

Truce-Smiles rearrangement of substituted phenyl ethers

Journal: Organic & Biomolecular Chemistry					
Manuscript ID:	OB-ART-04-2015-000812.R1				
Article Type:	Paper				
Date Submitted by the Author:	15-May-2015				
Complete List of Authors:	Kosowan, Joel; The University of Winnipeg, Department of Chemistry W'Giorgis, Zemane; The University of Winnipeg, Department of Chemistry Grewal, Ravneet; The University of Winnipeg, Department of Chemistry Wood, Tabitha; The University of Winnipeg, Department of Chemistry				
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.					
Equation 4.cdx					

SCHOLARONE[™] Manuscripts

Joel R. Kosowan, Zemane W'Giorgis, Ravneet Grewal, Tabitha E. Wood* Department of Chemistry, The University of Winnipeg, 515 Portage Avenue, Winnipeg,
Joel R. Kosowan, Zemane W'Giorgis, Ravneet Grewal, Tabitha E. Wood* Department of Chemistry, The University of Winnipeg, 515 Portage Avenue, Winnipeg,
Department of Chemistry, The University of Winnipeg, 515 Portage Avenue, Winnipeg,
Department of Chemistry, The University of Winnipeg, 515 Portage Avenue, Winnipeg,
Manitoba, Canada, R3B 2E9
* corresponding author: te.wood@uwinnipeg.ca
Abstract:
The requirement of aryl ring activation by strong-electron withdrawing substituents in
substrates for the intramolecular nucleophilic aromatic substitution reaction known as the
Truce-Smiles rearrangement was examined. Preliminary mechanistic experiments support
the S_NAr mechanism, including ¹ H and ¹³ C NMR spectra of a Meisenheimer intermediate
formed in situ. The rearrangement was generally observed to be successful for substrates
with strong electron withdrawing substituents, such as nitro-, cyano-, and benzoyl-
functional groups, but also for those with multiple, weakly electron withdrawing
substituents, such as chloro- and bromo- functional groups. These results lend further
clarification to the effect of aryl substituents in this type of S_NAr reaction. Additionally,
the survey revealed several tandem cyclization and/or elimination reactions accessed by
certain substrates.

24 Introduction

44

25 The Truce-Smiles rearrangement is a relatively unknown and unexploited intramolecular nucleophilic aromatic substitution reaction that forms an arvl-sp³ C-C 26 27 bond concomitant with breaking a C-heteroatom bond. The reaction can therefore be seen 28 as a perfectly atom economical method for replacing an easily-formed chemical bond 29 with one that is of greater synthetic value and which, despite its interesting mechanism 30 and great synthetic potential, remains quite unstudied and possibly misunderstood. The 31 eponymous Truce-Smiles rearrangement (Equation 1) was first reported by Truce in the 1950s.¹ with a related reaction having been reported by Dohmori previously.² The 32 33 reaction has received scattered attention in the literature since that time, with increased interest³⁻¹¹ within recent years. 34

35 Interestingly, the definition of the Truce-Smiles rearrangement has evolved from 36 Truce's original classification to become more inclusive with respect to activating 37 substituents on the migrating aromatic ring of the substrate, although more restrictive with respect to mechanism.¹² This more inclusive description defines the reaction as a 38 39 variation of the Smiles rearrangement, with the Truce variant distinguished by a 40 carbanion nucleophile. The carbanion is typically generated by deprotonation, 41 necessitating the inclusion of a functional group to lower the pK_a of the adjacent protons 42 (shown as "Y" in Equation 1), unless the tether fulfills this function. 43 In the evolved definition of the reaction, the Truce-Smiles rearrangement is more

45 Equation 1, as is the accepted hypothesis for other examples of Smiles reactions. The

restrictively proposed to proceed through a bicyclic reaction intermediate, shown in

Organic & Biomolecular Chemistry

64

65 Results and Discussion

Our initial foray into the wide range of unexplored substrate structures viable for
 Truce-Smiles rearrangement focuses upon aryl ethers of 4-butanenitrile in which the aryl

68	group is a phenyl ring substituted with various neutral, aprotic, electron withdrawing
69	functional groups. The use of aryl ethers facilitated the synthesis of a variety of substrates
70	that were easily modified at key points of elaboration in substrate design. The substrates
71	incorporate a nitrile functional group to lend resonance stabilization to the proposed α -
72	carbanion nucleophile, which is disposed appropriately to the ring such as to proceed
73	through a five-membered ring spirocyclic Meisenheimer intermediate, favoured by
74	Smiles rearrangements. Generally, a modular approach was realized through alkylation of
75	an array of available substituted phenols allowing for examination of substituent effects
76	while maintaining a consistent distance between the carbanion nucleophile and the
77	electrophilic ring atom.
78	Compound 1a typifies the structure of the substrates examined herein - a phenyl
79	ring para-substituted with a nitro functional group is the epitome of a nucleophilic
80	aromatic substitution substrate. Consequently, 1a was used to perform the process of
81	determining optimized conditions for the Truce-Smiles rearrangement. Table 1 shows the
82	outcome of optimization experiments. The reaction was found to be strongly influenced
83	by solvent. Of the various polar aprotic solvents investigated, DMF provided the optimal
84	outcome (compare entry 1 to entries 2-5).
85	Despite reports in the literature suggesting the enhancement of intramolecular
86	nucleophilic aromatic substitution reaction rates by the inclusion of additives to
87	coordinate the countercation of the base, 17 addition of 10% (v/v)
88	hexamethylphosphoramide (HMPA), 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-
89	pyrimidinone (DMPU), or 1,3-dimethyl-2-imidazolidinone (DMI) did not improve the
90	yield (compare entries 1 to 6, 7, and 8, respectively). The reaction was observed to have

