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Truce-Smiles rearrangement of substituted phenyl éers

Joel R. Kosowan, Zemane W’'Giorgis, Ravneet GreWabitha E. Wood*

Department of Chemistry, The University of Winnipeg, 515 Portage Avenue, Winnipeg,

Manitoba, Canada, R3B 2E9

* corresponding author: te.wood@uwinnipeg.ca

Abstract:

The requirement of aryl ring activation by strorigetron withdrawing substituents in
substrates for the intramolecular nucleophilic aatbmsubstitution reaction known as the
Truce-Smiles rearrangement was examined. Prelimima&chanistic experiments support
the SYAr mechanism, includingH and**C NMR spectra of a Meisenheimer intermediate
formedin situ. The rearrangement was generally observed todmessful for substrates
with strong electron withdrawing substituents, sashitro-, cyano-, and benzoyl-
functional groups, but also for those with multipheeakly electron withdrawing
substituents, such as chloro- and bromo- functigralps. These results lend further
clarification to the effect of aryl substituentstims type of {RAr reaction. Additionally,

the survey revealed several tandem cyclizationaredimination reactions accessed by

certain substrates.
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Introduction

The Truce-Smiles rearrangement is a relatively omkmand unexploited
intramolecular nucleophilic aromatic substituti@action that forms an argp® C-C
bond concomitant with breaking a C-heteroatom bdieé. reaction can therefore be seen
as a perfectly atom economical method for replaemegasily-formed chemical bond
with one that is of greater synthetic value andolvhdespite its interesting mechanism
and great synthetic potential, remains quite unstudnd possibly misunderstood. The
eponymous Truce-Smiles rearrangement (Equatiora$)finst reported by Truce in the
1950s! with a related reaction having been reported blgrbari previously? The
reaction has received scattered attention in theature since that time, with increased
interest** within recent years.

Interestingly, the definition of the Truce-Smilesarrangement has evolved from
Truce’s original classification to become more usiVe with respect to activating
substituents on the migrating aromatic ring ofghbstrate, although more restrictive
with respect to mechanisthThis more inclusive description defines the reacts a
variation of the Smiles rearrangement, with thecéruariant distinguished by a
carbanion nucleophile. The carbanion is typicanerated by deprotonation,
necessitating the inclusion of a functional groafover the K, of the adjacent protons
(shown as “Y” in Equation 1), unless the tethefiltslthis function.

In the evolved definition of the reaction, the Tet@miles rearrangement is more
restrictively proposed to proceed through a bicyadiaction intermediate, shown in

Equation 1, as is the accepted hypothesis for @kamples of Smiles reactions. The
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reaction intermediate is a delocalized anionic @yekadienyb-adduct, known as a

Meisenheimer adduct, and is typical of thgdEmechanism.

5 5
R H base RS Y
R4 X M)\Y R* X “H
n + base-H+ n
RS R’ ) RS R!
R2 base R2

Equation 1: General reaction for the Truce-Smiles rearrangémen

With respect to the migrating aryl ring, many rdpdrave focused upon
substrates that would produce stabilized proposesgénheimer intermediates, such as

§78Mand pyridine$:**°However, activation with strong

nitro-substituted phenyl ring
electron-withdrawing substituents is not a requeamas indicated by most of Truce’s
pioneering work3*The discrepancy likely arises as a result of sofriee traditional
Truce-Smiles rearrangements occurring via radiagways:>° The reported incidents
of the Truce-Smiles rearrangement are neither nd@hbnor thorough, and frequently
lack mechanistic investigation, resulting in instheg potential substrates that remain to

be explored. Therefore, we herein report our as$#lye scope of substrates with

substituted phenyl groups as migrating aryl ringthe rearrangement reaction.

Results and Discussion
Our initial foray into the wide range of unexploreabstrate structures viable for

Truce-Smiles rearrangement focuses upon aryl etlierbutanenitrile in which the aryl

3
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group is a phenyl ring substituted with varioustreyaprotic, electron withdrawing
functional groups. The use of aryl ethers fac#itathe synthesis of a variety of substrates
that were easily modified at key points of elabioratn substrate design. The substrates
incorporate a nitrile functional group to lend neance stabilization to the proposed
carbanion nucleophile, which is disposed approgiyab the ring such as to proceed
through a five-membered ring spirocyclic Meisenhaimtermediate, favoured by

Smiles rearrangements. Generally, a modular apprneas realized through alkylation of
an array of available substituted phenols alloviorgexamination of substituent effects
while maintaining a consistent distance betweercéibanion nucleophile and the
electrophilic ring atom.

Compoundlatypifies the structure of the substrates examhmein - a phenyl
ring para-substituted with a nitro functional grasghe epitome of a nucleophilic
aromatic substitution substrate. Consequettyyas used to perform the process of
determining optimized conditions for the Truce-Switearrangement. Table 1 shows the
outcome of optimization experiments. The reacti@s found to be strongly influenced
by solvent. Of the various polar aprotic solventgestigated, DMF provided the optimal
outcome (compare entry 1 to entries 2-5).

Despite reports in the literature suggesting tHeaanement of intramolecular
nucleophilic aromatic substitution reaction ratgghe inclusion of additives to
coordinate the countercation of the b&sagdition of 10% (v/v)
hexamethylphosphoramide (HMPA), 1,3-dimethyl-3 & &trahydro-2(H)-
pyrimidinone (DMPU), or 1,3-dimethyl-2-imidazolicine (DMI) did not improve the

yield (compare entries 1 to 6, 7, and 8, respelglivéhe reaction was observed to have
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reached completion after reacting for four hour8QC (ambient lab temperature) or for
30 minutes at 40° C (compare entries 1 and 9).dxdgena-to the nitrile functional

group is predicted to have the highest acidityhmmolecule with ak, of ~3318

Although all three non-nucleophilic bases examiwede found to be suitable (compare
entry 1 to entries 10, 11, and 12), further reastiovere performed using sodium hydride
due to the short duration of the reaction. A motteexcess of base was employed, as the
excess 0.5 equivalents had no apparent effect rgamtion outcome (compare entries 1
and 13). The reaction is concentration dependawtring dilute reaction conditions
(compare entries 1 and 14), as is the expectedaigmn for promotion of the
intramolecular reaction of a highly reactive spsci@ptimization reactions were
performed using 0.5 mmol of substrat entry 15 demonstrates that the reaction

maintains a consistent yield when scaled-up cordiugsing 2.5 mmol dfa.

N 1. base H

OM ’ O/
/©/ solvent
O,N O,N

0 °C, 10 minutes
2. Temperature, time
1a 3 1 M HCl(aq) za

Table 1: Optimization study of Truce-Smiles rearrangemeattion conditions

equivalents of [1a] Temp. | time | % yield
entry base solvent
base (mM) ©eC | (h) 2a
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1 NaH 15 DMF 50 20 4 86
2 NaH 15 DMSO 50 20 4 75
3 NaH 1.5 dioxane 50 20 4 38
4 NaH 15 THF 50 20 4 -
5 NaH 15 acetonitrile 50 20 4 -
9:1
6 NaH 15 50 20 4 72
DMF:HMPA
9:1
7 NaH 15 50 20 4 79
DMF:DMPU
9:1
8 NaH 15 50 20 4 78
DMF:DMI
9 NaH 15 DMF 50 40 0.5 74
10 t-BUOK 15 DMF 50 20 4 80
11 | LIHMDS 15 DMF 50 20 4 79
12 | LIHMDS 15 THF 50 20 4 43
13 NaH 1.0 DMF 50 20 4 85
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14 NaH 1.5 DMF 250 20 4 65

15 NaH 1.5 DMF 59 20 4 92

#NaH addition performed at 20 ° C

P Reaction performed at 5-times larger scale

As further evidence to support the proposed meshaof this reaction, a series
of additional experiments were performed. Usingdétermined optimal conditions, the
reaction was performed in the presence of a comgpeatiermolecular GAr substrate, 1-
bromo-2,4-dinitrobenzene, with the overall concatin of substrates maintained at 50
mM. The absence of substituted 2,4-dinitrophengtpcts supports the proposed
intramolecular nature of the reaction. To suppuethiypothesis of the reaction
proceeding via a classical pola§g mechanism, the reaction was performed in the
presence of a radical scavenger, either TEMPOIadiphenylethylene. The yield of the
rearranged produc2a, was unaffected by the presence of radical scarsngupporting
the absence of a radical intermediate. The regoseity of the reaction, as indicated by
the exclusive formation of products with substdatpatterns conserved from the
substrate, supports @ & mechanism, over involving the participation ddenzyne
intermediate. An intense purple colour is obsemweon the addition of base to a
colourless solution of substrate, that is dissipated upon the addition of aqueaidc a
This observation suggests the formation of a péraphenyl derived Meisenheimer
intermediate, which typically exhibit strong abstwp at appropriate visible
wavelengths? Further,'H and**C NMR spectra of the reaction mixture in (§£30

showed formation of an intermediate with spectrapprties consistent with the
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proposed anionic Meisenheimer intermedfdtéhe spectra show that C2 and C6 are not
equivalent, and similarly C3 and C5, due to theymmaetrical substitution of the cyclic
ether ring. Consequently, H2 and H6 display a aagptonstand = 2.4 Hz, which is

equal to that shared by H3 and H5, and is congistii other reported unsymmetric
nitro-substituted anionic intermediatés.

