This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Construction of Photoswitchable Rotaxanes and Catenanes Containing Dithienylethene Fragments

Ziyong Li,ac Xie Han,ac Haiyan Chen,ab Di, Wu,a Fang Hu,a Sheng Hua Liu,a Jun Yin*a

Mechanically interlocked structures such as rotaxane and catenane provide a novel backbone for constructing the functional materials with a unique structural characterization. In this work, we design and synthesize a series of photoswitchable rotaxanes and catenanes containing photochromic dithienylethene fragments by a template-directed clipping approach based on dynamic imine chemistry. Their structures have been well-confirmed by NMR, mass spectrometry and elemental analysis. Investigation on photoisomerization indicates that these dithienylethene-based mechanically interlocked molecules have good reversibility and excellent fatigue resistance upon irradiation with UV or visible light. Interestingly, the mechanically interlocked molecules containing two dithienylethene backbone display around 2-fold molar absorption coefficients compared with that of mono dithienylethene. Furthermore, the introduction of fluorophore pyrene on the dithienylethene component authorizes these molecules can serve as the fluorescent switches.

Introduction

Rotaxane and catenane as one type of classical mechanically interlocked configuration have displayed comprehensive applications in many fields such as nanoelectronic devices, artificial smart materials, molecular machines, fluorescent sensors and biological technology etc.1 The existence of mechanical bonds support they can be used as the components for constructing the versatile topological structures and functional materials in supramolecular chemistry. Over the past decades, numerous examples have shown that rotaxanes and catenanes can be used to construct their corresponding oligomers, polymers, dendrimers, MOFs, nanostructures and functional materials.2, 3 In our group, we always devote to developing the novel topological structures with mechanically interlocked backbone such as heterorotaxanes, tetragonal rotaxanes, dendritic rotaxane, catenanes and rotacatenanes.4 Recently, we found that the mechanical interaction can adjust the photoisomerization behaviors of photochromic dithienylethenes when crown ethers or cucurbituril are threaded into the dithienylethenes to form the corresponding rotaxanes or pseudorotaxanes.5

To obtain the full-colored photochromic materials, one of the most efficient strategy is that prepares dithienylethene derivatives with multiple photochromic units.6 From their molecular structures, these dithienylethenes present a common feature is that every photochromism unit is linked by non-covalent bond (Figure 1(B)). Owing to the fact that rotaxanes and catenanes have shown the mechanical interlocked architectures with versatile topological configuration, they provide a desirable model to construct the multiple photochromic dithienylethenes linked by non-covalent mechanical bond. As mentioned above, the non-covalent mechanical interaction has become a strategy to adjust the properties of materials. Therefore, utilizing the non-covalent mechanical bond to construct multiple photochromic dithienylethenes will probably induce some novel photochromic behaviors.

In our previous works, we have constructed a series of mechanically interlocked molecules by the dynamic imine covalent chemistry based on dialdehydes 1 or 2 with tetra (ethylene glycol) bis(2-aminophenyl)ether 3, as presented in Scheme 1. In view of the importance and structural diversity of multiple photochromic dithienylethenes, in this work, we design and synthesize a pyrene-labeled building block dialdehyde 4 containing a dithienylethene unit. Such design can completely meet the requirement of multiple photochromic dithienylethenes when it is treated with diamine 3 in the presence of diammonium 6 and dithienylethene-based macrocyclic ammoniums 8 and 9. As a comparison, mono ammoniums 5 and 7 are also used to construct the corresponding rotaxane and catenane. Their structures have been well characterized, and their photoisomerization and emission behaviors are investigated.
RESULTS AND DISCUSSION

The stepwise synthesis of dithienylethene-functionalized 2, 6-pyridinedicarboxaldehyde 4 is outlined in Scheme 2. The 1, 2-bis(5-chloro-2-methylthiophen-3-yl)cyclopent-1-ene 10 as starting material is treated with butyl lithium and tributyl borate followed by the Suzuki cross-coupling reaction with 1-bromo-7-(tert-butyl)pyrene 11 to afford the corresponding intermediate 12 in 68% yields. Then reaction of 12 with 4-bromopyridine-2,6-dicarbaldehyde 13 gives the crucial intermediate 4 in 86% yield. Fortunately, a single crystal of 4 suitable for X-ray crystallographic analysis is obtained by diffusion of hexane into a dichloromethane solution at room temperature. The crystal structure confirms the structure of dithienylethene 4, as presented in Figure 2. Its packing view, related crystal data and structure refinement parameters are listed in supporting information (Figure S1 and Table S1 in ESI).