91	reached completion after reacting for four hours at 20° C (ambient lab temperature) or for
92	30 minutes at 40° C (compare entries 1 and 9). A hydrogen α -to the nitrile functional
93	group is predicted to have the highest acidity in the molecule with a pK_a of ~33. ¹⁸
94	Although all three non-nucleophilic bases examined were found to be suitable (compare
95	entry 1 to entries 10, 11, and 12), further reactions were performed using sodium hydride
96	due to the short duration of the reaction. A moderate excess of base was employed, as the
97	excess 0.5 equivalents had no apparent effect upon reaction outcome (compare entries 1
98	and 13). The reaction is concentration dependent, favoring dilute reaction conditions
99	(compare entries 1 and 14), as is the expected observation for promotion of the
100	intramolecular reaction of a highly reactive species. Optimization reactions were
101	performed using 0.5 mmol of substrate 1a; entry 15 demonstrates that the reaction
102	maintains a consistent yield when scaled-up conducted using 2.5 mmol of 1a.
103	

106 **Table 1:** Optimization study of Truce-Smiles rearrangement reaction conditions

entry	base	equivalents of	solvont	[1a]	Temp.	time	% yield
		base	solvent	(mM)	(° C)	(h)	2a

1	NaH	1.5	DMF	50	20	4	86
2	NaH	1.5	DMSO	50	20^{a}	4	75
3	NaH	1.5	dioxane	50	20	4	38
4	NaH	1.5	THF	50	20	4	-
5	NaH	1.5	acetonitrile	50	20	4	-
6	Nati	1.5	9:1	50	20	4	70
0	InaH	1.5	DMF:HMPA		20	4	12
7	NaU	1.5	9:1	50	20	1	70
	Inari	1.5	DMF:DMPU	50	20	Ŧ	17
0	Nett	NoH 1.5	9:1	50	20	4	78
0	INALL	1.5	DMF:DMI	50	20		
9	NaH	1.5	DMF	50	40	0.5	74
10	t-BuOK	1.5	DMF	50	20	4	80
11	LiHMDS	1.5	DMF	50	20	4	79
12	LiHMDS	1.5	THF	50	20	4	43
13	NaH	1.0	DMF	50	20	4	85

14	NaH	1.5	DMF	250	20	4	65
15	NaH	1.5	DMF	50 ^b	20	4	92

^a NaH addition performed at 20 ° C

^b Reaction performed at 5-times larger scale

110

111 As further evidence to support the proposed mechanism of this reaction, a series 112 of additional experiments were performed. Using the determined optimal conditions, the 113 reaction was performed in the presence of a competing intermolecular S_NAr substrate, 1-114 bromo-2,4-dinitrobenzene, with the overall concentration of substrates maintained at 50 115 mM. The absence of substituted 2.4-dinitrophenyl products supports the proposed 116 intramolecular nature of the reaction. To support the hypothesis of the reaction 117 proceeding via a classical polar S_NAr mechanism, the reaction was performed in the 118 presence of a radical scavenger, either TEMPO or 1,1-diphenylethylene. The yield of the 119 rearranged product, 2a, was unaffected by the presence of radical scavengers, supporting 120 the absence of a radical intermediate. The regioselectivity of the reaction, as indicated by 121 the exclusive formation of products with substitution patterns conserved from the 122 substrate, supports a S_NAr mechanism, over involving the participation of a benzyne 123 intermediate. An intense purple colour is observed upon the addition of base to a 124 colourless solution of substrate **1a**, that is dissipated upon the addition of aqueous acid. 125 This observation suggests the formation of a para-nitrophenyl derived Meisenheimer 126 intermediate, which typically exhibit strong absorption at appropriate visible wavelengths.¹⁹ Further, ¹H and ¹³C NMR spectra of the reaction mixture in (CD₃)₂SO 127 128 showed formation of an intermediate with spectral properties consistent with the

proposed anionic Meisenheimer intermediate.²⁰ The spectra show that C2 and C6 are not equivalent, and similarly C3 and C5, due to the unsymmetrical substitution of the cyclic ether ring. Consequently, H2 and H6 display a coupling constant J = 2.4 Hz, which is equal to that shared by H3 and H5, and is consistent with other reported unsymmetric nitro-substituted anionic intermediates.²¹

134 A series of substrates **1b-z** were prepared to examine the effect of substituents on 135 the aromatic ring upon the outcome of the attempted Truce-Smiles rearrangement. The 136 majority of the aryl ether substrates were successfully prepared in high yield following 137 the Williamson ether synthesis procedure that was successful for the preparation of **1a**. 138 However, the 2,4-dinitrophenyl substrate (1d) was synthesized using aqueous phasetransfer conditions modified from literature,²² and the 2,4-di(trifluoromethyl)phenyl 139 140 substrate (1i) was prepared using an Ullmann reaction procedure modified from literature.²³ 141

