up to 98% ee.

Table 1 Optimization of the reaction conditions. ${ }^{\text {a }}$

Entry	Solvent	Chiral organocatalyst	Temp. (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	toluene	$\beta-I C D$	-15	54	89
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\beta-I C D$	-15	51	64
3	THF	$\beta-I C D$	-15	62	80
4	CPME ${ }^{\text {d }}$	$\beta-I C D$	-15	58	87
5	toluene	$\beta-I C D$	10^{e}	27	93
6	toluene	$\beta-I C D$	-10	65	88
7	toluene	$\beta-I C D$	-20	53	90
8	toluene	$\beta-I C D$	-40	46	94
9	toluene	$\beta-I C D$	-60	19	97
10	toluene/CPME = 1/1	$\beta-I C D$	-40	60	94
11	toluene/CPME = 1/1	4	-40	Trace	-
12	toluene/CPME = 1/1	5	-40	16	90
13	toluene/CPME = $1 / 1$	6	-40	35	80

${ }^{\mathbf{a}} \mathbf{1 a}(0.06 \mathrm{mmol})$ in the stated solvent (0.05 m for $\mathbf{1 a}$), chiral organocatalyst (0.012 mmol) and $\mathbf{2}$ (0.18 mmol) were stirred for 48 h .
${ }^{b 1} H-N M R$ yield of product 3a using 1,3,5-trimethoxybenzene as an internal standard.
${ }^{\text {c }}$ Determined by HPLC (Daicel Chiralpak IE).
${ }^{\text {d }}$ Cyclopentyl methyl ether (CPME).
${ }^{e}$ Over reaction of 3a with $\mathbf{2}$ was observed.

During the initial solvent screening ($-15{ }^{\circ} \mathrm{C}$, $20 \mathrm{~mol} \% \beta-\mathrm{ICD}$), we found that the reaction proceeded better in toluene or cyclopentyl methyl ether (CPME) than in other solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF (entries 1-4). Next we investigated the effect of the reaction temperature. Decreasing the reaction temperature to $-40^{\circ} \mathrm{C}$ gave $3 \mathbf{a}$ in an acceptable yield (46%) with 94% ee (entry 8). When the reaction was performed at $10^{\circ} \mathrm{C}$ or $-60^{\circ} \mathrm{C}$, 3a was obtained in low yields because of either over reaction of 3a with 2 (involving polymerization of 2) ${ }^{9}$ (entry 5) or low conversion (entry 9), respectively. Finally, we discovered that the use of mixed-solvent system toluene/CPME (1/1) for the aza-MBH reaction of 1a with 2 at $-40^{\circ} \mathrm{C}$ gave 3 a in 60% yield with 94% ee (entry 10). Chiral acidbase organocatalysts 4-6, which are known to mediate enantioselective aza-MBH processes, ${ }^{10}$ were virtually ineffective at improving the chemical yields and ee values for 3a (entries 11-13).
The optimal result (3a: 81% yield, 97% ee) was obtained when the reaction of $\mathbf{1 a}$ and $\mathbf{2}$ (2.0 eq .) was performed with β-ICD ($15 \mathrm{~mol} \%$) in toluene/CPME ($1 / 1 ; 0.05 \mathrm{~m}$ with respect to 1) at $-40{ }^{\circ} \mathrm{C}$ in the presence of $3 \AA \AA$ molecular sieves (MS3A) as an additive (Table 2, entry 1). N-Substituted ketimines $\mathbf{1 b} \mathbf{- 1 d}\left(\mathrm{R}^{1}=\right.$ allyl, Ph , prenyl) were transformed to $\mathbf{3 b - 3 d}$ in $48-70 \%$ yields with excellent enantioselectivities ($95-98 \%$ ee) (entries $3-5$). Ketimines $\mathbf{1 e} \mathbf{- 1 j}$ bearing an electron-withdrawing or electron-donating substituent on the aromatic ring also afforded the corresponding aza-MBH adducts $\mathbf{3 e}-\mathbf{3} \mathbf{j}$ in $68-83 \%$ yields with excellent enantioselectivities ($95-98 \%$ ee) (entries 6-11). The absolute configuration of $\mathbf{3 k}$ was assigned as S by comparison with the optical rotation and HPLC data of allyl alcohol 7a derived from known compound 31 (Scheme
2). ${ }^{5}$ The aza-MBH product 3a was also able to be converted into allyl alcohol derivatives $\mathbf{7 b}$ and $\mathbf{9}$ (Scheme 3).

Favored

Fig. 2 Plausible model of enantioselection.