To aid spectroscopic analysis of \(^1\)H NMR, dithienylethene-based N-hetero crown ether 15 is synthesized in 41% yields by the treatment of dialdehyde 4 and diamine 3 under the template of ammonium 14, followed by reduction with BH\(_3\)-THF. The chemical structures of all new intermediates are well-confirmed by standard spectroscopic characterizations.

The clipping reaction is firstly investigated for the dialkylammonium 5 by mixing together equimolar amounts of 4 and 3 in CD$_3$CN. The observation of a broad singlet at 9.79 ppm for ammonium NH$_2^+$ protons as well as a singlet at 8.32 ppm for imine (CH=N) protons in 1H NMR spectra shows that macrocyclic imine formation has taken place in a reversible manner (Figure S2 in ESI). And then, the mixture is treated with BH$_3$ in THF to reduce the dynamic imine bond into the kinetically stable C-NH bonds, affording [2]rotaxane 16 in 59% yields in Scheme 3. In the 1H NMR spectra (as shown in Figure 3B), the resonance of ammonium NH$_2^+$ proton in the kinetically stable [2]rotaxane 16 shows an obvious upfield shift (singlet at 8.64 ppm) compared with the corresponding dynamic [2]rotaxane. Furthermore, the data of detailed 1H NMR studies are obtained. For example, a comparison of the corresponding spectra for 15 and 16, compound 5 revealed considerable downfield shifts for H$_{1d}$ protons. It suggests that these acidic protons (–CH$_2$–) exist hydrogen bonding interaction with the nitrogen atom of the N-hetero crown ether 15. And the aromatic protons H$_{1b}$ and H$_{1c}$ of the dialkylammonium 5 are found to be upfield shifted, ascribing to the shielding influence of the macrocycle 15.

The synthetic procedure described above has been confirmed to be an efficient protocol for the synthesis of mono dithienylethene-based rotaxane. Subsequently, the same synthetic method is utilized to synthesize the dual photochromic dithienylethene 17, as shown in Scheme 3. After similar process, the pure form of [3]rotaxane 17 is obtained in 41% yields. And the similar chemical shift changes for proton signals on [3]rotaxane 17 as [2]rotaxane 16 are observed, as shown in Figure 3. Further proof is performed by the electrospray ionization mass spectrometry (ESI-MS) or the matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrum. The peak at m/z 1311.9 and 2404.75 can be assigned to the [M - PF$_6$]$^-+$ and [M - HPF$_6$ - PF$_6$]$^-+$ species, in which M was the photoswitchable [2]rotaxane 16 and [3]rotaxane 17, respectively (In ESI).

Figure 3. Partial 1H NMR spectra (400 MHz, CD$_3$CN, 298 K) of 5 (A); 16 (B); 15 (C); 17 (D); 6 (E).
The introduction of dithienylethene unit enables them to have the photoswitch function. Subsequently, the photochromic behavior of [2]rotaxane 16 and [3]rotaxane 17 induced by photoirradiation in acetonitrile is investigated at room temperature, as shown in Figure 4. For [2]rotaxane 16, three main absorption bands are observed at 240 nm ($\epsilon = 7.58 \times 10^4$ L mol$^{-1}$ cm$^{-1}$), 282 nm ($\epsilon = 4.75 \times 10^4$ L mol$^{-1}$ cm$^{-1}$), and 346 nm ($\epsilon = 2.81 \times 10^4$ L mol$^{-1}$ cm$^{-1}$), respectively. Upon irradiation with 254 nm UV light, the colorless solution turns purple and a new absorption band at 552 nm ($\epsilon = 1.78 \times 10^5$ L mol$^{-1}$ cm$^{-1}$) appears due to the formation of the corresponding ring-closed isomer (Scheme S1 in ESI). Moreover, a well defined isosbestic point can be observed at 380 nm, which implies that [2]rotaxane 16 can cleanly convert to the photocyclized product. Upon irradiation with visible light ($\lambda > 402$ nm), the colored ring-closed isomer undergoes a cycloreversion reaction and returns to the initial colorless ring-open isomer. It is worth mentioning that 16 shows very good reversibility, and no apparent deterioration is observed after repeating the above process eight times, which indicates that the [2]rotaxane 16 has very excellent fatigue resistance (as shown inset in Figure 4A).