142 The ability of substrates **1b-z** to undergo Truce-Smiles rearrangement was 143 examined using the conditions optimized for prototypical substrate **1a**. Substrates that 144 yielded mixtures of products were subjected to lower temperatures or shorter reaction times, while those that failed to yield product were subjected to higher reaction 145 146 temperatures, to a maximum of 60 °C. The first series of substrates include strong 147 inductive and resonance electron withdrawing substituents (Table 2). As hypothesized, 148 substrates substituted with a nitro group at the para- (1a,d) or ortho- (1c,d) position made 149 suitable substrates for nucleophilic aromatic substitution, while meta- (1b) substitution 150 did not. The cyano group situated in a para- (1e) or ortho- (1f) position was sufficient to 151 activate the phenyl ring to nucleophilic aromatic substitution.

entry	1	-R	solvent	Temperature (° C)	time (h)	% yield 2
1	a	$4-NO_2$	DMF	20	4	86
2	b	3-NO ₂	DMF	60	20	-
3	c	2-NO ₂	DMF	0	1.5	94
4	d	2,4-di NO ₂	DMF	0	1.5	22
5	e	4–C≡N	DMF	40	20	58
6	f	2−C≡N	DMF	20	20	17 (3)
7	f	2–C≡N	DMSO	20 ^a	20	44

						31 (3)
8	g	6–C≡N–2–naphthyl	DMF	40	20	64
9	h	4–CF ₃	DMF	60	20	-
10	i	2,4–di CF ₃	DMF	60	20	-
11	j	4–C(O)Ph	DMF	40	20	70
12	k	2-C(O)Ph	DMF	20	20	81 (4)
13	k	2-C(O)Ph	DMSO	20 ^a	20	85 (4)

^a NaH addition performed at 20 ° C

160

Interestingly, the ortho-cyano group (1f) allowed for tandem cyclization 161 (Equation 2) to form the tricyclic product (3),²⁴ although the yield of the Truce-Smiles 162 163 rearrangement product (2f) could be increased by changing the medium of the reaction to 164 a DMSO solution (entry 7). The 6-cyano-2-naphthol derivative (1g) underwent the 165 rearrangement reaction in high yield, in keeping with the observation that extended aromatic systems are prone to S_NAr.²⁵ Surprisingly, the trifluoromethyl group provided 166 167 insufficient activation for substrates (1h, i), even at the highest reaction temperatures 168 examined. These results suggest the importance of resonance stabilization relative to 169 inductive stabilization of the anionic Meisenheimer intermediate proposed for these 170 reactions.

174 Equation 2: Proposed reaction to form 3 from 1f via tandem cyclization of 2f175

176 Benzophenone derivatives 1j and 1k were prepared as substrates to assess the 177 substituent effects of an acyl functional group without introducing acidic hydrogen atoms 178 that might interfere with the formation of the α -cyano carbanion nucleophile. The 179 benzovl functional group activates the substrate to rearrangement when situated at the 180 para- (1j) position. However, when situated at the ortho- position (1k), it blocked 181 reactivity. Subjecting substrate (1k) to reaction conditions in an attempt to promote a 182 Truce-Smiles rearrangement yielded only the highly-unsaturated diene product (4), the 183 result of an intramolecular attack at the electrophilic ketone carbonyl carbon atom by the 184 carbanion formed in situ, followed by subsequent elimination of the phenol ring and a 185 molecule of water (Equation 3). This suggests the approach of the nucleophile toward the 186 intended electrophilic aryl *ipso*-carbon may have been blocked by the position of the benzoyl functional group. Indeed, the ¹H NMR spectrum of **1k** shows a marked shielding 187

188 ($\Delta\delta \sim 0.7$ ppm) of the hydrogen atoms α - to the nitrile functional group of the

189 butanenitrile moiety, relative to the corresponding *para*-substituted substrate (1j). This

190 shielding of the ¹H NMR signal suggests that **1k** assumes a stable conformation in which

191 the phenyl ring of the benzoyl functional group is in close proximity to the nucleophilic

- 192 site.
- 193

194

195 Equation 3: Proposed reaction to form 4 from 1k

196

A second series of substrates was prepared to examine the effect of halogen
substituents upon the reactivity of substrates toward Truce-Smiles rearrangement (Table
3). The halogens are an interesting group of substituents to examine based upon their
varying degrees of contrasting resonance electron donating and inductive electron

201	withdrawing effects, in addition to varying steric effects. Fluoro (21-p) substituents
202	proved insufficient to activate the ring to Truce-Smiles rearrangement. This suggests that
203	the destabilizing resonance effect of fluoro substituents upon the anionic Meisenheimer
204	intermediate when positioned ortho- and para- is dominant to the stabilizing inductive
205	effect. ²⁶ The mono-chloro substituted substrate $(1q)$ did not undergo rearrangement under
206	the conditions examined, however appropriate di- $(1r,s)$ and tri-chloro substitution $(1t)$
207	provided effective activation. The decreased resonance effect of chloro substituents, and
208	therefore the decreased destabilization of the resulting Meisenheimer intermediate
209	relative to the fluoro-substituted substrates, likely explains some of the increased
210	reactivity observed for the chloro-substituted substrates. Additionally, the higher yield for
211	the di-ortho-substituted $(2s)$ product over the ortho, para-disubstituted $(2r)$ product
212	suggests that a steric effect attributable to the sterically-demanding ortho-chloro
213	substituents may also be ascribed a role in increasing reactivity. This increased reactivity
214	may be accomplished by favouring a more reactive conformation of the intermediate
215	anion due to steric strain, which leads to an increase in the rate of reaction of substrates
216	1s and 1t relative to 1r or to the ortho-fluoro substituted substrates. A similar steric effect
217	phenomenon has been proposed for Truce-Smiles reactions involving benzyl carbanions
218	of ortho-substituted diarylsulfones. ²⁷ Evidence of restricted rotation around the newly
219	formed aryl- $sp^{3}C$ bond can be seen in the ¹³ C NMR spectra of 2s and 2t , but is not
220	apparent in the spectrum of 2r .