Table 2 Substrate scope in the aza-MBH reaction catalyzed by $\beta-I C D$ or $\alpha-I C P N .{ }^{\text {a }}$

Entry	β-ICD or α-ICPN	1	Yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	$\beta-I C D$	1a, $R^{1}=H, R^{2}=B n$	3a, 81	97 (S)
$2^{\text {d }}$	$\beta-I C D$	1a	3a, 76	97 (S)
3	$\beta-I C D$	1b, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ allyl	3b, 70	96 (S)
4	$\beta-I C D$	1c, $R^{1}=H, R^{2}=P h$	3c, 52	$98(S)$
5	$\beta-I C D$	1d, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ prenyl	3d, 48	95 (S)
6	$\beta-I C D$	1e, $\mathrm{R}^{1}=5-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Bn}$	3e, 68	98 (S)
7	$\beta-I C D$	1f, $\mathrm{R}^{1}=6-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Bn}$	3f, 83	98 (S)
8	$\beta-I C D$	1g, $\mathrm{R}^{1}=7-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Bn}$	3g, 81	97 (S)
9	$\beta-I C D$	1h, $\mathrm{R}^{1}=5-\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Bn}$	3h, 73	96 (S)
10	$\beta-I C D$	1i, $R^{1}=5-F, R^{2}=B n$	3i, 78	98 (S)
$11^{\text {e }}$	$\beta-I C D$	1j, $\mathrm{R}^{1}=5-\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Bn}$	3j, 77	95 (S)
12	$\alpha-I C P N$	1a, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Bn}$	3a, 78	95 (R)
13	$\alpha-I C P N$	1b, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ allyl	3b, 59	90 (R)
14	$\alpha-$ ICPN	1c, $R^{1}=H, R^{2}=P h$	3c, 37	87 (R)
15	$\alpha-I C P N$	1d, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ prenyl	3d, 44	$89(R)$
16	$\alpha-I C P N$	1e, $\mathrm{R}^{1}=5-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Bn}$	3e, 74	$87(R)$
17	$\alpha-I C P N$	1g, $\mathrm{R}^{1}=7-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Bn}$	3g, 44	$94(R)$
18	$\alpha-I C P N$	1h, $\mathrm{R}^{1}=5-\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Bn}$	3h, 79	$88(R)$
$19^{\text {f }}$	$\alpha-I C P N$	1j, $\mathrm{R}^{1}=5-\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Bn}$	3j, 58	96 (R)
20	$\alpha-I C P N$	1k, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$	3k, 45	83 (R)
21	$\beta-I C D$ or α-ICPN	$1 \mathrm{~m}, \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Bn}$	3m, Trace	-
22	β-ICD or α-ICPN	1n, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$	3n, Trace	-

${ }^{a} \mathbf{1}(0.06 \mathrm{mmol})$ in toluene/CPME (1/1, 0.05 m for $\left.\mathbf{1}\right), \beta$-ICD or $\alpha-$ ICPN (0.009 mmol) and $2(0.12 \mathrm{mmol})$ were stirred for 96 h at $-40{ }^{\circ} \mathrm{C}$, unless otherwise noted.
${ }^{\mathrm{b}}$ Isolated product yield.
${ }^{\text {c }}$ Determined by HPLC (Daicel Chiralpak IE). Configuration of the major isomer is shown in parentheses.
${ }^{d} 0.64 \mathrm{mmol}$ of 1 a was used.
${ }^{\mathrm{e}}$ B-ICD (25 mol \%), $-20^{\circ} \mathrm{C}$.
${ }^{f} \alpha$-ICPN ($25 \mathrm{~mol} \%$).

Scheme 2 Determination of the absolute configuration of $\mathbf{3 k}$.

Scheme 3 Transformation of the aza-MBH adduct 3a.

Although the β-ICD-mediated aza-MBH process exhibited high asymmetric induction, the present system is difficult to apply to the synthesis of $(R)-3$ because the required enantiomer of $\beta-I C D$ is not readily available. One solution to this problem was the use of α ICPN, derived from quinine, as an effective enantiocomplementary catalyst of β-ICD, which gave the corresponding aza-MBH adducts $(R)-3$ in $37-79 \%$ yields with high enantioselectivities ($83-96 \%$ ee) (entries $12-20$). Although the reaction of $\mathbf{1 j}$ with $\mathbf{2}$ required a higher catalyst loading ($25 \mathrm{~mol} \%$) due to the low reactivity of $\mathbf{1 j}$ (entries 11 and 19), the reaction of 1 m and $\mathbf{1 n}$ gave no product because of quite low reactivity of $\mathbf{1 m}$ and instability of $\mathbf{1 n}$ (entries 21 and 22). A proposed model for the enantioselectivity is shown in Figure 2. Since proton transfer is a known rate-determining step in aza-MBH reactions, ${ }^{11}$ the proton shift mediated by the acidic unit on the catalyst could proceed smoothly via an intermediate conformation with the least steric hindrance between the quinuclidine moiety of the catalyst and the aromatic ring of the substrate to result in the formation of $(S)-3$ with $\beta-I C D$ or $(R)-3$ with $\alpha-I C P N$.