Similar photochromic behavior is obtained in Figure 4B when the CH$_3$CN solution of [3]rotaxane 17 is irradiated with the same UV/Vis light. Despite [3]rotaxane 17 contains two dithienylethene components, it reveals almost same UV/Vis absorption spectra and changes in comparison to [2]rotaxane 16 only having a dithienylethene unit. As expected, [3]rotaxane 17 has an around 2-fold molar absorption coefficients than [2]rotaxane 16 due to two dithienylethene components of 17, indicating that the two dithienylethene units takes place the photochromic reaction. The quantum yields of the cyclization (ϕ_{oc}) and the cycloreversion (ϕ_{co}) are shown in Table S2 (In ESI). Compared with the cycloreversion quantum yield (ϕ_{co} for [2]rotaxane 16 and [3]rotaxane 17 are 0.0072 and 0.0032, respectively), both of the [2]rotaxane 16 and [3]rotaxane 17 exhibit higher cyclization quantum yield (ϕ_{oc} for [2]rotaxane 16 and [3]rotaxane 17 are 0.131 and 0.052, respectively). However, [2]rotaxane 16 displays higher cyclization quantum yields (ϕ_{oc}) and cycloreversion quantum yields (ϕ_{co}), compared to that of [3]rotaxane 17, possibly due to its more complicated configuration and bigger steric hindrance of 17. The corresponding parameters are summarized in Table S2 (In ESI). Next, the fluorescence changes of 16 and 17 induced by photoirradiation in CH$_3$CN are investigated at room temperature. As shown in Figure 5, upon excitation with 346 nm, [2]rotaxane 16 and [3]rotaxane 17 exhibit completely similar emission around at 438 nm. Their emission intensity gradually decreases upon irradiation with 254 nm UV light until reaching the photostationary state. This phenomenon may be attribute to FRET between the pyrene moiety and ring-closed dithienylethene moiety.7 While the photoirradiation of visible light can return the original emission as a result of the formation of ring-open isomer. These results indicate that two [2]rotaxanes can be used as the fluorescence-responsive switch in optoelectronic materials.

Figure 4. Absorption spectral changes of 16 (A) and 17 (B) with 254 nm UV and $>$402 nm visible light irradiation in CH$_3$CN (2.0×10^{-5} mol/L). (Inside) Fatigue resistance of 16 and 17 in CD$_3$CN, respectively.

Figure 5. Emission intensity changes of 16 (A) and 17 (B) with 254 nm UV and $>$402 nm visible light irradiation in CH$_3$CN (2.0×10^{-5} mol/L) ($\lambda_{ex} = 346$ nm).

Dithienylethene-based [2]catenanes.

Subsequent researches focus on the construction of [2]catenanes containing dual dithienylethene units. Accordingly, dithienylethene-based macrocyclic alkylammoniums 8, 9 are used to perform the clipping reaction by mixing together equimolar amounts of bisaniline 3 and dialdehyde 4 in CD$_3$CN, respectively. The 1H NMR is used to record the process of clipping reaction. For example, a broad singlet at 9.56 ppm for ammonium NH$_3^+$ protons and a singlet at 8.09 ppm for imine (CH=N) protons can be observed, implying that the dynamic catenane has formed (Figure S3 in ESI) when ammonium 8 or 9 is employed as a template. And then, treating the dynamic imines with BH$_3$ in THF leads to the formation of the kinetically stable catenanes 19 and 20 in 61-68% yields, as outlined in Scheme 4. Additionally, to aid the properties
comparison, the [2]catenane 18 is synthesized by a same template-directed clipping approach in 54% yields (in Scheme 4).