223 **Table 3:** Scope of Truce-Smiles rearrangement with halogenated aryl substrates

entry	1	-R	solvent	Temperature (° C)	time (h)	% yield 2
1	1	4–F	DMF	60	20	-
2	m	2,4-di F	DMF	60	20	-
3	n	2,6-di F	DMF	60	20	-
4	0	2,4,6-tri F	DMF	60	20	-
5	р	2,3,4,5,6– penta F	DMF	60	20	-
6	q	4–Cl	DMF	60	20	-
7	r	2,4-di Cl	DMSO	20^{a}	20	42
8	s	2,6-di Cl	DMSO	20 ^a	20	56
9	t	2,4,6-tri Cl	DMF	40	20	25

10	t	2,4,6-tri Cl	DMSO	20^{a}	20	34
11	u	4–Br	DMF	60	20	-
12	v	2,4-di Br	DMF	60	20	-
13	w	2,6–di Br	DMF	60	20	30
14	x	2,4,6-tri Br	DMF	40	20	40 (5)
15	X	2,4,6-tri Br	DMSO	20^{a}	20	69 (1v)
16	у	4–I	DMF	60	20	-
17	Z	2,4,6-tri I	DMF	60	20	-

^a NaH addition performed at 20 ° C

226

227 The reactivity of the bromo-substituted substrates follows a similar trend to their 228 chloro-substituted analogues, showing no apparent reactivity for the mono-bromo 229 substrate (1p) and the ortho, para-dibromo substrate (1q) and increased reactivity in di-230 ortho substituted substrates 1w and 1x. Interestingly, the tri-bromo-substituted substrate 231 (1x) undergoes a tandem nucleophilic aromatic substitution of an ortho-bromo substituent 232 by the intermediate alkoxide of rearrangement product 2x to form the bicyclic chromene 233 compound 5 (Equation 4). Compound 1v is formed by debromination of 1x when the 234 rearrangement is attempted in DMSO. The iodo-substituted substrates (1y,z) failed to 235 show reactivity under the reaction conditions examined. These compounds may represent

- the limit at which electronic effects, although iodo substituents provide decreased
- 237 resonance destabilization of the Meisenheimer intermediate relative to fluoro
- 238 substituents, come to dominate any pre-organizing steric effects of the halogen
- substituents.
- 240

242 Equation 4: Proposed reaction to form 5 from 1x

- 244
- 245 Conclusion

246 This study has filled its intended goal of beginning a systematic survey of the substrate

- scope of the Truce-Smiles rearrangement. The results support the previously established
- 248 requirement for a strong-electron withdrawing substituent in the ortho- or para- positions
- 249 of the substrate aryl ring. However, the indispensability of a nitro group as that strong

250	electron withdrawing group has been challenged, revealing that the cyano group or an
251	aprotic acyl group may act as a replacement. Further, di- and tri-substitution with chloro
252	and bromo substituents, particularly in ortho-positions activates the substrate ring
253	sufficiently for Truce-Smiles rearrangement. The delicate balance of activation and
254	deactivation by steric effects of ortho-substituents has also been illustrated. Additionally,
255	the study has illuminated several interesting tandem reactions that involve the Truce-
256	Smiles rearrangement as the first chemical step toward the preparation of bicyclic and
257	tricyclic products.
258	
259	Experimental Section
260	
261	General Methods. All glassware used for Truce-Smile rearrangement reactions was
262	flame-dried under a vacuum and reactions were run under an inert atmosphere of
263	nitrogen. All reagents and solvents were commercial grade. All organic layers collected
264	from extractions were dried using anhydrous MgSO ₄ . Thin layer chromatography (TLC)
265	was performed using aluminum-backed silica gel plates (250 μ m) plates, and flash
266	column chromatography used 230-400 mesh silica. Compounds were visualized using
267	UV light ($\lambda = 254$ nm) and either phosphomolybdic acid or vanillin solutions. Melting
268	points were determined using a capillary melting point apparatus and are reported
269	uncorrected. FTIR spectra were recorded of samples as a thin film on a KBr plate
270	(transmission). ¹ H and ¹³ C{ ¹ H} NMR spectra were acquired on a 400 MHz instrument.
271	$^{13}\text{C}\{^{19}\text{F}\}$ and ^{19}F NMR spectra were acquired on a 500 MHz instrument. Chemical shifts
272	are reported relative to tetramethylsilane (TMS) as an internal standard set to δ 0.00 ppm

- 273 for ¹H, relative to the CDCl₃ solvent residual as an internal standard set to δ 77.16 ppm
- 274 for ¹³C, and relative to the CFCl₃ as an external standard set to $\delta 0$ ppm for ¹⁹F.
- 275 Multiplicities are reported as apparent (app), broad (br), singlet (s), doublet (d), triplet (t),
- 276 quartet (q) and combinations thereof, or multiplet (m). NMR data
- 277 were processed by using ACD/Labs SpecManager software, product version 12.00.
- 278 HRMS data was obtained by electrospray (ESI) using an ion trap.
- 279