Conclusions

We have developed a highly enantioselective organocatalyzed azaMBH reaction of isatin-derived ketimines 1 with 2. Aza-MBH adducts $\mathbf{3}$ were obtained in excellent enantioselectivities (up to 98% ee), irrespective of the electronic nature of the ketimine moiety. Moreover, both enantiomers of aza-MBH adducts 3 with a chiral tetrasubstituted carbon stereogenic center were successfully obtained by using either β-ICD or α-ICPN.

Experimental section

General procedure for enantioselective organocatalyzed aza-MBH reaction of isatin-derived ketimines 1 with acrolein (2) or benzyl acrylate (8): A test tube was filled with N-Boc protected ketimines 1 (0.060 mmol), $\beta-$ ICD or $\alpha-$ ICPN (0.009 mmol) and MS3A (20 mg) in toluene/CPME (1/1, 1.2 mL). Then, 2 or $\mathbf{8}(0.12 \mathrm{mmol})$ was added under $-40^{\circ} \mathrm{C}$ (for $\mathbf{2}$) or $60^{\circ} \mathrm{C}$ (for 8). After 96 h , reaction mixture was filtered quickly with silica gel, washed with ethyl acetate and dried in vacuo. Resulting crude product was purified by silica gel column chromatography using hexane/ethyl acetate as eluent, and followed by GPC using chloroform as eluent to give product 3 as white solid or colorless oil.

3a; 81% yield (19.1 mg) with $\beta-\mathrm{ICD}, 78 \%$ yield (18.4 mg) with $\alpha-$ ICPN; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~s}, 1 \mathrm{H}) 7.60-7.26$ $(\mathrm{m}, 6 \mathrm{H}), 7.18(\mathrm{td}, 1 \mathrm{H}, J=7.8,0.8 \mathrm{~Hz}), 7.00(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.8,0.8 \mathrm{~Hz})$, $6.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.15$ (d, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}$), $4.86(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7,174.3,154.0,145.4,142.7,137.2,135.6$, 129.3, 129.0, 128.8, 127.6, 127.3, 124.8, 123.0, 109.4, 80.6, 63.4, 44.4, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 415.1628$, found 415.1624; IR (KBr) v 3329, 2972, 1712, 1612, 1487, 1366, 1167, 1004, $758 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{22}=-132.7$ (c 0.4, CHCl_{3}) for (S)-3a in 97\% ee; $[\alpha]_{D}{ }^{17}=+130.1\left(c 0.4, \mathrm{CHCl}_{3}\right)$ for (R)-3a in 95% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=$ 225 nm) first peak: $\mathrm{t}_{\mathrm{R}}=14.2 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=32.8 \mathrm{~min}$ for (S).

3b; 70% yield (14.4 mg) with $\beta-I C D, 59 \%$ yield (12.1 mg) with α ICPN; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}) 7.46$ (d, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.87(\mathrm{~m}, 1 \mathrm{H})$, 5.33 (dd, 1H, J=11.6, 0.8 Hz), $5.24(\mathrm{dd}, 1 \mathrm{H}, J=7.2,0.8 \mathrm{~Hz}), 4.58(\mathrm{~d}$, $1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.6,173.9,154.0,145.5,142.8,137.0,131.2,129.2$, 129.0, 124.9, 122.9, 117.7, 109.3, 80.6, 63.3, 42.8, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 365.1472$, found 365.1462 ; IR (KBr) v 3332, 2976, 2931, 2882, 1699, 1612, 1521, 1363, 1283, 1169, $762 \mathrm{~cm}^{-1}$; $[\alpha]_{D}^{22}=-145.0\left(c 0.7, \mathrm{CHCl}_{3}\right)$ for $(S)-3 b$ in 96% ee; $[\alpha]_{D}^{22}=+105(c$ $0.41, \mathrm{CHCl}_{3}$) for (R)-3b in 90% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=212 \mathrm{~nm}$) first peak: $t_{R}=10.8 \mathrm{~min}$ for (R), second peak: $t_{R}=22.1 \mathrm{~min}$ for (S).
$3 \mathrm{c} ; 52 \%$ yield (11.8 mg) with $\beta-\mathrm{ICD}, 37 \%$ yield $(8.4 \mathrm{mg})$ with $\alpha-\operatorname{ICPN}$; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}) 7.60-7.40(\mathrm{~m}$, $6 \mathrm{H}), 7.22(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.6,173.8,154.1,145.9,144.0,137.0,134.2$, 129.7, 129.3, 128.6, 128.3, 126.8, 125.0, 123.2, 109.6, 80.7, 63.4, 28.2; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 401.1472$, found 401.1465; IR (KBr) v 3348, 2976, 1273, 1726, 1499, 1369, 1167, 758, $702,607 \mathrm{~cm}^{-1} ;[\alpha]_{D}{ }^{22}=-82.2\left(c 0.3, \mathrm{CHCl}_{3}\right)$ for $(S)-3 \mathrm{c}$ in $98 \% \mathrm{ee} ;[\alpha]_{D}{ }^{24}$ $=+122.6\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$ for (R)-3c in 87% ee; HPLC analysis (Chiralpak IE , hexane $/ 2$-propanol $=60 / 40$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=212 \mathrm{~nm}$) first peak: $t_{R}=11.6 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=32.6 \mathrm{~min}$ for (S).