A series of substratdd-z were prepared to examine the effect of substituent
the aromatic ring upon the outcome of the attemptede-Smiles rearrangement. The
majority of the aryl ether substrates were succdlggirepared in high yield following
the Williamson ether synthesis procedure that wasessful for the preparation D&
However, the 2,4-dinitrophenyl substratel was synthesized using aqueous phase-
transfer conditions modified from literatufeand the 2,4-di(trifluoromethyl)phenyl
substrate1i) was prepared using an Ullmann reaction proceohadified from
literature?®

The ability of substratebb-z to undergo Truce-Smiles rearrangement was
examined using the conditions optimized for prgpatsl substratéa. Substrates that
yielded mixtures of products were subjected to lot@mperatures or shorter reaction
times, while those that failed to yield product veubjected to higher reaction
temperatures, to a maximum of 60 °C. The firsteseof substrates include strong
inductive and resonance electron withdrawing stumstis (Table 2). As hypothesized,
substrates substituted with a nitro group at thra@a,d) or ortho- (c,d) position made
suitable substrates for nucleophilic aromatic gtdgin, while meta- 1b) substitution
did not. The cyano group situated in a pat&) 6r ortho- (f) position was sufficient to

activate the phenyl ring to nucleophilic aromatibstitution.



Page 9 of 43

152
153

154
155
156
157

158

1a-k

Organic & Biomolecular Chemistry

1. NaH (1.5 equiv.)

solvent

0 °C, 10 minutes

2. Temperature, time
3.1 M HCI(aq)

2a-k

Table 2: Scope of Truce-Smiles rearrangement with stroegtedn withdrawing group

substituted aryl substrates

entry -R solvent| Temperature (° C) | time (h) [ % yield 2

1 4-NO; DMF 20 4 86
2 3-NO; DMF 60 20 -

3 2-NO, DMF 0 15 94
4 2,4-di NO, DMF 0 15 22
5 4-C=N DMF 40 20 58
6 2-C=N DMF 20 20 17 3)
7 2-C=N DMSO 20° 20 44




159

160

161

162

163

164

165

166

167

168

169

170

171

Organic & Biomolecular Chemistry

31Q)
8 | g|6-C=N-2-naphthyl| DMF 40 20 64
9 |h 4-CFs DMF 60 20 -
10 |i 2,4-di CF; DMF 60 20 -
11 |j 4-C(O)Ph DMF 40 20 70
12 |k 2-C(O)Ph DMF 20 20 814)
13 |k 2-C(O)Ph DMSO 20 20 85 @)

& NaH addition performed at 20° C

Interestingly, the ortho-cyano groufpf) allowed for tandem cyclization

(Equation 2) to form the tricyclic produ®)(®*

although the yield of the Truce-Smiles
rearrangement produ@fj could be increased by changing the medium ofd¢hetion to
a DMSO solution (entry 7). The 6-cyano-2-naphtheivhtive (Lg) underwent the
rearrangement reaction in high yield, in keepinthvie observation that extended
aromatic systems are prone {@A8.% Surprisingly, the trifluoromethyl group provided
insufficient activation for substratesh| i), even at the highest reaction temperatures
examined. These results suggest the importanm@sohance stabilization relative to

inductive stabilization of the anionic Meisenheinrgermediate proposed for these

reactions.

10

Page 10 of 43
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N N N
Il i Il |1 o
H
N N
O\/\// [ O\/\// - =
S)

1f 2f

- H,0* - |

Equation 2: Proposed reaction to forBifrom 1f via tandem cyclization df

Benzophenone derivativdg and1k were prepared as substrates to assess the
substituent effects of an acyl functional grouphwiit introducing acidic hydrogen atoms
that might interfere with the formation of thhecyano carbanion nucleophile. The
benzoyl functional group activates the substrateaorangement when situated at the
para- (j) position. However, when situated at the orthasifpan (1K), it blocked
reactivity. Subjecting substraték) to reaction conditions in an attempt to promote a
Truce-Smiles rearrangement yielded only the highigaturated diene produd)(the
result of an intramolecular attack at the electiophketone carbonyl carbon atom by the
carbanion formedh situ, followed by subsequent elimination of the phanuy and a
molecule of water (Equation 3). This suggests fir@ach of the nucleophile toward the
intended electrophilic arypso-carbon may have been blocked by the positionef th

benzoyl functional group. Indeed, thé NMR spectrum oflk shows a marked shielding

11
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188 (Ad~0.7 ppm) of the hydrogen atomsto the nitrile functional group of the
189 butanenitrile moiety, relative to the correspondoaga-substituted substratéjj. This
190 shielding of theH NMR signal suggests thak assumes a stable conformation in which

191 the phenyl ring of the benzoyl functional groupni€lose proximity to the nucleophilic

192 site.
193
s s
H
N N
OM - OM
P (J 7%
1k
N
||
H,O*
N
-
O OH
194 4

195 Equation 3: Proposed reaction to fordfrom 1k

196

197 A second series of substrates was prepared to agaime effect of halogen

198 substituents upon the reactivity of substrates tdwauce-Smiles rearrangement (Table
199 3). The halogens are an interesting group of swiestis to examine based upon their

200 varying degrees of contrasting resonance electooatthg and inductive electron

12
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201 withdrawing effects, in addition to varying steeffects. Fluoro Zl-p) substituents

202 proved insufficient to activate the ring to Trucenfes rearrangement. This suggests that
203 the destabilizing resonance effect of fluoro subshts upon the anionic Meisenheimer
204 intermediate when positioned ortho- and para- midant to the stabilizing inductive

205 effect?® The mono-chloro substituted substratg)(did not undergo rearrangement under
206 the conditions examined, however appropriate is) and tri-chloro substitutiorL)

207 provided effective activation. The decreased resoa&ffect of chloro substituents, and
208 therefore the decreased destabilization of thdtregiMeisenheimer intermediate

209 relative to the fluoro-substituted substrates,ljilkexplains some of the increased

210 reactivity observed for the chloro-substituted $tdtss. Additionally, the higher yield for
211 the di-ortho-substituted®§) product over the ortho, para-disubstitut2d) (roduct

212  suggests that a steric effect attributable to teecally-demanding ortho-chloro

213 substituents may also be ascribed a role in insrgaesactivity. This increased reactivity
214 may be accomplished by favouring a more reactivéacmation of the intermediate

215 anion due to steric strain, which leads to an imsean the rate of reaction of substrates
216 1lsandltrelative tolr or to the ortho-fluoro substituted substratesinilar steric effect
217 phenomenon has been proposed for Truce-Smilesaesdhvolving benzyl carbanions
218  of ortho-substituted diarylsulfonéSEvidence of restricted rotation around the newly
219 formed arylsp®C bond can be seen in tH€ NMR spectra o2sand2t, but is not

220 apparent in the spectrum 2if.

13
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I
o //N 1. NaH (1.5 equiv.) H
| AN \M _ o~
// solvent
R 0 °C, 10 minutes R
2. Temperature, time
221 11-z 3.1 M HCl(q) 2|z

222

223 Table 3: Scope of Truce-Smiles rearrangement with halogehatyl substrates

224
entry | 1 -R solvent| Temperature (° C) | time (h) | % yield 2
1 I 4-F DMF 60 20 -
2 m 24-di F DMF 60 20 -
3 n 2,6-di F DMF 60 20 -
4 0 2,4,6-tri F DMF 60 20 -
5 p|234,56 pentaF DMF 60 20 -
6 o} 4—Cl DMF 60 20 -
7 r 2,4-di Cl DMSO 20° 20 42
8 S 2,6-di Cl DMSO 20° 20 56
9 t 2,4,6-tri Cl DMF 40 20 25

14
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10 |t 2,4,6-tri Cl DMSO 207 20 34
11 | u 4-Br DMF 60 20 -
12 | v 2,4-di Br DMF 60 20 -
13 |w 2,6-di Br DMF 60 20 30
14 | x 2,4,6-tri Br DMF 40 20 40%)
15 | x 2,4,6-tri Br DMSO 20 20 69 L)
16 |y 4—| DMF 60 20 -
17 | z 2,4,6-tri | DMF 60 20 -

% NaH addition performed at 20 ° C

The reactivity of the bromo-substituted substréddews a similar trend to their
chloro-substituted analogues, showing no appaeadtivity for the mono-bromo
substratep) and the ortho, para-dibromo substrdig) @nd increased reactivity in di-
ortho substituted substratéa and1x. Interestingly, the tri-bromo-substituted subsrat
(1x) undergoes a tandem nucleophilic aromatic substitwf an ortho-bromo substituent
by the intermediate alkoxide of rearrangement pco8xu to form the bicyclic chromene
compound (Equation 4). CompountV is formed by debromination di when the
rearrangement is attempted in DMSO. The iodo-#ulstl substratedy,z) failed to

show reactivity under the reaction conditions exsdi These compounds may represent

15
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the limit at which electronic effects, although @aosubstituents provide decreased
resonance destabilization of the Meisenheimernmégliate relative to fluoro

substituents, come to dominate any pre-organizmgcseffects of the halogen

substituents.
Br N H- Br N
o\/\/// - O\/\///
©
Br Br Br Br
1x
N
Br | | Br | |
-
Br 0 Br Br 0@
5 2x

Equation 4: Proposed reaction to forfrom 1x

Conclusion

This study has filled its intended goal of begirghasystematic survey of the substrate
scope of the Truce-Smiles rearrangement. The sesufiport the previously established
requirement for a strong-electron withdrawing sitbsht in the ortho- or para- positions

of the substrate aryl ring. However, the indispérigg of a nitro group as that strong

16
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250 electron withdrawing group has been challengeckalvg that the cyano group or an
251 aprotic acyl group may act as a replacement. Fyrtlreand tri-substitution with chloro
252 and bromo substituents, particularly in ortho-posi activates the substrate ring

253 sufficiently for Truce-Smiles rearrangement. Théadge balance of activation and
254  deactivation by steric effects of ortho-substitsdmds also been illustrated. Additionally,
255 the study has illuminated several interesting tamdeactions that involve the Truce-
256 Smiles rearrangement as the first chemical steprwhe preparation of bicyclic and
257  tricyclic products.