280 Preparation of 4-Butanenitrile Aryl Ether Substrates 1a-z

281

282 General Procedure A

- 283 To a round-bottom flask fitted with a reflux condenser was added the substituted phenol
- 284 (1.1 mmol, 1.1 equiv), anhydrous potassium carbonate (0.138 g, 1.0 mmol, 1.0 equiv.), 4-
- bromobuytronitrile (0.10 mL, 1.0 mmol), and acetone (10 mL). The reaction mixture was
- heated with stirring to the boiling point of acetone using a heating block and reflux was
- 287 maintained for 20 hours. The solution was concentrated, diluted with ethyl acetate (20
- 288 mL), washed with 1 M HCl_(aq) (15 mL), and washed with 1 M NaOH_(aq) (2×15 mL). The

289 organic layer from the extraction was dried, filtered, and concentrated.

290

291 **4-(4-Nitrophenoxy)butanenitrile (1a).**

- 292 General procedure A: The product was obtained from the extraction as a light yellow
- 293 crystalline solid (0.204 g, 99%). CAS: 99072-20-5; mp 48-49 °C (lit.²⁸ mp 50-52 °C, lit.²⁹
- 294 mp 53-54 °C); TLC R_f (40% ethyl acetate, 60% hexanes): 0.44; IR (KBr, thin film) \overline{V}_{max}
- 295 (cm⁻¹): 3086, 2948, 2248, 1593, 1513, 1344, 1263, 1045, 846; ¹H NMR (400 MHz,

- 296 CDCl₃) δ (ppm): 8.17 (2H, d, J = 9.3 Hz), 6.98 (2H, d, J = 9.3 Hz), 4.20 (2H, t, J = 5.8
- 297 Hz), 2.66 (2H, t, J = 7.2 Hz), 2.22 (2H, app pentet, J = 6.5 Hz); ¹H NMR (400 MHz,
- 298 (CD₃)₂SO) δ (ppm): 8.22 (2H, d, J = 9.3 Hz), 7.17 (2H, d, J = 9.3 Hz), 4.22 (2H, t, J = 6.0
- 299 Hz), 2.72 (2H, t, J = 7.2 Hz), 2.11 (2H, app pentet, J = 6.6 Hz); ¹³C NMR (100 MHz,
- 300 CDCl₃) δ(ppm): 163.3, 141.5, 125.7, 119.0, 114.3, 66.1, 24.9, 13.9; ¹³C NMR (100 MHz,
- 301 (CD₃)₂SO) δ(ppm): 163.5, 141.0, 125.8, 120.1, 114.9, 66.9, 24.5, 13.3; LRMS (ESI) *m/z*
- 302 (relative intensity): 229.1 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{10}H_{10}N_2O_3$:
- 303 229.0584, found: 229.0586.
- 304

305 4-(3-Nitrophenoxy)butanenitrile (1b).

- 306 General procedure A: The product was obtained from the extraction as a light yellow
- 307 crystalline solid (0.197 g, 95 %). CAS: 19157-86-9; mp 53-54 °C (lit.³⁰ mp 50-54 °C);
- 308 TLC R_f (50 % ethyl acetate, 50 % hexanes): 0.54; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3098,
- 309 2941, 2248, 1530, 1352, 1248, 1048, 816; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.83
- 310 (1H, dd, J = 8.2 Hz, J = 1.9 Hz), 7.72 (1H, app t, J = 2.3 Hz), 7.45 (1H, app t, J = 8.3
- 311 Hz), 7.24 (1H, dd, *J* = 8.3 Hz, *J* = 2.5 Hz), 4.18 (2H, t, *J* = 5.8 Hz), 2.64 (2H, t, *J* = 7.1
- 312 Hz), 2.20 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 158.9,
- 313 149.2, 130.2, 121.5, 119.0, 116.2, 108.9, 66.1, 25.2, 14.2; LRMS (ESI) *m/z* (relative
- 314 intensity): 229.1 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{10}H_{10}N_2O_3$: 229.0584,

315 found: 229.0594.

316

317 **4-(2-Nitrophenoxy)butanenitrile (1c).**

- 318 General procedure A: The product was obtained from the extraction as a light yellow
- 319 amorphous solid (0.197 g, 96 %). CAS: 1184140-43-9; mp 44-46 °C; TLC R_f (50 % ethyl
- 320 acetate, 50 % hexanes): 0.34; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3056, 2957, 2250, 1522,
- 321 1359, 854; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.87 (1H, dd, J = 8.3 Hz, J = 1.6 Hz),
- 322 7.55 (1H, app td, J = 8.0 Hz, J = 1.7 Hz), 7.09-7.05 (2H, m), 4.24 (2H, t, J = 5.5 Hz),
- 323 2.69 (2H, t, J = 7.0 Hz), 2.20 (2H, app pentet, J = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃)
- δ(ppm): 151.3, 139.3, 134.1, 125.7, 120.5, 118.9, 114.3, 66.5, 24.8, 13.5; LRMS (ESI)
- 325 m/z (relative intensity): 229.1 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for
- $C_{10}H_{10}N_2O_3$: 229.0584, found: 229.0589.
- 327