3d; 48% yield (10.7 mg) with $\beta-I C D, 44 \%$ yield $(9.8 \mathrm{mg}$) with $\alpha-I C P N$; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 7.27(\mathrm{td}, 1 \mathrm{H}, J=7.8,2.1 \mathrm{~Hz}), 7.01(\mathrm{td}, 1 \mathrm{H}, J=7.8,2.1 \mathrm{~Hz})$, $6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.22$ $(\mathrm{m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, 1 \mathrm{H}, J=7.8,6.4 \mathrm{~Hz}), 4.27(\mathrm{dd}, 1 \mathrm{H}, J=7.8,6.4 \mathrm{~Hz})$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.7, 173.7, 154.0, 145.4, 142.9, 136.85, 136.75, 129.24, 129.15, 124.9, 122.7, 118.2, 109.0, 80.5, 63.4, 38.6, 28.1, 25.6, 18.2; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$393.1785, found 393.1778; IR (KBr) v 3359, 2970, 2921, 2340, 1711, 1610, 1489, 1366, 751, $598 \mathrm{~cm}^{-1}$; $[\alpha]_{D}^{22}=-59.0\left(c 0.4, \mathrm{CHCl}_{3}\right)$ for $(S)-3 \mathrm{~d}$ in 95% ee; $[\alpha]_{D}{ }^{26}=+107.6(c$ $0.5, \mathrm{CHCl}_{3}$) for (R)-3d in 89% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=60 / 40$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=212 \mathrm{~nm}$) first peak: $t_{R}=10.6 \mathrm{~min}$ for (R), second peak: $t_{R}=22.9 \mathrm{~min}$ for (S).

3e; 68% yield (17.4 mg) with $\beta-I C D, 74 \%$ yield (19.0 mg) with α ICPN; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (d, $1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0,2.4 \mathrm{~Hz}), 6.62$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, 1 \mathrm{H}$, $J=16.0 \mathrm{~Hz}), 4.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.5,173.9,153.9,145.0,141.4,137.7,135.1,130.5$, 129.2, 128.8, 128.3, 127.8, 127.2, 125.2, 110.4, 81.0, 63.2, 44.5, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 449.1239$, found 449.1231; IR (KBr) v 2964, 2926, 2860, 2357, 2329, 1708, 1484, $1363,1254,1167,752 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{25}=-147.0\left(c 0.4, \mathrm{CHCl}_{3}\right)$ for (S)-3e in 98% ee; $[\alpha]_{\mathrm{D}}{ }^{17}=+114.4\left(c 0.3, \mathrm{CHCl}_{3}\right)$ for (R)-3e in 87% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=65 / 35$, flow rate 1.0
$\mathrm{ml} / \mathrm{min}, \lambda=208 \mathrm{~nm})$ first peak: $\mathrm{t}_{\mathrm{R}}=8.0 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=$ 13.0 min for (S).