258

259 Experimental Section

260

261 General Methods.All glassware used for Truce-Smile rearrangemeacttions was
262 flame-dried under a vacuum and reactions were ngieiuan inert atmosphere of

263 nitrogen. All reagents and solvents were commegpitie. All organic layers collected
264 from extractions were dried using anhydrous MgSKkhin layer chromatography (TLC)
265 was performed using aluminum-backed silica gelgsla250um) plates, and flash

266 column chromatography used 230-400 mesh silica.g@oimds were visualized using
267 UV light (A = 254 nm) and either phosphomolybdic acid or Vianslolutions. Melting
268 points were determined using a capillary meltinmpapparatus and are reported

269 uncorrected. FTIR spectra were recorded of sangdesthin film on a KBr plate

270 (transmission)*H and**C{*H} NMR spectra were acquired on a 400 MHz instrumen
271 C{™F} and'°F NMR spectra were acquired on a 500 MHz instrum@itemical shifts

272 are reported relative to tetramethylsilane (TMSamasnternal standard setd®.00 ppm

17
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for 'H, relative to the CDGlsolvent residual as an internal standard s&tA8.16 ppm

for 13C, and relative to the CFCAs an external standard sebt® ppm for'°F.
Multiplicities are reported as apparent (app), dr@i@), singlet (s), doublet (d), triplet (t),
guartet (q) and combinations thereof, or multighe). NMR data

were processed by using ACD/Labs SpecManager satweoduct version 12.00.

HRMS data was obtained by electrospray (ESI) uamgn trap.

Preparation of 4-Butanenitrile Aryl Ether Substrates 1a-z

General Procedure A

To a round-bottom flask fitted with a reflux condenwas added the substituted phenol
(2.1 mmol, 1.1 equiv), anhydrous potassium carl(@i38 g, 1.0 mmol, 1.0 equiv.), 4-
bromobuytronitrile (0.10 mL, 1.0 mmol), and acet¢h@ mL). The reaction mixture was
heated with stirring to the boiling point of acetamsing a heating block and reflux was
maintained for 20 hours. The solution was concéedradiluted with ethyl acetate (20
mL), washed with 1 M HGl,) (15 mL), and washed with 1 M NaQ¥ (2 x 15 mL). The

organic layer from the extraction was dried, fidtgrand concentrated.

4-(4-Nitrophenoxy)butanenitrile (1a).

General procedure A: The product was obtained ftmrextraction as a light yellow
crystalline solid (0.204 g, 99%). CAS: 99072-20%f) 48-49 °C (lit® mp 50-52 °C, lif?
mp 53-54 °C); TLC R(40% ethyl acetate, 60% hexanes): 0.44; IR (Kidn tilm) V.,

(cmY): 3086, 2948, 2248, 1593, 1513, 1344, 1263, 1846;*H NMR (400 MHz,

18
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CDCls) 8(ppm): 8.17 (2H, dJ = 9.3 Hz), 6.98 (2H, dl = 9.3 Hz), 4.20 (2H, ] = 5.8
Hz), 2.66 (2H, ) = 7.2 Hz), 2.22 (2H, app pentdts 6.5 Hz);"H NMR (400 MHz,
(CD3),S0)d(ppm): 8.22 (2H, dJ = 9.3 Hz), 7.17 (2H, dl = 9.3 Hz), 4.22 (2H, 1] = 6.0
Hz), 2.72 (2H, tJ = 7.2 Hz), 2.11 (2H, app pentét= 6.6 Hz);"*C NMR (100 MHz,
CDCl;) 3(ppm): 163.3, 141.5, 125.7, 119.0, 114.3, 66.19,243.9;*C NMR (100 MHz,
(CD3),S0)8(ppm): 163.5, 141.0, 125.8, 120.1, 114.9, 66.9%,243.3; LRMS (ESIjvz
(relative intensity): 229.1 (100%); HRMS (E$tjz [M + Na]" calcd for GoH1oN2Oa:

229.0584, found: 229.0586.

4-(3-Nitrophenoxy)butanenitrile (1b).
General procedure A: The product was obtained flmrextraction as a light yellow
crystalline solid (0.197 g, 95 %). CAS: 19157-86+f 53-54 °C (lit° mp 50-54 °C);

TLC Rs (50 % ethyl acetate, 50 % hexanes): 0.54; IR (Kin film) V., (cm™): 3098,

2941, 2248, 1530, 1352, 1248, 1048, 8t6NMR (400 MHz, CDCY) &(ppm): 7.83
(1H, dd,J = 8.2 Hz,J = 1.9 Hz), 7.72 (1H, appd,= 2.3 Hz), 7.45 (1H, appd,= 8.3
Hz), 7.24 (1H, dd) = 8.3 Hz,J = 2.5 Hz), 4.18 (2H, t) = 5.8 Hz), 2.64 (2H, ] = 7.1
Hz), 2.20 (2H, app pentet= 6.4 Hz):**C NMR (100 MHz, CDGJ) 3(ppm): 158.9,
149.2,130.2, 121.5, 119.0, 116.2, 108.9, 66.12,251.2; LRMS (ESI)z (relative
intensity): 229.1 (100%); HRMS (ES¥/z [M + Na]" calcd for GoH1oN,O3: 229.0584,

found: 229.0594.

4-(2-Nitrophenoxy)butanenitrile (1c).

19
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General procedure A: The product was obtained flmrextraction as a light yellow

amorphous solid (0.197 g, 96 %). CAS: 1184140-48y9:44-46 °C; TLC R(50 % ethyl

acetate, 50 % hexanes): 0.34; IR (KBr, thin filif), (cmi?): 3056, 2957, 2250, 1522,

1359, 854H NMR (400 MHz, CDCJ) &(ppm): 7.87 (1H, dd) = 8.3 Hz,J = 1.6 Hz),
7.55 (1H, app td) = 8.0 Hz,J = 1.7 Hz), 7.09-7.05 (2H, m), 4.24 (2HJt 5.5 Hz),
2.69 (2H, tJ = 7.0 Hz), 2.20 (2H, app pentdt= 6.3 Hz);**C NMR (100 MHz, CDG))
3(ppm): 151.3, 139.3, 134.1, 125.7, 120.5, 118.9,3,166.5, 24.8, 13.5; LRMS (ESI)
m/z (relative intensity): 229.1 (100%); HRMS (E$tjz [M + Na]" calcd for

Ci10H10N203: 229.0584, found: 229.0589.

4-(2,4-Dinitrophenoxy)butanenitrile (1d).

To a round-bottom flask fitted with a reflux condenwas added 2,4-dinitrophenol
(moistened with ~20% water, 0.460 g, 2.0 mmol), sodhydroxide (0.184 g, 4.6 mmol,
2.3 equiv.), tetrar-butylammonium iodide (0.0004 g, l@nol, 0.0006 equiv.), 4-
bromobuytronitrile (0.40 mL, 4.0 mmol, 2.0 equivapd water (4 mL). The reaction
mixture was heated with stirring to the boiling poof water using a heating block and
reflux was maintained for 20 hours. The solutiorswatracted with ethyl acetate (40
mL) and washed with 1 M NaQ4d) (2 x 30 mL). The organic layer from the extraction

was dried, filtered, and concentrated. Flash coleshmomatography (100 %

dichloromethane) yielded the product as a lighloyelmorphous solid (0.061 g, 12 %).

mp 49-51 °C; TLC R(100 % dichloromethane): 0.53; IR (KBr, thin filrm),,, (cm'?):
3117, 3089, 2951, 2892, 2249, 1537, 1346, 183 NMR (400 MHz, CDCY) (ppm):
8.80 (1H, dJ=2.7 Hz), 8.47 (1H, dd}= 9.3 Hz,J = 2.7 Hz), 7.23 (1H, d] = 9.3 Hz),
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4.39 (2H, tJ = 5.7 Hz), 2.71 (2H, ] = 6.9 Hz), 2.27 (2H, app pentét= 6.3 Hz);*C
NMR (100 MHz, CDCY) é(ppm): 156.2, 140.8, 139.0, 129.4, 122.3, 118.84,3,167.9,
25.1, 14.1; LRMS (ESivz (relative intensity): 274.0 (100%); HRMS (E®Wz [M +

Na]" calcd for GoHgN3Os: 274.0434, found: 274.0431.

4-(4-Cyanophenoxy)butanenitrile (1e).
General procedure A: The product was obtained tlmrextraction as a colourless

amorphous solid (0.182 g, 98 %). CAS: 1016732-52;52-53 °C; TLC R(60 % ethyl

acetate, 40 % hexanes): 0.62; IR (KBr, thin fili),, (cmY): 3059, 2955, 2248, 2225,

1606, 1257, 839H NMR (400 MHz, CDCY) &(ppm): 7.60 (2H, dJ = 9.1 Hz), 6.96
(2H, d,J = 9.1 Hz), 4.14 (2H, §) = 5.7 Hz), 2.61 (2H, ] = 7.0 Hz), 2.18 (2H, app
pentetJ = 6.4 Hz);*3C NMR (100 MHz, CDGJ) 8(ppm): 161.7, 134.2, 119.1, 118.9,
115.3, 104.7, 65.8, 25.3, 14.3; LRMS (EBI} (relative intensity): 209.1 (100%);

HRMS (ESI)m/z. [M + Na]" calcd for GiH1oN»O + Na: 209.0685, found: 209.0691.

4-(2-Cyanophenoxy)butanenitrile (1f).

General procedure A: Flash column chromatograp@y/A4ethyl acetate, 60 % hexanes)
yielded the product as a colourless amorphous §0lid6 g, 94 %). CAS: 194724-60-2;
mp 48-50 °C (lit* mp 48-49 °C); TLC R(40 % ethyl acetate, 60 % hexanes): 0.41; IR

(KBr, thin film) 7__ (cm™): 2949, 2889, 2228, 1599, 1260, 1045 (consistétht lit. >%);

'H NMR (400 MHz, CDCJ) &(ppm): 7.59-7.53 (2H, m), 7.05 (1H,}t= 7.6 Hz), 6.98
(1H, d,J = 8.5 Hz), 4.21 (2H, {] = 5.7 Hz), 2.70 (2H, t] = 7.1 Hz), 2.22 (2H, app

pentet,J = 6.4 Hz) (consistent with [ff}); *C NMR (100 MHz, CDGJ) §(ppm): 159.9,
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134.5, 133.8, 121.5, 118.9, 116.2, 112.4, 102.2,6%5.2, 14.1; LRMS (EShvz
(relative intensity): 209.1 (100%), 395.2 (18%); MR (ESI)mVz: [M + Na]" calcd for

C11H10N20: 209.0685, found: 209.0692.