328 **4-(2,4-Dinitrophenoxy)butanenitrile (1d).**

- 329 To a round-bottom flask fitted with a reflux condenser was added 2,4-dinitrophenol
- 330 (moistened with ~20% water, 0.460 g, 2.0 mmol), sodium hydroxide (0.184 g, 4.6 mmol,
- 331 2.3 equiv.), tetra-*n*-butylammonium iodide (0.0004 g, 1.2 μmol, 0.0006 equiv.), 4-
- bromobuytronitrile (0.40 mL, 4.0 mmol, 2.0 equiv.), and water (4 mL). The reaction
- mixture was heated with stirring to the boiling point of water using a heating block and
- reflux was maintained for 20 hours. The solution was extracted with ethyl acetate (40
- mL) and washed with 1 M NaOH_(aq) (2×30 mL). The organic layer from the extraction
- 336 was dried, filtered, and concentrated. Flash column chromatography (100 %
- dichloromethane) yielded the product as a light yellow amorphous solid (0.061 g, 12 %).
- 338 mp 49-51 °C; TLC R_f (100 % dichloromethane): 0.53; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹):
- 339 3117, 3089, 2951, 2892, 2249, 1537, 1346, 1032; ¹H NMR (400 MHz, CDCl₃) δ(ppm):
- 340 8.80 (1H, d, *J* = 2.7 Hz), 8.47 (1H, dd, *J* = 9.3 Hz, *J* = 2.7 Hz), 7.23 (1H, d, *J* = 9.3 Hz),

- 341 4.39 (2H, t, J = 5.7 Hz), 2.71 (2H, t, J = 6.9 Hz), 2.27 (2H, app pentet, J = 6.3 Hz); ¹³C
- 342 NMR (100 MHz, CDCl₃) δ(ppm): 156.2, 140.8, 139.0, 129.4, 122.3, 118.6, 114.5, 67.9,
- 343 25.1, 14.1; LRMS (ESI) *m/z* (relative intensity): 274.0 (100%); HRMS (ESI) *m/z*: [M +
- 344 Na]⁺ calcd for $C_{10}H_9N_3O_5$: 274.0434, found: 274.0431.
- 345

346 4-(4-Cyanophenoxy)butanenitrile (1e).

- 347 General procedure A: The product was obtained from the extraction as a colourless
- 348 amorphous solid (0.182 g, 98 %). CAS: 1016732-57-2; mp 52-53 °C; TLC R_f (60 % ethyl
- 349 acetate, 40 % hexanes): 0.62; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3059, 2955, 2248, 2225,
- 350 1606, 1257, 839; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.60 (2H, d, J = 9.1 Hz), 6.96
- 351 (2H, d, *J* = 9.1 Hz), 4.14 (2H, t, *J* = 5.7 Hz), 2.61 (2H, t, *J* = 7.0 Hz), 2.18 (2H, app
- 352 pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 161.7, 134.2, 119.1, 118.9,
- 353 115.3, 104.7, 65.8, 25.3, 14.3; LRMS (ESI) *m/z* (relative intensity): 209.1 (100%);
- 354 HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{11}H_{10}N_2O + Na$: 209.0685, found: 209.0691.
- 355

356 4-(2-Cyanophenoxy)butanenitrile (1f).

- 357 General procedure A: Flash column chromatography (40 % ethyl acetate, 60 % hexanes)
- 358 yielded the product as a colourless amorphous solid (0.176 g, 94 %). CAS: 194724-60-2;
- 359 mp 48-50 °C (lit.²⁴ mp 48-49 °C); TLC R_f (40 % ethyl acetate, 60 % hexanes): 0.41; IR

360 (KBr, thin film) \overline{V}_{max} (cm⁻¹): 2949, 2889, 2228, 1599, 1260, 1045 (consistent with lit.²⁴);

- 361 ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.59-7.53 (2H, m), 7.05 (1H, t, J = 7.6 Hz), 6.98
- 362 (1H, d, *J* = 8.5 Hz), 4.21 (2H, t, *J* = 5.7 Hz), 2.70 (2H, t, *J* = 7.1 Hz), 2.22 (2H, app
- 363 pentet, J = 6.4 Hz) (consistent with lit.²⁴); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 159.9,

- 364 134.5, 133.8, 121.5, 118.9, 116.2, 112.4, 102.2, 66.2, 25.2, 14.1; LRMS (ESI) *m/z*
- 365 (relative intensity): 209.1 (100%), 395.2 (18%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for
- $C_{11}H_{10}N_2O: 209.0685$, found: 209.0692.
- 367

368 **4-[(6-Cyanonaphthalen-2-yl)oxy]butanenitrile (1g).**

- 369 General procedure A: The product was obtained from the extraction as a light brown
- 370 crystalline solid (0.192 g, 81 %). mp 104-105 °C; TLC R_f (40 % ethyl acetate, 60 %
- 371 hexanes): 0.44; IR (KBr, thin film) \overline{V}_{max} (cm⁻¹): 2223, 1267; ¹H NMR (400 MHz, CDCl₃)
- 372 δ(ppm): 8.07 (1H, d, J = 1.0 Hz), 7.75-7.72 (2H, m), 7.52 (1H, dd, J = 8.5 Hz, J = 1.5
- 373 Hz), 7.22 (1H, dd, *J* = 9.1 Hz, *J* = 2.5 Hz), 7.14 (1H, d, *J* = 2.5 Hz), 4.22 (2H, t, *J* = 5.8
- 374 Hz), 2.64 (2H, t, J = 7.0 Hz), 2.22 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz,
- 375 CDCl₃) δ(ppm): 158.7, 136.2, 133.7, 130.1, 127.8, 127.1, 120.5, 119.5, 119.1, 106.9,
- 376 106.8, 65.6, 25.2, 14.2; LRMS (ESI) *m/z* (relative intensity): 259.1 (43%), 495.2 (100%);
- 377 HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₅H₁₂N₂O: 259.0842, found: 259.0838.
- 378