3f; 83% yield (21.3 mg) with β-ICD; White solid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.8,1.6 \mathrm{~Hz})$, $6.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.09$ ($\mathrm{d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}$), $4.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.6,174.3,154.0,145.2,144.0,137.6,135.04$, 135.00, 128.9, 127.8, 127.3, 127.2, 125.9, 122.9, 110.0, 80.9, 62.9, 44.5, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 449.1239$, found 449.1228; IR (KBr) v 3288, 2973, 1707, 1608, 1488, 1371, 1278, 1171, $876 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=-121.0$ (c 1.1, CHCl_{3}) for (S)-3f in 98% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=263 \mathrm{~nm})$ first peak: $\mathrm{t}_{\mathrm{R}}=8.4 \mathrm{~min}$ for (R), second peak: $t_{R}=15.5 \mathrm{~min}$ for (S).
$3 \mathrm{~g} ; 81 \%$ yield (20.7 mg) with β-ICD; 44% yield (11.3 mg) with α ICPN; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.39-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (dd, $1 \mathrm{H}, J=8.0,0.8 \mathrm{~Hz}), 6.97-$ $6.95(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 16.4 Hz), $5.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4 \mathrm{~Hz}), 1.35(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) δ 192.6, 174.9, 153.9, 145.0, 138.9, 137.9, 137.5, 132.0, 131.9, 128.5, 127.1, 126.6, 123.8, 123.2, 115.6, 80.9, 63.0, 45.5, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$449.1239, found $449.1229 \operatorname{IR}(\mathrm{KBr}) \vee$ 3342, 2976, 1721, 1496, 1455, 1366, 1162, 734 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-88.2$ (c 1.0, CHCl_{3}) for (S)-3g in 97\% ee, $[\alpha]_{\mathrm{D}}{ }^{22}=+$ 113.9 ($\mathbf{c} 0.4, \mathrm{CHCl}_{3}$) for (R)-3g in 94% ee; HPLC analysis (Chiralpak IE, hexane $/ 2$-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=216 \mathrm{~nm}$) first peak: $\mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=17.6 \mathrm{~min}$ for (S).
$3 \mathrm{~h} ; 73 \%$ yield (20.6 mg) with β-ICD, 79% yield (22.3 mg) with $\alpha-$ ICPN; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}$, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.49(\mathrm{~s}$, $1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.8 \mathrm{~Hz}$), $1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,173.8$, 153.9, 145.0, 141.8, 137.7, 135.1, 132.1, 130.8, 128.8, 127.9, 127.8, 127.2, 115.7, 110.9, 81.0, 63.2, 44.4, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$493.0733, found 493.0721; IR (KBr) v 3342, 2979, 2926, 1721, 1606, 1367, 1254, 1162, $737 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{22}=-114.1$ (c 1.0, CHCl_{3}) for $(S)-3 \mathrm{~h}$ in 96% ee; $[\alpha]_{\mathrm{D}}{ }^{22}=+148.3$ (c 1.5, CHCl_{3}) for (R)-3h in 88% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=216 \mathrm{~nm}$) first peak: $\mathrm{t}_{\mathrm{R}}=8.5 \mathrm{~min}$ for (R), second peak: $t_{R}=13.6 \mathrm{~min}$ for (S).

3i; 78% yield (19.2 mg) with β-ICD; White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{td}$, $1 \mathrm{H}, J=6.0,2.0 \mathrm{~Hz}), 6.62(\mathrm{dd}, 1 \mathrm{H}, J=5.6,2.8 \mathrm{~Hz}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}$, $1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz})$, $1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,174.1,159.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}\right.$ $=159.9 \mathrm{~Hz}), 153.9,145.0,138.7,137.8,135.2,130.4\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{CF}}=4.8\right.$ Hz), 128.8, 127.7, 127.2, $115.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=15.3 \mathrm{~Hz}\right), 113.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ 16.8 Hz), $110.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=5.8 \mathrm{~Hz}\right.$), 80.9, 63.4, 44.5, 28.1; ${ }^{19} \mathrm{~F} \mathrm{NMR}(376$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-119.5; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ 433.1534, found 433.1527; IR (KBr) v 3299, 2980, 1732, 1709, 1525, 1490, 1367, 1264, $1164 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{23}=-99.4$ (c 0.9, CHCl_{3}) for ($($) $-3 \mathbf{i}$ in
98% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=216 \mathrm{~nm})$ first peak: $\mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=14.6 \mathrm{~min}$ for (S).

3j; 77% yield (18.8 mg) with β-ICD, 58% yield (14.1 mg) with α-ICPN; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.24(\mathrm{~m}$, $6 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.21$ $(\mathrm{s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=15.6$ $\mathrm{Hz}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9$, 174.2, 154.0, 145.5, 140.2, 137.2, 135.7, 132.6, 129.6, 129.0, 128.7, 127.5, 127.2, 125.5, 109.2, 80.6, 63.5, 44.3, 28.1, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 429.1785$, found 429.1776; IR (KBr) $v 3419$, 2976, 2926, 1715, 1497, 1367, 1164, 997, $805 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{22}=-157.0$ (c 0.3, CHCl_{3}) for (S) -3 j in 95% ee; $[\alpha]_{\mathrm{D}}{ }^{24}=+122.1\left(c \quad 0.25, \mathrm{CHCl}_{3}\right.$) for (R)-3j in 96% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol = $65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=262 \mathrm{~nm}$) first peak: $\mathrm{t}_{\mathrm{R}}=13.0 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=28.3 \mathrm{~min}$ for (S).