4-[(6-Cyanonaphthalen-2-yl)oxy]butanenitrile (1g).
General procedure A: The product was obtained fiwarextraction as a light brown
crystalline solid (0.192 g, 81 %). mp 104-105 °CCIR; (40 % ethyl acetate, 60 %

hexanes): 0.44; IR (KBr, thin filmy,__ (cm™): 2223, 1267*H NMR (400 MHz, CDC})

3(ppm): 8.07 (1H, dJ = 1.0 Hz), 7.75-7.72 (2H, m), 7.52 (1H, dd5 8.5 HzJ= 1.5

Hz), 7.22 (1H, ddJ = 9.1 Hz,J = 2.5 Hz), 7.14 (1H, d1 = 2.5 Hz), 4.22 (2H, ] = 5.8

Hz), 2.64 (2H, tJ) = 7.0 Hz), 2.22 (2H, app pentéts 6.4 Hz);**C NMR (100 MHz,
CDCls) 8(ppm): 158.7, 136.2, 133.7, 130.1, 127.8, 127.0,8,2119.5, 119.1, 106.9,
106.8, 65.6, 25.2, 14.2; LRMS (ESWz (relative intensity): 259.1 (43%), 495.2 (100%);

HRMS (ESI)m/z [M + Na]J* calcd for GsH1oN-0O: 259.0842, found: 259.0838.

4-[4-(Trifluoromethyl)phenoxy]butanenitrile (1h).
General procedure A: Flash column chromatograp@yfzthyl acetate, 80 % hexanes)

yielded the product as a colourless oil (0.1955%8. CAS: 1092292-41-5; mp <25 °C;
TLC R (20 % ethyl acetate, 80 % hexanes): 0.28; IR (Kidn film) v, ,, (cmh): 2943,
2250, 1332, 1312, 83714 NMR (400 MHz, CDCJ) &(ppm): 7.56 (2H, dJ = 8.5 Hz),
6.96 (2H, dJ = 8.5 Hz), 4.13 (2H, 1) = 5.7 Hz), 2.60 (2H, 1] = 7.1 Hz), 2.17 (2H, app
pentet,J = 6.4 Hz);"*C NMR (100 MHz, CDG)) &(ppm): 160.9, 127.1 (), = 4 Hz),

124.5 (g,) = 271 Hz), 123.6 (q] = 33 Hz), 119.0, 114.6, 65.6, 25.4, 14.3; LRMSIJES
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m/z (relative intensity): 252.1 (100%); HRMS (E$tjz [M + NaJ" calcd for

C11H10FNO: 252.0607, found: 252.0598.

4-[2,4-Di(trifluoromethyl)phenoxy]butanenitrile (1i).

To a 4 mL glass vial was added 1-bromo-2,4-di(tafomethyl)benzene (0.34 mL, 2.0
mmol), 4-hydroxybuytronitrilg*3?(0.75 mL, 8.8 mmol, 4.4 equiv.), anhydrous cesium
carbonate (0.879 g, 3.0 mmol, 1.5 equiv.), copperdide (0.038 g, 0.2 mmol, 0.1
equiv.), 1,10-phenanthroline (0.072 g, 0.4 mmd&, quiv.), and toluene (1 mL). The
vial was sealed with a poly(tetrafluoroethylen@ell screw-cap lid and the reaction
mixture was heated with stirring to 150 °C usingeating block for 20 hours. The
solution was diluted with toluene (5 mL) and figdrthrough a pad of silica. The silica
was rinsed with ethyl acetate (3 x 5 mL) and theatie was concentrated. Flash column
chromatography (20 % ethyl acetate, 80 % hexanek)eyl the product as a colourless
oil (0.092 g, 16 %). mp <25 °C; TLC; R0 % ethyl acetate, 80 % hexanes): 0.29; IR

(KBr, thin film) 7__ (cm’): 2954, 2890, 2251, 1597, 1515, 1266, 112ONMR (400

MHz, CDCk) &(ppm): 7.85 (1H, s), 7.79 (1H, dii= 8.7 Hz,J = 1.7 Hz), 7.09 (1H, d
= 8.7 Hz), 4.25 (2H, t) = 5.6 Hz), 2.64 (2H, t] = 7.1 Hz), 2.22 (2H, app pentdts 6.3
Hz); **C NMR (100 MHz, CDGJ) &(ppm): 158.7, 130.9, 125.1, 123.7 Jo; 269 Hz),
123.4 (q,J = 34 Hz), 123.0 (o) = 273 Hz), 119.6 () = 32 Hz), 118.8, 112.9, 66.4,
25.3, 14.0; LRMS (ESlivz (relative intensity): 222.1 (100%), 320.0 (97%RMS

(ESI)m/z [M + Na]" calcd for GoHoFgNO: 320.0481, found: 320.0474.
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4-[4-(Benzoyl)phenoxy]butanenitrile (1)).
General procedure A: The product was obtained tlmrextraction as a colourless

crystalline solid (0.245 g, 92 %). CAS: 143804-25¥p 65-68 °C; TLC R(50 % ethyl

acetate, 50 % hexanes): 0.49; IR (KBr, thin filif), (cmi): 3060, 2946, 2248, 1652,

1256, 1049, 845H NMR (400 MHz, CDGJ) 8(ppm): 7.83 (2H, dJ = 8.9 Hz), 7.75

(2H, d,J = 6.8 Hz), 7.57 (1H, appd,= 8.2 Hz), 7.47 (2H, appd,= 7.5 Hz), 6.96 (2H, d,
J=8.9 Hz), 4.17 (2H, t] = 5.8 Hz), 2.62 (2H, 1) = 7.2 Hz), 2.19 (2H, app pentdt=

6.4 Hz);**C NMR (100 MHz, CDG)) 3(ppm): 195.4, 161.9, 138.1, 132.5, 132.0, 130.6,
129.7,128.2, 119.0, 114.0, 65.6, 25.3, 14.1; LRHESI) m/z (relative intensity): 288.1

(100%); HRMS (ESI/wz [M + Na]J* calcd for G7H1sNO,: 288.0995, found: 288.0997.

4-[2-(Benzoyl)phenoxy]butanenitrile (1k).
General procedure A: Flash column chromatograp@yA4ethyl acetate, 60 % hexanes)

yielded the product as a colourless crystallined9@.232 g, 88 %). mp 79-81 °C; TLC
Rr (40 % ethyl acetate, 60 % hexanes): 0.50; IR (KtBn film) U, (cm™): 2246, 1647;
'H NMR (400 MHz, CDC)) &(ppm): 7.79-7.76 (2H, m), 7.60-7.55 (1H, m), 7.5047

(4H, m), 7.10 (1H, td) = 7.6 Hz,J = 0.8 Hz), 6.95 (1H, d] = 8.3 Hz), 4.00 (2H, 1] =

5.4 Hz), 1.89 (2H, tJ = 7.5 Hz), 1.84-1.77 (2H, m)°C NMR (100 MHz, CDGJ)

o(ppm): 196.1, 155.8, 138.2, 132.6, 132.1, 129.8,9.2128.6, 128.2, 120.9, 118.8,
111.8, 65.1, 24.8, 13.0; LRMS (ESWjz (relative intensity): 288.1 (100%), 553.2 (88%);

HRMS (ESI)m/z. [M + Na]" calcd for G;H1sNO»: 288.0995, found: 288.0986.

4-(4-Fluorophenoxy)butanenitrile (11).
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General procedure A: Flash column chromatograp@y43:thyl acetate, 70 % hexanes)
yielded the product as a colourless oil (0.17579%8. CAS: 24115-22-8; mp <25 °C
(lit.** mp <25 °C); TLC R(30 % ethyl acetate, 70 % hexanes): 0.43; IR (KiBn film)

(cmi): 3076, 2926, 2249, 1505, 1249, 1208, 1056, INMR (400 MHz, CDCJ)

|/max
3(ppm): 6.98 (2H, dd) = 9.3 Hz,J = 8.3 Hz), 6.83 (2H, dd] = 9.3 Hz,J = 4.3 Hz), 4.04
(2H, t,J = 5.7 Hz), 2.59 (2H, ] = 7.1 Hz), 2.13 (2H, app pentét= 6.4 Hz);"*C NMR
(100 MHz, CDCH#) 8(ppm): 157.6 (dJ) = 239 Hz), 154.6, 119.2, 116.0 (tk 24 Hz),
115.7 (dJ =8 Hz), 66.1, 25.6, 14.3; LRMS (EStyz (relative intensity): 202.1 (100%);

HRMS (ESI)m/z [M + Na]J* calcd for GoH1oFNO: 202.0639, found: 202.0638.