In their 1H NMR spectra (as shown in Figure 6B), the resonance of protons (H$_{3a}$, H$_{3b}$) on the benzene ring of [2]catenane 18 displays obvious up-field shifts in comparison to its template 7. For other [2]catenanes, similar shifts (H$_{4i}$ and H$_{4h}$ for 19; H$_{5i}$ and H$_{5h}$ for 20) can be also found (Figure 5; Figure S4 in ESI). Moreover, the resonance of ammonium NH$_2^+$ protons in the kinetically stable [2]catenanes 18-20 show the abroad singlet at 8.42, 8.52 and 8.65 ppm (Figure 5; Figure S4 in ESI), respectively, and the signal corresponding to proton H$_e$ exhibits downfield shift due to the hydrogen bonding interaction, which is well in agreement with our previous reports. At the same time, the signals for protons H$_e$ and H$_f$ experience an upfield shift. These results clearly confirm the existence of [2]catenanes. Finally, inspection of the MALDI-TOF mass spectra shows the presence of a peak at m/z 1807.82, 1895.67 and 1561.79 that are assigned to the [M-PF$_6$]$^+$ species, in which M is [2]catenanes 19, 20 and 18, respectively.

Figure 6. Partial 1H NMR spectra (400 MHz, CD$_3$CN, 298 K) of 15 (A); 19 (B); 8 (C).
Similarly, the photochromic behaviors of [2]catenanes 18, 19 and 20 induced by photoirradiation in acetonitrile are investigated at room temperature. As shown in Figure 7, they display completely similar absorption maximum around at 236 nm and 280 nm. Upon irradiation with 254 nm UV light, their colorless solution turn purple along with the appearance of a new absorption band at 546 nm due to the formation of their corresponding ring-closed isomers (Scheme S2 and S3 in ESI). Moreover, similar isosbestic point can be observed around at 380 nm, implying that pyrene isomers (Scheme S2 and S3 in ESI). Moreover, similar isosbestic points are obtained commercially as analytical grade and used without further purification. 1H and 13C NMR spectra were collected with either a 400 or 600 MHz spectrometer. Mass spectra were measured in the EI, ESI or MALDI mode. UV-vis spectra were obtained on a Shimadzu UV-3600 UV/Vis/NIR spectrophotometer, and fluorescence spectra were taken on a Hitachi Model F-4500 fluorescent spectrophotometer. In the photosomerization reaction, UV light irradiation (254 nm) was carried out using a ZF5 UV lamp, and visible light was irradiated using a LZG 220 V 500 W tungsten lamp (λ > 402 nm) with cutoff filters.

Conclusions

In summary, a novel building block dithienylethene-functionalized 2, 6-pyridinedicarboxaldehyde moiety is synthesized and is performed the template-directed clipping reaction to construct dithienylethene-based mechanically interlocked molecules. Investigation on photochromic properties indicates that these rotaxanes and catenanes have good reversibility and excellent fatigue resistance upon irradiation with UV or visible light. And they can be used as a fluorescent switches. It is worth mentioning that these mechanically interlocked molecules containing two dithienylethene backbone displays 2-fold molar absorption coefficients compared with mono dithienylethenes. More importantly, this research provides a novel model to design photo switches with multi dithienylethene units.