3k; 57% yield (10.8 mg) with β-ICD, 45% yield (8.5 mg) with α-ICPN; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54$ (s, 1 H$) 7.45$ (dd, $1 \mathrm{H}, \mathrm{J}$ $=7.2,0.8 \mathrm{~Hz}), 7.31(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.2,0.8 \mathrm{~Hz}), 7.03(\mathrm{td}, 1 \mathrm{H}, J=7.2,0.8$ $\mathrm{Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $3.30(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.7,174.2$, 154.0, 145.4, 143.5, 137.0, 129.4, 129.1, 124.7, 123.0, 108.4, 80.6, 63.4, 28.1, 26.7; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$339.1315, found 339.1306; IR (KBr) v 3304, 2976, 1712, 1613, 1483, 1371, 1252, $1166,756 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{23}=-108.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$ for (S)-3k in 95\% ee; $[\alpha]_{D}{ }^{19}=+129.2\left(c 0.6, \mathrm{CHCl}_{3}\right)$ for (R)-3k in 83% ee; HPLC analysis (Chiralpak IE, hexane $/ 2$-propanol $=65 / 35$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=$ $216 \mathrm{~nm})$ first peak: $\mathrm{t}_{\mathrm{R}}=13.3 \mathrm{~min}$ for (R), second peak: $\mathrm{t}_{\mathrm{R}}=24.7 \mathrm{~min}$ for (S).

31; Analytical datas were well matched with reported value. ${ }^{5} 39 \%$ yield (9.9 mg), 31% ee; Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.43(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.01$ $(\mathrm{td}, 1 \mathrm{H}, J=7.6,0.8 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}$, $1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{24}=-30.4$ (c $0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) for (S) -31 in 31% ee (lit. ${ }^{5}[\alpha]_{\mathrm{D}}{ }^{25}=-76.3$ (c 0.68 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for (S)-31 in 87% ee); HPLC analysis (Chiralpak OD-H, hexane $/ 2$-propanol $=9 / 1$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=236 \mathrm{~nm}$) first peak: $t_{R}=10.7 \mathrm{~min}$ for (R), second peak: $t_{R}=13.9 \mathrm{~min}$ for (S).

Preparation of 7 from 3: To stirred $\mathbf{3 k}$ (0.050 mmol) in THF (0.5 mL) was added to DIBAL in THF ($0.10 \mathrm{mmol}, 0.1 \mathrm{~mL}$) under $-78^{\circ} \mathrm{C}$. After 1 h , aq. $\mathrm{HCl}(1.0 \mathrm{M}, 0.5 \mathrm{~mL})$ was added and extracted with ethylacetate. After dried in vacuo, resulting crude product was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to provide product $\mathbf{7 a}$. The procedures for preparation $\mathbf{7 a - 7 b}$ from $\mathbf{3 a}, \mathbf{3 l}$ are similar to that of preparation $\mathbf{7 a}$ from $3 k$, using DIBAL ($0.10-0.13 \mathrm{mmol}$).

7a; 50% yield (8.0 mg) from $\mathbf{3 k}$; 44% yield (7.0 mg) from 31; White solid; M.p. $=142-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.26$ $(\mathrm{s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}$,
$3 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.0, 153.9, 143.7, 143.5, 130.1, 129.0, 124.1, 122.9, 118.8, 108.3, 80.3, 65.7, 63.8, 28.0, 26.6; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ 341.1472, found 341.1466; IR (KBr) v 3354, 2970, 2931, 2357, 1709, 1611, 1497, 1365, 1256, 1170, 1014, 795, $752 \mathrm{~cm}^{-1} .[\alpha]_{D}{ }^{17}=+46.3(c$ $0.6, \mathrm{CHCl}_{3}$) for $(S)-7 \mathrm{a}$ in 94% ee $\left([\alpha]_{\mathrm{D}}{ }^{17}=+12.2\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)\right.$ for (S) 7a in 31% ee); HPLC analysis (Chiralpak IE, hexane/2-propanol $=$ 60/40, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}$) first peak: $\mathrm{t}_{\mathrm{R}}=8.2 \mathrm{~min}$ for (R), second peak: $t_{R}=9.4 \mathrm{~min}$ for (S).