4-(2,4-Difluorophenoxy)butanenitrile (1m).
General procedure A: Flash column chromatograp@yfzthyl acetate, 80 % hexanes)

yielded the product as a colourless oil (0.1906g%9. CAS: 1016737-82-8; mp <25 °C;

TLC R (20 % ethyl acetate, 80 % hexanes): 0.37; IR (Kin film) v, (cmY): 2959,

2885, 2250, 1260, 1211, 10424 NMR (400 MHz, CDCJ) 8(ppm): 6.94 (1H, tdJ = 9.1
Hz,J = 5.3 Hz), 6.87 (1H, ddd,= 11.0 Hz,J = 8.3 Hz,J = 3.0 Hz), 6.82-6.77 (1H, m),
4.11 (2H, tJ = 5.8 Hz), 2.63 (2H, t] = 7.2 Hz), 2.15 (2H, app pentét= 6.4 Hz);°C
NMR (100 MHz, CDC}) §(ppm): 157.1 (ddj = 242 Hz,J = 11 Hz), 152.9 (dd] = 249
Hz,J = 12 Hz), 143.0 (dd] = 11 Hz,J = 4 Hz), 116.6 (dJ = 10 Hz), 110.7 (dd] = 23
Hz,J = 4 Hz), 105.1 (dd] = 27 Hz,J = 22 Hz), 68.1, 25.7, 14.1; LRMS (ESH)z
(relative intensity): 220.0 (100%), 360.3 (32%); MR (ESI)mvz: [M + Na]" calcd for

ClngFzNOZ 220.0544, found: 220.0554.
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4-(2,6-Difluorophenoxy)butanenitrile (1n).
General procedure A: Flash column chromatograpfy/4lethyl acetate, 90 % hexanes)

yielded the product as a colourless oil (0.1875g%8. CAS: 1378344-87-6; mp <25 °C;

TLC R: (20 % ethyl acetate, 80 % hexanes): 0.44; IR (Kin film) V__ (cm™): 2961,

max

2895, 2250, 1595, 1292, 1239, 1057;NMR (400 MHz, CDCY) 8(ppm): 7.02-6.86
(3H, m), 4.23 (2H, t) = 5.7 Hz), 2.67 (2H, 1 = 7.2 Hz), 2.11 (2H, app pentdt= 6.4
Hz):; *C NMR (100 MHz, CDGJ) &(ppm): 156.2 (dd) = 248 Hz,J = 6 Hz), 135.3 () =
14 Hz), 123.5 (t) = 9 Hz), 112.3 (dd) = 17 Hz,J = 7 Hz), 72.0 (tJ = 3 Hz), 26.3, 13.9;
LRMS (ESI)m/z (relative intensity): 220.1 (100%); HRMS (E®#jz [M + Na]’ calcd

for C1oHoF2NO: 220.0544, found: 220.0546.

4-(2,4,6-Trifluorophenoxy)butanenitrile (10).
General procedure A: Flash column chromatograp@y/flethyl acetate, 90 % hexanes)

yielded the product as a colourless oil (0.2024g%9. mp <25 °C; TLC R(20 % ethyl

acetate, 80 % hexanes): 0.40; IR (KBr, thin fild), (cm™): 2968, 2891, 2250, 1238

NMR (400 MHz, CDC}) 3(ppm): 6.70 (2H, app = 8.4 Hz), 4.17 (2H, t] = 5.7 Hz),
2.66 (2H, tJ = 7.2 Hz), 2.10 (2H, app pentdt= 6.3 Hz);**C NMR (100 MHz, CDGJ)
3(ppm): 157.5 (dt) = 246 Hz,J = 14 Hz), 156.1 (ddd] = 250 Hz,J = 15 Hz,J = 8 Hz),
132.1 (tdJ = 15 Hz,J = 6 Hz), 101.0 (app & = 27 Hz), 72.4, 26.2, 13.9; LRMS (ESI)
m/z (relative intensity): 238.0 (100%); HRMS (E$tjz [M + NaJ" calcd for

C10HgFNO: 238.0450, found: 238.0460.

4-(2,3,4,5,6-Pentafluorophenoxy)butanenitrile (1p).
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General procedure A: Flash column chromatograpf@y/4lethyl acetate, 90 % hexanes)

yielded the product as a colourless oil (0.1983%j. CAS: 1155103-22-2; mp < 25 °C;

TLC R (10 % ethyl acetate, 90 % hexanes): 0.22; IR (Kin film) U__ (cm®): 2969,

max

2897, 2252, 116H NMR (400 MHz, CDGJ) 8(ppm): 4.28 (2H, t) = 5.7 Hz), 2.66
(2H, t,J = 7.1 Hz), 2.16 (2H, app pentdt= 6.4 Hz):**C NMR (100 MHz, CDGJ)
3(ppm): 141.8 (dmJ = 248 Hz), 138.0 (dml = 246 Hz), 137.7 (dm), 133.2 (t= 13

Hz) 118.8, 73.1, 26.1, 13.8F NMR (470 MHz, CDGJ) &(ppm): —157 (dmJ = 24 Hz),
—163 (tm,J = 21 Hz), =164 (tmJ = 22 Hz); LRMS (APCIyz (relative intensity): 252.0

(100%); HRMS (APCIYWz: [M + H]* calcd for GoHgFsNO: 252.0442, found: 252.0431.

4-(4-Chlorophenoxy)butanenitrile (1q).

General procedure A: Flash column chromatograp@y43:thyl acetate, 70 % hexanes)
yielded the product as a colourless crystallinelg0l.166 g, 85 %). CAS: 501941-41-9;
mp 43-44 °C (lit* mp 44.5-45.3 °C); TLC R30 % ethyl acetate, 70 % hexanes): 0.45;

IR (KBr, thin film) U__ (cm™®): 3097, 2953, 2248, 1244, 1090, 8%3;NMR (400 MHz,

CDCl) 3(ppm): 7.24 (2H, dJ = 8.7 Hz), 6.82 (2H, d] = 8.7 Hz), 4.04 (2H, 1= 5.8
Hz), 2.58 (2H, tJ = 7.1 Hz), 2.13 (2H, app pentéts 6.4 Hz);**C NMR (100 MHz,
CDCl) 3(ppm): 157.1, 129.5, 126.2, 119.1, 115.9, 65.75,264.2; LRMS (ESIjn/z
(relative intensity): 218.0 (100%); HRMS (E®MWz [M + Na]" calcd for GoH1oCINO:

218.0343, found: 218.0338.

4-(2,4-Dichlorophenoxy)butanenitrile (1r).
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General procedure A: Flash column chromatograpfy/4lethyl acetate, 90 % hexanes)
yielded the product as a colourless crystallinelg@l.228 g, 99 %). CAS: 63867-25-4;
mp 45-47 °C (lit* mp 46-48 °C, lit> mp 46-50 °C); TLC R(20 % ethyl acetate, 80 %

hexanes): 0.44; IR (KBr, thin filmy,__ (cm™): 3100, 2946, 2885, 2249, 1266, 1084;

NMR (400 MHz, CDC}) &(ppm): 7.38 (1H, d) = 2.5 Hz), 7.19 (1H, dd} = 8.8 Hz,J =
2.5 Hz), 6.85 (1H, dJ = 8.8 Hz), 4.12 (2H, t] = 5.7 Hz), 2.66 (2H, ] = 7.0 Hz), 2.19
(2H, app pentet] = 6.4 Hz);**C NMR (100 MHz, CDGJ) &(ppm): 152.8, 130.1, 127.7,
126.5, 124.0, 119.1, 114.5, 66.8, 25.5, 14.1; LRHESI) m/z (relative intensity): 252.0
(100%), 254.0 (30%); HRMS (ESiy¥z [M + Na]* calcd for GoHoCl,NO: 251.9953,

found: 251.9962.

4-(2,6-Dichlorophenoxy)butanenitrile (1s).
General procedure A: Flash column chromatograp@y/flethyl acetate, 90 % hexanes)

yielded the product as a colourless oil (0.18500%8. CAS: 40324-60-5; mp <25 °C;
TLC R (20 % ethyl acetate, 80 % hexanes): 0.48; IR (Kin film) v, (cm®): 3080,
2954, 2884, 2249, 1250, 1036{ NMR (400 MHz, CDCJ) 8(ppm): 7.30 (2H, dJ = 8.3
Hz), 7.01 (1H, tJ = 8.3 Hz), 4.13 (2H, ] = 5.7 Hz), 2.75 (2H, ] = 7.2 Hz), 2.19 (2H,
app pentet) = 6.4 Hz):™*C NMR (100 MHz, CDGJ) &(ppm): 150.9, 129.5, 129.1, 125.5,

119.4, 70.6, 26.4, 14.2; LRMS (ESWz (relative intensity): 252.0 (100%), 254.0 (45%);

HRMS (ESI)m/z. [M + Na]" calcd for GoHoClLNO: 251.9953, found: 251.9947.

4-(2,4,6-Trichlorophenoxy)butanenitrile (1t).
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General procedure A: Flash column chromatograpfy/4lethyl acetate, 90 % hexanes)

yielded the product as a colourless crystallinelg@l.258 g, 98 %). CAS: 1039893-81-6;
mp 37-39 °C; TLC R(20 % ethyl acetate, 80 % hexanes): 0.63; IR (Kin film) v,

(cm™): 3078, 2955, 2885, 2449, 1257, 1034;NMR (400 MHz, CDCJ) &(ppm): 7.32
(2H, s), 4.11 (2H, t) = 5.7 Hz), 2.73 (2H, t) = 7.2 Hz), 2.18 (2H, app pentdt= 6.4

Hz); **C NMR (100 MHz, CDGJ) &(ppm): 149.8, 130.0, 128.9, 119.2, 70.8, 26.3,:14.1
LRMS (ESI)m/z (relative intensity): 286.0 (100%), 288.0 (95%80D (8%); HRMS

(ESI)m/z [M + Na]" calcd for GoHgClsNO: 285.9564, found: 285.9561.

4-(4-Bromophenoxy)butanenitrile (1u).
General procedure A: The product was obtained tlmrextraction as a colourless
amorphous solid (0.181 g, 75 %). CAS: 439798-56¥9:38-40 °C (lit® mp 62 °C, lit*’

mp <25 °C); TLC R(20 % ethyl acetate, 80 % hexanes): 0.40; IR (Kidn film) v,

(cm™): 2930, 2249, 1489, 1244, 1052t NMR (400 MHz, CDCY) &(ppm): 7.38 (2H, d,
J=9.0 Hz), 6.78 (2H, d] = 9.0 Hz), 4.05 (2H, t) = 5.7 Hz), 2.58 (2H, ] = 7.2 Hz),
2.14 (2H, app pented,= 6.4 Hz) (consistent with If£*%; *C NMR (100 MHz, CDGJ)
d(ppm): 157.5, 132.3, 119.1, 116.3, 113.2, 65.63,2B4.1 (consistent with [it); LRMS
(ESI) mvz (relative intensity): 262.0 (97%), 264.0 (100%RMS (ES)m/z. [M + Na]

calcd for GgH10BrNO: 261.9838, found: 261.9845.