Experimental Section

General Methods. All reactions and assembly processes were carried out under an argon atmosphere by using standard Schlenk techniques, unless otherwise stated. THF was distilled under nitrogen from sodium benzophenone. CH$_2$CN and CH$_2$Cl$_2$ were dried with calcium hydride and then distilled. 1, 2-bis(5-chloro-2-methylthiophen-3-yl)cyclopent-1-ene 10, 1-bromo-7-(tert-buty) pyrene 11 and 4-bromopyridine-2, 6-dicarbaldehyde 13 are prepared by using literature methods. All other starting materials are obtained commercially as analytical grade and used without

![Figure 7](image-url). Absorption spectral changes of 18 (A), 19 (B) and 20 (C) with 254 nm UV and >402 nm Vis light irradiation in CH$_2$CN (2.0 × 10^{-5} mol/L). (Inside) Fatigue resistance of 18, 19 and 20 in CD$_3$CN, respectively.

Further discussion on quantum yields suggest that these [2]catenanes possess higher cyclization quantum yields (φ$_{c-c}$) than compound 19. And all of the [2]catenanes possess higher cyclization quantum yields (φ$_{c-c}$) compared to cycloreversion quantum yields (φ$_{c-o}$). The related data are summarized in Table S3 (in ESI). The fluorescence changes indicate that these [2]catenanes can be also applied in fluorescent switches (Figure S5 in ESI).

![Figure 7](image-url). Absorption spectral changes of 18 (A), 19 (B) and 20 (C) with 254 nm UV and >402 nm Vis light irradiation in CH$_2$CN (2.0 × 10^{-5} mol/L). (Inside) Fatigue resistance of 18, 19 and 20 in CD$_3$CN, respectively.
0.2H), 2.84 (t, J = 6.5 Hz, 4H), 2.84 (t, J = 6.9 Hz, 2H), 2.17 (s, 3H), 2.15 (s, 3H), 2.09-2.14 (m, 2H), 1.55 (s, 9H).\(^{13}\)\(^{1}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 158.9, 149.2, 146.1, 142.6, 139.9, 138.2, 137.3, 137.1, 136.8, 136.1, 135.7, 135.6, 134.4, 131.2, 130.7, 130.5, 129.6, 129.1, 128.4, 128.2, 128.0, 127.7, 127.6, 127.1, 126.9, 124.9, 124.7, 124.3, 122.9, 122.8, 122.5, 122.1, 116.4, 115.6, 114.1, 110.6, 70.8, 70.6, 70.2, 69.9, 53.2, 49.4, 38.2, 35.1, 31.8, 23.1, 14.6, 14.4. ESI MS: m/z = 994.5 [M + H\(^{+}\)]; calculated exact mass: 993.42. Anal. Caled for: C\(_{76}\)H\(_{75}\)N\(_{6}\)O\(_{5}\)S\(_{2}\): C, 74.89; H, 6.69; N, 4.23. Found: C, 74.94; H, 6.31; N, 4.16.

Synthesis of photoswitchable [2]rotaxane 16: A solution of 4 (130 mg, 0.2 mmol), the dialkylammonium 5 (93 mg, 0.2 mmol) and tetracyanethylene glycol bis(2-aminophenyl) ether 3 (75 mg, 0.2 mmol) in dry CH\(_{3}\)CN (20 mL) and dichloromethane (6 mL) was stirred for 5 days at room temperature under an N\(_{2}\) atmosphere. Then BH\(_{3}\)THF (1.6 mL) was added and the solution was further stirred overnight. The solvents were removed under vacuum and the residue was purified by column chromatography (silica gel, DCM / MeCN / MeOH = 100 : 0 : 75 : 25 : 1) to obtain photoswitchable [2]rotaxane 16 as a brown solid, yield 172 mg, 59\%.

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.3, 145.6, 145.4, 145.2, 144.8, 144.0, 136.4, 135.9, 135.6, 134.6, 133.7, 133.2, 132.6, 132.1, 129.6, 129.4, 129.7, 127.9, 127.7, 126.9, 124.3, 122.4, 115.1, 111.9, 105.9, 76.4, 76.1, 75.4, 75.1, 74.9, 78.4, 75.2, 72.5, 60.7, 57.6, 42.8, 42.0, 36.4, 36.2, 28.1, 27.5, 19.1, 18.7, 18.5. ESI MS: m/z = 1311.9 [M – PF\(_{3}\)]; calculated exact mass: 1456.56. Anal. Caled for: C\(_{86}\)H\(_{76}\)F\(_{2}\)N\(_{6}\)O\(_{5}\)PF\(_{3}\): C, 65.92; H, 6.02; N, 3.84. Found: C, 65.87; H, 6.11; N, 3.92.