7b; 51% yield (10.1 mg); White solid; M.p. $=164-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.70(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.49($ brs, $1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.14($ brd, $1 \mathrm{H}, J=10.8 \mathrm{~Hz})$, $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{br}, 1 \mathrm{H}), 4.58(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.8,4.8 \mathrm{~Hz}), 4.32(\mathrm{dd}$, $1 \mathrm{H}, J=12.8,2.8 \mathrm{~Hz}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.1,154.0,143.9,142.6,135.7,128.9,128.7,127.5$, 127.1, 124.0, 122.9, 118.8, 109.3, 80.4, 65.8, 63.8, 44.0, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$417.1785, found 417.1774; IR (KBr) v 3458, 3337, 2970, 2361, 1699, 1500, 1364, 1173, 1003, $749 \mathrm{~cm}^{-1}$. $[\alpha]_{D}{ }^{24}=+27.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for $(S)-7 b$ in 97% ee; HPLC analysis (IE, hexane/2-propanol $=70 / 30$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=214 \mathrm{~nm}$) first peak: $t_{R}=9.8 \mathrm{~min}$ for (R), second peak: $t_{R}=11.5 \mathrm{~min}$ for (S).

Preparation of 9: A mixture of 7b (0.038 mmol), 4-DMAP (1.92 $\mu \mathrm{mol})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.077 \mathrm{mmol})$ in pyridine $(0.19 \mathrm{~mL})$ was stirred at rt for 14 h . The reaction mixture was directly purified by silica gel column chromatography using hexane/ethyl acetate as eluent to provide product 9 as colorless oil.

9; 69% yield (11.4 mg); Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.32-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}), 7.05(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.09(\mathrm{bs}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 5.13-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}), 4.72-4.69$ $(\mathrm{m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.0$, 170.8, 154.0, 142.8, 140.4, 135.7, 129.1, 128.7. 127.5, 127.1, 124.2, 122.8, 109.4, 80.6, 65.3, 63.3, 44.1, 28.2, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$459.1896, found 459.1884; IR (KBr) v 3346, 2977, 2351, 1722, 1614, 1489, 1369, 1242, 1172, 999, 757, $698 \mathrm{~cm}^{-1}$. $[\alpha]_{D}{ }^{25}=+14.3\left(c 0.6, \mathrm{CHCl}_{3}\right)$ in 97% ee; HPLC analysis (Chiralpak IE, hexane/2-propanol $=70 / 30$, flow rate $1.0 \mathrm{ml} / \mathrm{min}, \lambda=210 \mathrm{~nm}$) first peak: $t_{R}=14.5 \mathrm{~min}$ for (R), second peak: $t_{R}=23.5 \mathrm{~min}$ for (S).

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Advanced Molecular Transformations by Organocatalysis" from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, the CREST project of the Japan Science and Technology Corporation (JST), and Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C) of JST. Y. Y. thanks JSPS Research Fellowships for Young Scientists. We acknowledge the technical staff of the Comprehensive Analysis Center of ISIR, Osaka University (Japan).