4-(2,4-Dibromophenoxy)butanenitrile (1v).
General procedure A: Flash column chromatograp@y43:thyl acetate, 70 % hexanes)

yielded the product as a colourless crystallinelg@.209 g, 65 %). CAS: 1340260-50-5;
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mp 56-58 °C; TLC R(30 % ethyl acetate, 70 % hexanes): 0.22; IR (Kin film) V.,

(cm™): 2950, 2878, 2249, 1556, 1245, 1069, 1dB4NMR (400 MHz, CDCJ) d(ppm):
7.68 (1H, dJ = 2.4 Hz), 7.37 (1H, ddl = 8.7 Hz,J = 2.4 Hz), 6.77 (1H, d] = 8.7 Hz),
4.11 (2H, tJ = 5.6 Hz), 2.67 (2H, t] = 7.1 Hz), 2.19 (2H, app pentéts 6.3 Hz);"*C
NMR (100 MHz, CDC}) &(ppm): 153.9, 135.4, 131.3, 119.0, 114.5, 113.8,1,166.6,
25.3, 14.0; LRMS (APCIz (relative intensity): 317.9 (17%), 319.9 (10093)1®

(18%); HRMS (APCIyz [M + H]" calcd for GgHgBroNO: 317.9124, found: 317.9124.

4-(2,6-Dibromophenoxy)butanenitrile (1w).
General procedure A: The product was obtained ffmrextraction as a colourless oll
(0.147 g, 46 %). CAS: 1016834-03-9; mp <25 °C; TRCG20 % ethyl acetate, 80 %

hexanes): 0.42; IR (KBr, thin filmiy,., (cmY): 3074, 2950, 2878, 2249, 1556, 1245,

1069, 1034*H NMR (400 MHz, CDCJ) &(ppm): 7.50 (2H, dJ = 8.0 Hz), 6.88 (1H, {]
=8.1 Hz), 4.12 (2H, t) = 5.5 Hz), 2.75 (2H, t] = 7.3 Hz), 2.21 (2H, app pentdts 6.4
Hz); Y*C NMR (100 MHz, CDG)) &(ppm): 152.6, 132.9, 126.8, 119.5, 118.4, 70.3%,26.
14.3; LRMS (APCInvz (relative intensity): 317.9 (20%), 319.9 (1009313 (18%));

HRMS (APCI)m/z [M + H]" calcd for GoHeBroNO: 317.9124, found: 317.9114.

4-(2,4,6-Tribromophenoxy)butanenitrile (1x).

General procedure A: The product was obtained tlmrextraction as a colourless
crystalline solid (0.118 g, 30 %). CAS: 10399436}4np 87-88 °C; TLC R(20 % ethyl
acetate, 80 % hexanes): 0.42; IR (KBr, thin filim), (cm™): 3105, 3064, 2953, 2898,

2253, 1562, 1247, 103%1 NMR (400 MHz, CDCY) &(ppm): 7.65 (2H, s), 4.10 (2H, 1,

30
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=5.7 Hz), 2.73 (2H, 1) = 7.0 Hz), 2.20 (2H, app pentét= 6.4 Hz);"*C NMR (100
MHz, CDCk) &(ppm): 152.2, 135.3, 119.4, 119.0, 118.0, 70.54,2B4.3; LRMS (APCI)
m/z (relative intensity): 395.8 (5%), 397.8 (100%)939(93%), 401.8 (5%); HRMS

(APCI) mVz [M + H]" calcd for GoHgBrsNO: 395.8229, found: 395.8244.

4-(4-lodophenoxy)butanenitrile (1y).
General procedure A: The product was obtained tlmrextraction as a colourless
crystalline solid (0.217 g, 75 %). CAS: 79887-21r1p 59-60 °C; TLC R(20 % ethyl

acetate, 80 % hexanes): 0.37; IR (KBr, thin filim),, (cmY): 3087, 3070, 2971, 2944,

2250, 1586, 1244, 1042, 51'H NMR (400 MHz, CDCJ) &(ppm): 7.56 (2H, dJ = 8.9
Hz), 6.67 (2H, dJ = 8.9 Hz), 4.03 (2H, t] = 5.8 Hz), 2.57 (2H, t] = 7.0 Hz), 2.12 (2H,
app pentet) = 6.4 Hz):**C NMR (100 MHz, CDGJ) &(ppm): 158.4, 138.4, 119.1, 117.0,
83.5, 65.5, 25.5, 14.3; LRMS (ESHz (relative intensity): 309.9 (100%); HRMS (ESI)

m/z. [M + Na]" calcd for GoH10INO: 309.9699, found: 309.9697.

4-(2,4,6-Triiodophenoxy)butanenitrile (1z).
General procedure A: The product was obtained tlmrextraction as a colourless

crystalline solid (0.143 g, 27 %). CAS: 1038977486 fp 137-138 °C; TLC R20 %

ethyl acetate, 80 % hexanes): 0.42; IR (KBr, tilim)f v__ (cm™): 2947, 2359, 1237,

1031, 557 H NMR (400 MHz, CDC}) &(ppm): 8.05 (2H, s), 4.06 (2H, 3= 5.6 Hz),
2.75 (2H, tJ = 7.2 Hz), 2.25 (2H, app pentéts 6.4 Hz);"*C NMR (100 MHz, CDG))

3(ppm): 157.4, 147.5, 119.5, 91.9, 89.8, 70.3, 245 LRMS (APCI)Wz (relative
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intensity): 412.9 (100%), 539.8 (5%); HRMS (AP@i)z [M + H]" calcd for

C1oHsglsNO: 539.7813, found: 539.7790.

Preparation of Rearrangement Products 2a, 2c-g, 2pr-t, 2w, and Products 3, 4 and

5

General Procedure B

To a round-bottom flask was added the rearrangesudtrate) (0.5 mmol) and the
flask was evacuated and backfilled with nitrogened¢ttimes. Anhydrous DMF (10 mL)
was added and the solution was cooled with stinisigg an ice water cooling bath.
Sodium hydride (60% dispersion in oil) (0.030 ¢g/®mmol, 1.5 equiv.) was added and
low temperature was maintained for 10 minutes. fBaetion mixture was removed from
the cooling bath and brought to a temperature ficaraount of time as described in
Table 2andTable 3. The solution was neutralized at room temperattitie 1 M HClaq),
diluted with ethyl acetate (20 mL), washed with IH@|q) (15 mL), and washed with
water (2x 20 mL). The organic layer from the extraction wagd, filtered, and

concentrated.

General Procedure C

To a round-bottom flask was added the rearrangesudtrateX) (0.5 mmol) and the
flask was evacuated and backfilled with nitrogeneé¢htimes. Anhydrous DMSO (10 mL)
was added followed by sodium hydride (60% dispergnooil) (0.030 g, 0.75 mmol, 1.5

equiv.) and the reaction mixture was stirred foth2@rs. The solution was neutralized

32
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with 1 M HCl,q), diluted with ethyl acetate (20 mL), washed witMHClq) (15 mL),
and washed with water 20 mL). The organic layer from the extraction wlagd,

filtered, and concentrated.

4-Hydroxy-2-(4-nitrophenyl)butanenitrile (2a).
General Procedure B: Flash column chromatograpby44thyl acetate, 60 % hexanes)

yielded the product as a yellow oil (0.088 g, 86 #p <25 °C; TLC R(40 % ethyl

acetate, 60 % hexanes): 0.26; IR (KBr, thin filin),, (cmY): 3413, 3081, 2937, 2245,

1524, 1348, 1049, 8524 NMR (400 MHz, CDCY) 3(ppm): 8.27 (2H, dJ = 8.8 Hz),
7.59 (2H, dJ = 8.8 Hz), 4.29 (1H, ddl = 9.0 Hz,J = 6.5 Hz), 3.93-3.88 (1H, m), 3.77-
3.72 (1H, m), 2.26-2.08 (2H, m), 1.85 (1H, br'$};NMR (400 MHz, (CR),SO)
3(ppm): 8.28 (2H, dJ = 8.8 Hz), 7.71 (2H, d] = 8.8 Hz), 4.87 (1H, 1) = 5.0 Hz), 4.51
(1H, dd,J = 8.9 Hz,J = 6.5 Hz), 3.57-3.35 (2H, m), 2.10 (1H, ddit 14.0 Hz,J = 8.5
Hz,J = 5.5 Hz), 2.03-1.95 (1H, m)*C NMR (100 MHz, CDGJ) 3(ppm): 147.8, 142.8,
128.6, 124.4, 119.8, 58.6, 37.9, 33% NMR (100 MHz, (CR),S0)&(ppm): 147.1,
143.7, 129.0, 124.1, 120.5, 57.5, 37.2, 32.6; LRKESI) m/z (relative intensity): 229.1

(100%); HRMS (ESI)Wz [M + Na]" calcd for GoH10N2O3: 229.0584, found: 229.0577.

4-Hydroxy-2-(2-nitrophenyl)butanenitrile (2c).

General Procedure B: Flash column chromatograpby{®thyl acetate, 50 % hexanes)
yielded the product as a light yellow oil (0.097¢,%). mp <25 °C; TLC R50 % ethyl
acetate, 50 % hexanes): 0.29; IR (KBr, thin film),, (cm™): 3346, 3110, 2886, 2244,
1529, 1350, 1055, 8444 NMR (400 MHz, CDC}) 3(ppm): 8.04 (1H, ddj = 8.3 Hz,J
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= 1.3 Hz), 7.80 (1H, dd] = 7.7 Hz,J = 1.5 Hz), 7.72 (1H, app td,= 7.6 Hz,J = 1.3
Hz), 7.54 (1H, app td] = 7.8 Hz,Jd = 1.5 Hz), 4.94 (1H, dd} = 9.3 Hz,J = 5.3 Hz),
3.91-3.84 (2H, m), 2.27-2.16 (2H, m), 1.84 (1Hshr*C NMR (100 MHz, CDGJ)
3(ppm): 148.0, 134.3, 130.9, 130.5, 129.6, 125.8,9,159.6, 37.9, 30.6; LRMS (ESI)
m/z (relative intensity): 229.1 (100%); HRMS (E$tjz [M + Na]" calcd for

Ci10H10N203: 229.0584, found: 229.0591.