Synthesis of photoswitchable [3]rotaxane 17: A solution of 4 (130 mg, 0.2 mmol), the dialkylammonio - nium 6 (70 mg, 0.1 mmol) and tetracyanethylene glycol bis(2-aminophenyl) ether 3 (75 mg, 0.2 mmol) in dry CH\(_{3}\)CN (20 mL) and dichloromethane (6 mL) was stirred for 10 days at room temperature under an N\(_{2}\) atmosphere. Then BH\(_{3}\)THF (1.6 mL) was added and the solution was further stirred overnight. The solvents were removed under vacuum and the residue was purified by column chromatography (silica gel, DCM / MeCN / MeOH = 100 : 0 : 75 : 25 : 1) to obtain photoswitchable [3]rotaxane 17 as a brown solid, yield 110 mg, 41\%.

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 83.3 (s, 4H), 8.20-8.27 (m, 6H), 7.98-8.06 (m, 6H), 7.88-7.95 (m, 4H), 7.49 (d, J = 2.0 Hz, 4H), 6.95 (s, 2H), 6.41-6.54 (m, 12H), 6.29-6.35 (m, 6H), 6.24 (t, J = 4.0 Hz, 2H), 6.12 (d, J = 4.0 Hz, 4H), 4.53 (s, 4H), 4.25 (br, 4H), 3.97-4.02 (m, 6H), 3.89-3.93 (m, 4H), 3.77-3.86 (m, 8H), 3.70-3.74 (m, 4H), 3.48-3.53 (m, 14H), 3.41 (m, 12H), 2.87-2.94 (m, 8H), 2.73 (br, 4H), 2.29 (s, 10H), 2.17 (s, 6H), 2.09-2.15 (m, 4H), 1.48 (m, 12H), 1.28 (d, J = 1.2 Hz, 4H). 0.89 (t, J = 6.8 Hz, 4H).\(^{13}\)\(^{1}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.6, 160.0, 150.2, 147.3, 143.8, 138.4, 137.4, 136.6, 135.6, 135.2, 131.9, 131.3, 129.9, 128.8, 125.2, 123.4, 122.9, 121.8, 120.0, 113.1, 110.6, 107.2, 101.0, 78.1, 74.8, 70.8, 68.1, 55.6, 52.3, 50.6, 48.9, 38.3, 35.5, 31.9, 31.7, 26.5, 23.6, 23.0, 18.3, 14.7, 14.3, 14.0. MALDI MS: m/z = 2404.75 [M – HPF\(_{3}\) - PF\(_{3}\)]; calculated exact mass: 2695.05. Anal. Caled for: C\(_{158}\)H\(_{166}\)F\(_{2}\)N\(_{6}\)O\(_{5}\)P\(_{3}\)F\(_{3}\): C, 65.91; H, 6.13; N, 4.15. Found: C, 65.84; H, 6.19; N, 4.04.
Synthesis of diswitchable [2]catenane 18: A solution of 4 (65 mg, 0.1 mmol), macrocyclic dialkylationonium 8 (96 mg, 0.1 mmol) and tetraethyleneglycol bis(2-aminophenyl) ether 3 (38 mg, 0.1 mmol) in dry CH₂CN (10 mL) and dichloromethane (3 mL) was stirred for 5 days at room temperature under an N₂ atmosphere. Then BH₃-ThF (0.8 mL) was added and the solution was further stirred overnight. The solvents were removed under vacuum and the residue was purified by column chromatography (silica gel, DCM / MeCN / MeOH = 100:0:0 − 75:25:1) to obtain diswitable [2]catenane 18 as a brown solid; yield 119 mg, 61%. ¹H NMR (400 MHz, CD₂CN) δ 8.42 (s, 2H), 8.21 − 8.29 (m, 3H), 7.98 − 8.10 (m, 4H), 7.93 (d, 3J = 7.9 Hz, 1H), 7.42 (s, 1H), 7.36 (s, 2H), 7.06 (t, 3J = 7.9 Hz, 2H), 0.00 (s, 2H), 6.97 (s, 1H), 6.92 − 6.85 (m, 4H), 6.54 − 6.71 (m, 10H), 6.45 (t, 3J = 7.6 Hz, 2H), 6.37 (d, 3J = 8.5 Hz, 4H), 6.21 (d, 3J = 7.7 Hz, 2H), 4.32 − 4.35 (m, 4H), 4.28 (s, 3H), 4.02 − 4.05 (m, 4H), 3.98 (d, 3J = 5.3 Hz, 4H), 3.84 (br, 8H), 3.71 (t, 3J = 4.0 Hz, 4H), 3.64 (br, 14H), 2.92 (t, 3J = 7.2 Hz, 4H), 2.25 (s, 9H). ¹³C NMR (100 MHz, CD₂CN) δ 160.2, 160.1, 159.9, 150.4, 147.3, 143.7, 143.9, 138.9, 138.6, 138.5, 137.6, 137.1, 136.6, 136.5, 135.3, 135.3, 134.9, 132.1, 131.5, 131.3, 130.7, 130.1, 128.9, 128.6, 127.9, 127.9, 125.5, 125.2, 124.8, 124.4, 123.5, 123.4, 123.0, 121.9, 120.3, 115.4, 113.4, 113.2, 110.8, 70.11, 71.8, 71.8, 70.3, 70.0, 70.1, 68.6, 68.5, 68.1, 52.4, 50.4, 38.8, 38.5, 35.7, 32.0, 23.7, 23.4, 14.8, 14.5, 14.4. MALDI MS: m/z = 1587.85 [M - PF₆]⁻; calculated exact mass: 1592.71. Anal. Calcd for: C₁₁₁H₁₁₃F₄N₁₃PS₂: C, 68.22; H, 5.93; N, 3.28. Found: C, 66.19; H, 6.31; N, 3.15.