379 **4-[4-(Trifluoromethyl)phenoxy]butanenitrile (1h).**

- 380 General procedure A: Flash column chromatography (20 % ethyl acetate, 80 % hexanes)
- 381 yielded the product as a colourless oil (0.195 g, 85 %). CAS: 1092292-41-5; mp <25 °C;
- 382 TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.28; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2943,
- 383 2250, 1332, 1312, 837; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.56 (2H, d, *J* = 8.5 Hz),
- 384 6.96 (2H, d, *J* = 8.5 Hz), 4.13 (2H, t, *J* = 5.7 Hz), 2.60 (2H, t, *J* = 7.1 Hz), 2.17 (2H, app
- 385 pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.9, 127.1 (q, J = 4 Hz),
- 386 124.5 (q, *J* = 271 Hz), 123.6 (q, *J* = 33 Hz), 119.0, 114.6, 65.6, 25.4, 14.3; LRMS (ESI)

- 387 m/z (relative intensity): 252.1 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for
- 388 C₁₁H₁₀F₃NO: 252.0607, found: 252.0598.
- 389

390 4-[2,4-Di(trifluoromethyl)phenoxy]butanenitrile (1i).

- 391 To a 4 mL glass vial was added 1-bromo-2,4-di(trifluoromethyl)benzene (0.34 mL, 2.0
- 392 mmol), 4-hydroxybuytronitrile^{31,32} (0.75 mL, 8.8 mmol, 4.4 equiv.), anhydrous cesium

393 carbonate (0.879 g, 3.0 mmol, 1.5 equiv.), copper(I) iodide (0.038 g, 0.2 mmol, 0.1

- equiv.), 1,10-phenanthroline (0.072 g, 0.4 mmol, 0.2 equiv.), and toluene (1 mL). The
- 395 vial was sealed with a poly(tetrafluoroethylene)-lined screw-cap lid and the reaction
- 396 mixture was heated with stirring to 150 °C using a heating block for 20 hours. The
- 397 solution was diluted with toluene (5 mL) and filtered through a pad of silica. The silica
- 398 was rinsed with ethyl acetate (3 x 5 mL) and the filtrate was concentrated. Flash column
- 399 chromatography (20 % ethyl acetate, 80 % hexanes) yielded the product as a colourless
- 400 oil (0.092 g, 16 %). mp <25 °C; TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.29; IR
- 401 (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2954, 2890, 2251, 1597, 1515, 1266, 1129; ¹H NMR (400
- 402 MHz, CDCl₃) δ (ppm): 7.85 (1H, s), 7.79 (1H, dd, J = 8.7 Hz, J = 1.7 Hz), 7.09 (1H, d, J
- 403 = 8.7 Hz), 4.25 (2H, t, J = 5.6 Hz), 2.64 (2H, t, J = 7.1 Hz), 2.22 (2H, app pentet, J = 6.3
- 404 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 158.7, 130.9, 125.1, 123.7 (q, *J* = 269 Hz),
- 405 123.4 (q, *J* = 34 Hz), 123.0 (q, *J* = 273 Hz), 119.6 (q, *J* = 32 Hz), 118.8, 112.9, 66.4,
- 406 25.3, 14.0; LRMS (ESI) *m/z* (relative intensity): 222.1 (100%), 320.0 (97%); HRMS
- 407 (ESI) m/z: $[M + Na]^+$ calcd for $C_{12}H_9F_6NO$: 320.0481, found: 320.0474.
- 408
- 409

- 410 **4-[4-(Benzoyl)phenoxy]butanenitrile (1j).**
- 411 General procedure A: The product was obtained from the extraction as a colourless
- 412 crystalline solid (0.245 g, 92 %). CAS: 143804-25-5; mp 65-68 °C; TLC R_f (50 % ethyl
- 413 acetate, 50 % hexanes): 0.49; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3060, 2946, 2248, 1652,
- 414 1256, 1049, 845; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.83 (2H, d, J = 8.9 Hz), 7.75
- 415 (2H, d, *J* = 6.8 Hz), 7.57 (1H, app t, *J* = 8.2 Hz), 7.47 (2H, app t, *J* = 7.5 Hz), 6.96 (2H, d,
- 416 J = 8.9 Hz), 4.17 (2H, t, J = 5.8 Hz), 2.62 (2H, t, J = 7.2 Hz), 2.19 (2H, app pentet, J =
- 417 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 195.4, 161.9, 138.1, 132.5, 132.0, 130.6,
- 418 129.7, 128.2, 119.0, 114.0, 65.6, 25.3, 14.1; LRMS (ESI) *m/z* (relative intensity): 288.1
- 419 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₇H₁₅NO₂: 288.0995, found: 288.0997.