4-Hydroxy-2-(2,4-dinitrophenyl)butanenitrile (2d).

General Procedure B: Flash column chromatograpby4®thyl acetate, 50 % hexanes)
yielded the product as a light yellow oil (0.02528,%) and 2,4-dinitrophenol (0.008 g, 9
%). mp <25 °C; TLC R(40 % ethyl acetate, 60 % hexanes): 0.19; IR (Kidn film)

V.. (cm®): 3112, 2924, 2888, 2248, 1537, 1349, 106BNMR (400 MHz, CDC))

3(ppm): 8.90 (1H, dJ = 2.5 Hz), 8.55 (1H, dd} = 8.7 Hz,J = 2.5 Hz), 8.07 (1H, d] =
8.8 Hz), 5.07 (1H, dd] = 9.3 Hz,J = 5.3 Hz), 3.94-3.89 (2H, m), 2.30-2.16 (2H, mp7L
(1H, t,J = 4.4 Hz);*3C NMR (100 MHz, CDGCJ) 8(ppm): 148.1, 147.9, 137.5, 132.2,
128.2,121.1, 118.7, 59.4, 37.6, 31.0; LRMS (ES8Y (relative intensity): 274.0 (100%);

HRMS (ESI)m/z. [M + Na]" calcd for GoHoN3Os: 274.0434, found: 274.0442.

4-Hydroxy-2-(4-cyanophenyl)butanenitrile (2e).
General Procedure B: Flash column chromatograpl8y (Bethanol, 98 %
dichloromethane) yielded the product as a lighkoyebil (0.054 g, 58 %) and recovered

reactantle (0.013 g, 14 %). mp <25 °C; TLG 60 % ethyl acetate, 40 % hexanes):

0.22; IR (KBr, thin film) 7, (cm™®): 3512, 3096, 2936, 2232, 1049, 833;NMR (400

max

34
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MHz, CDCk) &(ppm): 7.71 (2H, dJ = 8.4 Hz), 7.52 (2H, d] = 8.4 Hz), 4.22 (1H, dd)},
= 9.0 Hz,J = 6.5 Hz), 3.92-3.85 (1H, m), 3.76-3.70 (1H, mR3&2.05 (2H, m), 1.65
(1H, t,J = 4.3 Hz);*3C NMR (100 MHz, CDGJ) 8(ppm): 140.9, 133.1, 128.5, 119.7,
118.2,112.6, 58.8, 38.0, 33.8; LRMS (EBIY (relative intensity): 209.1 (100%);

HRMS (ESI)m/z: [M + Na]" calcd for GiH1oN»0: 209.0685, found: 209.0684.

4-Hydroxy-2-(2-cyanophenyl)butanenitrile (2f).
General Procedure C: Flash column chromatografy4 ethyl acetate, 60 % hexanes)

yielded the product as a colourless oil (0.04249%#) and3 (0.029 g, 31 %). mp <25 °C;

TLC R: (40 % ethyl acetate, 60 % hexanes): 0.23; IR (Kin film) V__ (cm™): 3446,

max

2934, 2886, 2227, 10551 NMR (400 MHz, CDCY) §(ppm): 7.73-7.67 (3H, m), 7.50-
7.46 (1H, m), 4.54 (1H, dd,= 8.4 Hz,J = 6.6 Hz), 3.92-3.80 (2H, m), 2.26-2.18 (2H,
m), 1.66 (1H, br s)**C NMR (100 MHz, CDG)) 3(ppm): 139.5, 134.0, 133.7, 129.0,
128.7,119.3, 116.8, 111.9, 59.3, 38.0, 32.7; LRHESI) m/z (relative intensity): 209.1

(100%); HRMS (ESIywz [M + Na]J* calcd for G;H1gN,O: 209.0685, found: 209.0691.

4-Hydroxy-2-(6-cyanonaphthalen-2-yl)butanenitrile g).

General Procedure B: Flash column chromatograpby4®thyl acetate, 50 % hexanes)
yielded the product as a colourless crystallinelg@.073 g, 64 %). mp 77-78 °C; TLC
R (40 % ethyl acetate, 60 % hexanes): 0.11; IR (Kin film) Vv, (cm): 3060, 2959,
2934, 2886, 2229, 1050, 828§ NMR (400 MHz, CDCY) 5(ppm): 8.24 (1H, s), 7.96-
7.93 (3H, m), 7.66 (1H, d),= 8.6 Hz), 7.59 (1H, d] = 8.6 Hz), 4.35 (1H, t] = 7.6 Hz),
3.95-3.89 (1H, m), 3.79-3.74 (1H, m), 2.30-2.17 (21); °C NMR (100 MHz, CDGJ)
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o(ppm): 136.5, 134.8, 134.0, 131.8, 129.8, 129.3,4,2126.9, 126.8, 120.4, 119.0,
110.2, 59.0, 38.1, 33.9; LRMS (ESWz (relative intensity): 259.1 (100%); HRMS (ESI)

m/z. [M + Na]J" calcd for GsH1oN,O: 259.0842, found: 259.0837.

4-Hydroxy-2-[4-(benzoyl)nitrophenyl]butanenitrile (2)).

General Procedure B: Flash column chromatograpby4®thyl acetate, 50 % hexanes)
yielded the product as a light yellow oil (0.0937,%) and recovered reactdft0.016

g, 12 %). mp <25 °C; TLC K50 % ethyl acetate, 50 % hexanes): 0.20; IR (Kldn

film) 7. (cm): 3482, 3060, 2933, 2243, 1652, 1281, 1049, #4NMR (400 MHz,

CDCL;) 3(ppm): 7.84-7.78 (4H, m), 7.61 (1H, apd & 7.4 Hz), 7.52-7.48 (4H, m), 4.23
(1H, dd,J = 9.0 Hz,J = 6.6 Hz), 3.92-3.86 (1H, m), 3.78-3.72 (1H, mR&22.09 (2H,
m), 2.05 (1H, br s)*C NMR (100 MHz, CDGJ) 3(ppm): 196.2, 140.1, 137.6, 137.3,
132.9, 131.0, 130.1, 128.5, 127.6, 120.3, 58.9,,3B.6; LRMS (ESIi/z (relative
intensity): 288.1 (95%), 553.2 (100%), 818.3 (3544RMS (ESI)m/z [M + Na]* calcd

for C17H1sNO,: 288.0995, found: 288.1002.

4-Hydroxy-2-(2,4-dichlorophenyl)butanenitrile (2r).

General Procedure C: Flash column chromatograph9q2thyl acetate, 80 % hexanes)
yielded the product as a colourless oil (0.04823%4) and recovered reactdnt(0.026 g,
23 %). mp <25 °C; TLC R20 % ethyl acetate, 80 % hexanes): 0.17; IR (KlBn film)
Vax (CMTY): 3446, 2885, 2245, 1475, 1045 NMR (400 MHz, CDCJ) §(ppm): 7.51

(1H, d,J = 8.4 Hz), 7.44 (1H, d] = 2.2 Hz), 7.33 (1H, ddl = 8.4 Hz,J = 2.2 Hz), 4.53

(1H, dd,J = 9.5 Hz,J = 5.6 Hz), 3.90-3.81 (2H, m), 2.20-2.05 (2H, mB3L(1H, br s);

36
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13C NMR (100 MHz, CDG) &(ppm): 135.2, 133.7, 132.2, 130.2, 130.1, 128.9,81
59.5, 36.6, 31.1; LRMS (ESHvz (relative intensity): 252.0 (100%) 254.0 (61%); MR

(ESI)m/z [M + Na]" calcd for GoHoCI.NO: 251.9953, found: 251.9950.

4-Hydroxy-2-(2,6-dichlorophenyl)butanenitrile (2s).
General Procedure C: Flash column chromatographyq4thyl acetate, 60 % hexanes)

yielded the product as a colourless oil (0.06563%8. mp <25 °C; TLC R(40 % ethyl
acetate, 60 % hexanes): 0.30; IR (KBr, thin fildfy), cm(): 3444, 2941, 2884, 2244,

1436, 1057, 782*H NMR (400 MHz, CDCY) 3(ppm): 7.37 (2H, dJ = 8.1 Hz), 7.23

(1H, dd,J = 8.7 Hz,J = 7.5 Hz), 5.06 (1H, dd} = 9.0 Hz,J = 6.6 Hz), 3.93-3.85 (1H, m),
3.81-3.75 (1H, m), 2.52-2.44 (1H, m), 2.17-2.08 (i), 1.62 (1H, br t) = 4.7 Hz);**C
NMR (100 MHz, CDC}) §(ppm):135.3, 130.8, 130.1, 129.4 (br), 118.4, 5837, 29.4;
LRMS (ESI)m/z (relative intensity): 252.0 (100%), 483.0 (37%RMS (ESI)m/z [M +

Na]" calcd for GoHgCIo,NO: 251.9953, found: 251.9950.

4-Hydroxy-2-(2,4,6-trichlorophenyl)butanenitrile (2t).

General Procedure B: Flash column chromatograph@{&thyl acetate, 65 % hexanes)
yielded the product as a colourless crystallinelg@l.033 g, 25 %) and recovered
reactantlt (0.065 g, 49 %).