Notes and references

1 (a) S. Crosignani, C. Jorand-Lebrun, P. Page, G. Campbell, V. Colovray, M. Missotten, Y. Humbert, C. Cleva, J.-F. Arrighi, M. Gaudet, Z. Johnson, P. Ferro and A. Chollet, ACS Med. Chem. Lett., 2011, 2, 644. (b) M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. GonzálezPáez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, Science, 2010, 329, 1175. (c) V. V. Vintonyak, K. Warburg, H. Kruse, S. Grimme, K. Hübel, D. Rauh and H. Waldmann, Angew. Chem. Int. Ed., 2010, 49, 5902. (d) M. A. Ali, R. Ismail, T. S. Choon, Y. K. Yoon, A. C. Wei, S. Pandian, R. S. Kumar, H. Osman and E. Manogaran, Bioorg. Med. Chem. Lett., 2010, 20, 7064. (e) A. S. Girgis, Eur. J. Med. Chem., 2009, 44, 91. (f) R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari and D. Sriram, J. Med. Chem., 2008, 51, 5731. (g) G. Periyasami, R. Raghunathan, G. Surendiran and N. Mathivanan, Bioorg. Med. Chem. Lett., 2008, 18, 2342. (h) K. Bernard, S. Bogliolo and J. Ehrenfeld, Br. J. Pharmacol., 2005, 144, 1037. (i) S.-L. G. Claudine, D. Sylvain, B. Gabrielle, M. Maurice, S. Jacques, G. Rolf, G. Guy, G. Gilles, Stress, 2003, 6, 199. (j) M. Ochi, K. Kawasaki, H. Kataoka, Y. Uchio and H. Nishi, Biochem. Biophys. Res. Commun., 2001, 283, 1118.
2 Recent reviews, see: (a) F. Zhou, F.-M. Liao, J.-S. Yu and J. Zhou, Synthesis, 2014, 46, 2983. (b) P. Chauhan and S. S. Chimni, Tetrahedron: Asymmetry, 2013, 24, 343. (c) F. Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381. Recent reports, see: (d) M. Montesinos-Magraner, C. Vila, R. Cantón, G. Blay, I. Fernández, M. C. Muñoz and J. R. Pedro, Angew. Chem. Int. Ed., 2015, 54, 6320. (e) A. Kumar, V. Sharma, J. Kaur, V. Kumar, S. Mahajan, N. Kumar and S. S. Chimni, Tetrahedron, 2014, 70, 7044. (f) T. Arai, E. Matsumura and H. Masu, Org. Lett., 2014, 16, 2768. (g) T.-Z. Li, X.-B. Wang, F. Sha and X.-Y. Wu, J. Org. Chem., 2014, 79, 4332. (h) V. U. B. Rao, A. P. Jadhav, D. Garad and R. P. Singh, Org. Lett., 2014, 16, 648. (i) Y.-L. Liu and J. Zhou, Chem. Commun., 2013, 49, 4421. (j) W. Yan, D. Wang, J. Feng, P. Li, D. Zhao and R. Wang, Org. Lett., 2012, 14, 2512. (k) Y.-L. Liu, F. Zhou, J.-J. Cao, C.-B. Ji, M. Ding and J. Zhou, Org. Biomol. Chem., 2010, 8, 3847. (I) Y.-L. Liu, B.-L. Wang, J.-J. Cao, L. Chen, Y.-X. Zhang, C. Wang and J. Zhou, J. Am. Chem. Soc., 2010, 132, 15176.
3 For recent reviews on asymmetric MBH reaction, see: (a) Y. Wei and M. Shi, Chem. Rev., 2013, 113, 6659; (b) D. Basavaiah and G. Veeraraghavaiah, Chem. Soc. Rev., 2012, 41, 68; (c) S.-X. Wang, X. Han, F. Zhong, Y. Wang and Y. Lu, Synlett, 2011, 2766; (d) J. Mansilla and J. M. Saá, Molecules, 2010, 15, 709; (e) D. Basavaiah, B. S. Reddy and S. S. Badsara, Chem. Rev., 2010, 110, 5447; (f) Y. Wei and M. Shi, Acc. Chem. Res., 2010, 43, 1005.

4 F.-L. Hu, Y. Wei, M. Shi, S. Pindi and G. Li, Org. Biomol. Chem., 2013, 11, 1921.
5 X. Zhao, T.-Z. Li, J.-Y. Qian, F. Sha and X.-Y. Wu, Org. Biomol. Chem., 2014, 12, 8072.
6 A. Kumar, V. Sharma, J. Kaur, N. Kumar and S. S. Chimni, Org. Biomol. Chem., 2015, 13, 5629.
7 For enantioselective aza-MBH reaction of ketimines, see: (a) Y. Yao, J.-L. Li, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Chem. Eur. J., 2013, 19, 9447. (b) S. Takizawa, E. Rémond, F. A. Arteaga, Y. Yoshida, V. Sridharan, J. Bayardon, S. Jugé and H. Sasai, Chem. Commun., 2013, 49, 8392.
8 (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama,
J. Am. Chem. Soc., 1999, 121, 10219. (b) M. Shi and Y.-M. Xu, Angew. Chem. Int. Ed., 2002, 41, 4507. (c) S. Kawahara, A. Nakano, T. Esumi, Y. Iwabuchi and S. Hatakeyama, Org. Lett., 2003, 5, 3103. (d) Y. Nakamoto, F. Urabe, K. Takahashi, J. Ishihara and S. Hatakeyama, Chem. Eur. J., 2013, 19, 12653.
9 S. Takizawa, N. Inoue and H. Sasai, Tetrahedron Lett., 2011, 52, 377.

10 (a) K. Matsui, S. Takizawa and H. Sasai, J. Am. Chem. Soc., 2005, 127, 3680. (b) K. Matsui, S. Takizawa and H. Sasai, Synlett, 2006, 761. (c) M. Shi and L.-H. Chen, Chem. Commun., 2003, 1310.

11 For recent mechanistic studies, see: (a) R. E. Plata and D. A. Singleton, J. Am. Chem. Soc., 2015, 137, 3811. (b) P. Verma, P. Verma and R. B. Sunoj, Org. Biomol. Chem., 2014, 12, 2176. (c) C. Lindner, Y. Liu, K. Karaghiosoff, B. Maryasin and H. Zipse, Chem. Eur. J., 2013, 19, 6429.