Acknowledgements.

The authors acknowledge financial support from National Natural Science Foundation of China (21272088, 21472059, 21402057), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education and the self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (CCNU14A05009, CCNU14F01003).

Notes and references

1. Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China E-mail: vjini@mail.ccnu.edu.cn
2. Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China. E-mail: chenhaiyan@cpu.edu.cn
3. Z. L. and X. H. contributed equally to this work.
4. Electronic Supplementary Information (ESI) available: Packing diagram and crystal data of 4, partial ¹H NMR spectra of 16, 19 and 20, NMR, MS spectra of all the intermediates, photometric reaction and photometric parameters 16, 17, 18, 19 and 20, fluorescence spectra of 18, 19 and 20. See DOI: 10.1039/b000000x/

1. (a) F. Vögtle, Supramolecular Chemistry, Wiley, New York, 1991;
(b) D. J. Cram and J. M. Cram, Container Molecules and Their Guests, Royal Society of Chemistry, Cambridge, 1994;
(c) J.-M. Lehn, Supramolecular Chemistry, VCH, New York, 1995;
(d) H. W. Gibson and J. A. Semlyen, Large Ring Molecules, Wiley, New York, 1996;
(g) J.-P. Sauvage, Dietrich-Buchecker and C. Eds, Molecular Catenanes, Rotaxanes and Knots, A Journey Through the World of Molecular Topology, Wiley-VCH, Weinheim, 1999;

Construction of Photoswitchable Rotaxanes and Catenanes Containing Dithienylethene Fragments

Ziyong Li,ab Xie Han,ab Sheng Hua Liu,*a Jun Yin*a

\begin{center}
\includegraphics[width=0.5\textwidth]{dual-dithienylethene_system_based_on_mechanical_bonds.png}
\end{center}

\textit{Dual-dithienylethene System Based on Mechanical bonds}