General Procedure C: Flash column chromatograph9q&thyl acetate, 65 % hexanes)
yielded the product as a colourless crystallinelg@l.045 g, 34.3 %) and recovered

reactantlt (0.027 g, 20.1 %). mp 74-76 °C; TLG B85 % ethyl acetate, 65 % hexanes):

0.42; IR (KBr, thin film)V__ (cm): 3078, 2939, 2886, 2246, 1168, 1083;NMR (400

max
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MHz, CDCL) &(ppm): 7.40 (2H, s), 5.02 (1H, ddi= 9.1 Hz,J = 6.6 Hz), 3.92-3.86 (1H,
m), 3.80-3.75 (1H, m), 2.46 (1H, dddbs 14.2 Hz,J = 9.3 Hz,J = 5.6 Hz,J = 4.3 Hz),
8.09 (1H, ddddj = 14.2 HzJ = 8.5 Hz,J = 6.3 Hz,J = 4.8 Hz), 1.57 (1H, br s}°C

NMR (100 MHz, CDC}) §(ppm): 135.9, 135.3, 129.6, 129.4 (br), 118.0, 5936, 29.2;
LRMS (ESI)nvz (relative intensity): 286.0 (100%), 288.0 (919902 (6%); HRMS

(ESI)m/z [M + Na]" calcd for GoHgCIsNO: 285.9564, found: 285.9555.

4-Hydroxy-2-(2,6-dibromophenyl)butanenitrile (2w).

General Procedure C: Flash column chromatograph9q&thyl acetate, 70 % hexanes)
yielded the product as a colourless oil (0.03709%8, recovered reactahtv (0.037 g,

30 %), and 2,6-dibromophenol (0.040 g, 41 %). mp «2; TLC R (30 % ethyl acetate,

70 % hexanes): 0.22; IR (KBr, thin film¥),,,  (Cth 3443, 2934, 2883, 2242, 1576,

1430, 1058'H NMR (400 MHz, CDCY) 5(ppm): 7.60 (2H, dJ = 8.1 Hz), 7.06 (1H, 1]
=8.1 Hz), 5.15 (1H, ddl = 9.3 Hz,J = 6.3 Hz), 3.94-3.87 (1H, m), 3.85-3.78 (1H, m),
2.53 (1H, qdJ = 9.4 Hz,J = 4.7 Hz), 2.14 (1H, dddd,= 13.9 HzJ = 8.6 HzJ = 6.3
Hz,J = 5.1 Hz), 1.55 (1H, br ] = 5.5 Hz);**C NMR (100 MHz, CDG)) 3(ppm): 134.5
(br), 133.4, 133.0 (br), 130.9, 125.7 (br), 1241),(118.3, 59.4, 34.5, 33.7; LRMS (ESI)
Mz (relative intensity): 339.9 (48%), 341.9 (1009833 (45%); HRMS (ESIwz [M

+ NaJ' calcd for GoHgBroNO: 339.8943, found: 339.8927.

1,2-Dihydrofuro[2,3-clisoquinolin-5-amine (3).
To a round-bottom flask was added the rearrangesudtrate () (0.093 g, 0.5 mmol)

and the flask was evacuated and backfilled wittogén three times. Anhydrous DMF

38
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(10 mL) was added and the solution was cooled stithing using an ice water cooling
bath. Sodium hydride (60% dispersion in oil) (0.@3®.75 mmol, 1.5 equiv.) was added
and low temperature was maintained for 10 minuls.reaction mixture was removed
from the cooling bath and brought to 60 °C for 2Qifs. The solution was neutralized at
room temperature with 1 M Hgd), diluted with ethyl acetate (20 mL), washed withi1
HClaq) (15 mL), and washed with water 20 mL). The organic layer from the
extraction was dried, filtered, and concentratedsli column chromatography (50 %
ethyl acetate, 50 % hexanes) yielded the produahasange crystalline solid (0.015 g,
17 %). CAS: 194724-61-3; mp 188 °C (dec.){1iL09-192 °C); TLC R(40 % ethyl
acetate, 60 % hexanes): 0.2d:NMR (400 MHz, CDCJ) 5(ppm): 7.71 (1H, d) = 8.5
Hz), 7.55 (1H, t) = 7.5 Hz), 7.43 (1H, d] = 8.3 Hz), 7.22 (1H, ] = 7.7 Hz), 5.14 (2H,
brs), 4.71 (2H, t) = 8.7 Hz), 3.33 (2H, t] = 8.7 Hz) (consistent with Iff); LRMS

(ESI) m/z (relative intensity): 187.1(100%); HRMS (EStjz: [M + H]" calcd for

C11H10N,O: 187.0866, found: 187.0860.

(2E)-2-[(2-Hydroxyphenyl)(phenyl)methylidene]but-3-enaitrile (4).

To a round-bottom flask was added the rearrangesudtrate k) (0.133 g, 0.5 mmol)
and the flask was evacuated and backfilled wittogén three times. Anhydrous DMSO
(10 mL) was added followed by sodium hydride (60%fpdrsion in oil) (0.030 g, 0.75
mmol, 1.5 equiv.) and the reaction mixture wagetirfor 20 hours. The solution was
neutralized with 1 M HGlg), diluted with ethyl acetate (20 mL), washed witMHClq)
(15 mL), and washed with water ¥20 mL). The organic layer from the extraction was

dried, filtered, and concentrated. Flash colummetatography (50 % ethyl acetate, 50 %
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hexanes) yielded the product as a colourless dliystaolid (0.106 g, 85 %). mp 111-

113 °C; TLC R (30 % ethyl acetate, 70 % hexanes): 0.50; IR (Ki8n film) v__ (cm

1: 3061, 2220, 1643, 1603, 1268 NMR (400 MHz, CDCY) 5(ppm): 7.49-7.47 (2H,

m), 7.42-7.36 (3H, m), 7.31 (1H, ddb= 8.2 Hz,J = 7.2 Hz,J = 1.9 Hz), 7.02 (1H, dd,
J=7.7Hz,J=2.0 Hz), 6.97 (1H, td] = 7.2 Hz,J = 1.0 Hz), 6.91 (1H, dd} = 8.3 Hz,J

= 0.8 Hz), 6.32 (1H, dd] = 17.1 Hz,J = 10.5 Hz), 5.89 (1H, d| = 17.0 Hz), 5.44 (1H, d,
J=10.5 Hz), 4.86 (1H, br s)°C NMR (100 MHz, CDG)) &(ppm): 153.0, 152.2, 138.3,
131.4, 131.3, 131.2, 130.4, 129.5, 128.8, 124.9,0,220.8, 116.9, 116.9, 113.1; LRMS
(ESI) m/z (relative intensity): 270.1 (100%), 517.2 (37%RMS (ESI)m/z: [M + NaJ"

calcd for G/H13sNO: 270.0889, found: 270.0889.

5,7-Dibromo-3,4-dihydro-2H-chromene-4-carbonitrile (5).

To a round-bottom flask was added the rearrangesudtrate(x) (0.199 g, 0.5 mmol)
and the flask was evacuated and backfilled wittogén three times. Anhydrous DMF
(10 mL) was added and the solution was cooled stithng using an ice water cooling
bath. Sodium hydride (60% dispersion in oil) (0.@3®.75 mmol, 1.5 equiv.) was added
and low temperature was maintained for 10 minuibs. reaction mixture was removed
from the cooling bath and brought to 40 °C for 20ifs. The solution was neutralized at
room temperature with 1 M Hgd), diluted with ethyl acetate (20 mL), washed withl1
HClaq) (15 mL), and washed with water 20 mL). The organic layer from the
extraction was dried, filtered, and concentratedsli-column chromatography (20 %
ethyl acetate, 80 % hexanes) yielded the produatcatourless crystalline solid (0.064 g,

40 %) recovered reactaihx (0.046 g, 23 %). mp 132-133 °C; TLG R0 % ethyl

40
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acetate, 80 % hexanes): 0.49: IR (KBr, thin fildy), cmf): 2929, 2887, 2237, 1228,

1077, 1059'H NMR (400 MHz, CDCY) §(ppm): 7.37 (1H, dJ = 2.0 Hz), 7.05 (1H, d]
=2.0 Hz), 4.45 (1H, ddfl = 11.6 Hz,J = 3.8 Hz,J = 2.0 Hz), 4.26 (1H, td] = 12.2 Hz,J
=2.0 Hz), 4.04 (1H, dfj = 5.4 Hz,J = 1.8 Hz), 2.39 (1H, dg} = 14.3 HzJ = 2.2 Hz),
2.22 (1H, ddddJ = 14.3 Hz,J = 12.5 Hz,J = 5.5 Hz,J = 3.8 Hz);**C NMR (100 MHz,
CDCls) 8(ppm): 156.1, 127.8, 125.7, 123.6, 120.6, 118.4,8,163.2, 27.8, 25.8; LRMS
(ESI) m/z (relative intensity): 337.9 (49%), 339.9 (100913 (46%); HRMS (ESI)

m/z. [M + Na]J" calcd for GoH,Br,NO: 337.8787, found: 337.8782.

In situ Preparation of Meisenheimer intermediate

[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)ado)-15-azanyl]oxidanide.

To a5 mm NMR tube was added the rearrangementratdg a) (0.010g, 0.05 mmol)
dissolved in (CB),SO (99.5 atom%H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60%
dispersion in oil) (0.002 g, 0.05 mmol, 1 equivgsaadded and the reaction mixture was
vortexed repeatedly over 16 houlid.NMR (400 MHz, (CR2),SO)d(ppm): 7.38 (1H, dd,
J=9.5Hz,J=2.4Hz), 7.34 (1H, dd} = 9.5 Hz,J = 2.4 Hz), 6.38 (1H, dd] = 9.5 Hz,J

= 2.4 Hz), 6.22 (1H, dd] = 9.5 Hz,J = 2.4 Hz), 4.61 (1H, br s), 3.42-3.33 (2H, m),&.2
(2H, m);**C NMR (100 MHz, (CR),SO)3(ppm): 148.4, 127.6, 125.7, 125.2, 124.5,

117.1, 113.2, 74.0, 60.0, 59.9, 32.2, 32.1.
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Copies of'H and**C NMR spectra of compoundsz, 2a, 2¢6-g, 2j, 2r—t, 2w, 3, 4, and

5.
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