421 **4-[2-(Benzoyl)phenoxy]butanenitrile (1k).**

- 422 General procedure A: Flash column chromatography (40 % ethyl acetate, 60 % hexanes)
- 423 yielded the product as a colourless crystalline solid (0.232 g, 88 %). mp 79-81 °C; TLC
- 424 R_f (40 % ethyl acetate, 60 % hexanes): 0.50; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2246, 1647;
- 425 ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.79-7.76 (2H, m), 7.60-7.55 (1H, m), 7.50-7.44
- 426 (4H, m), 7.10 (1H, td, *J* = 7.6 Hz, *J* = 0.8 Hz), 6.95 (1H, d, *J* = 8.3 Hz), 4.00 (2H, t, *J* =
- 427 5.4 Hz), 1.89 (2H, t, J = 7.5 Hz), 1.84-1.77 (2H, m); ¹³C NMR (100 MHz, CDCl₃)
- 428 δ(ppm): 196.1, 155.8, 138.2, 132.6, 132.1, 129.5, 128.9, 128.6, 128.2, 120.9, 118.8,
- 429 111.8, 65.1, 24.8, 13.0; LRMS (ESI) *m/z* (relative intensity): 288.1 (100%), 553.2 (88%);
- 430 HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₇H₁₅NO₂: 288.0995, found: 288.0986.
- 431

432 **4-(4-Fluorophenoxy)butanenitrile (11).**

- 434 yielded the product as a colourless oil (0.175 g, 97 %). CAS: 24115-22-8; mp <25 $^{\circ}$ C
- 435 (lit.³³ mp <25 °C); TLC R_f (30 % ethyl acetate, 70 % hexanes): 0.43; IR (KBr, thin film)
- 436 \overline{V}_{max} (cm⁻¹): 3076, 2926, 2249, 1505, 1249, 1208, 1056, 829; ¹H NMR (400 MHz, CDCl₃)
- 437 δ (ppm): 6.98 (2H, dd, J = 9.3 Hz, J = 8.3 Hz), 6.83 (2H, dd, J = 9.3 Hz, J = 4.3 Hz), 4.04

438 (2H, t,
$$J = 5.7$$
 Hz), 2.59 (2H, t, $J = 7.1$ Hz), 2.13 (2H, app pentet, $J = 6.4$ Hz); ¹³C NMR

439 (100 MHz, CDCl₃) δ (ppm): 157.6 (d, J = 239 Hz), 154.6, 119.2, 116.0 (d, J = 24 Hz),

440 115.7 (d, *J* = 8 Hz), 66.1, 25.6, 14.3; LRMS (ESI) *m/z* (relative intensity): 202.1 (100%);

- 441 HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₁₀FNO: 202.0639, found: 202.0638.
- 442

443 **4-(2,4-Difluorophenoxy)butanenitrile (1m).**

- 444 General procedure A: Flash column chromatography (20 % ethyl acetate, 80 % hexanes)
- 445 yielded the product as a colourless oil (0.190 g, 96 %). CAS: 1016737-82-8; mp <25 °C;
- 446 TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.37; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2959,
- 447 2885, 2250, 1260, 1211, 1042; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.94 (1H, td, *J* = 9.1
- 448 Hz, J = 5.3 Hz), 6.87 (1H, ddd, J = 11.0 Hz, J = 8.3 Hz, J = 3.0 Hz), 6.82-6.77 (1H, m),
- 449 4.11 (2H, t, J = 5.8 Hz), 2.63 (2H, t, J = 7.2 Hz), 2.15 (2H, app pentet, J = 6.4 Hz); ¹³C
- 450 NMR (100 MHz, CDCl₃) δ (ppm): 157.1 (dd, J = 242 Hz, J = 11 Hz), 152.9 (dd, J = 249
- 451 Hz, *J* = 12 Hz), 143.0 (dd, *J* = 11 Hz, *J* = 4 Hz), 116.6 (d, *J* = 10 Hz), 110.7 (dd, *J* = 23
- 452 Hz, *J* = 4 Hz), 105.1 (dd, *J* = 27 Hz, *J* = 22 Hz), 68.1, 25.7, 14.1; LRMS (ESI) *m*/*z*
- 453 (relative intensity): 220.0 (100%), 360.3 (32%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for
- 454 $C_{10}H_9F_2NO: 220.0544$, found: 220.0554.
- 455

456 **4-(2,6-Difluorophenoxy)butanenitrile (1n).**

- 457 General procedure A: Flash column chromatography (10 % ethyl acetate, 90 % hexanes)
- 458 yielded the product as a colourless oil (0.187 g, 95 %). CAS: 1378344-87-6; mp <25 °C;
- 459 TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.44; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2961,
- 460 2895, 2250, 1595, 1292, 1239, 1037; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.02-6.86
- 461 (3H, m), 4.23 (2H, t, J = 5.7 Hz), 2.67 (2H, t, J = 7.2 Hz), 2.11 (2H, app pentet, J = 6.4
- 462 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 156.2 (dd, J = 248 Hz, J = 6 Hz), 135.3 (t, J = 100
- 463 14 Hz), 123.5 (t, *J* = 9 Hz), 112.3 (dd, *J* = 17 Hz, *J* = 7 Hz), 72.0 (t, *J* = 3 Hz), 26.3, 13.9;
- 464 LRMS (ESI) m/z (relative intensity): 220.1 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd
- 465 for $C_{10}H_9F_2NO$: 220.0544, found: 220.0546.
- 466

467 **4-(2,4,6-Trifluorophenoxy)butanenitrile (10).**

- 468 General procedure A: Flash column chromatography (10 % ethyl acetate, 90 % hexanes)
- 469 yielded the product as a colourless oil (0.202 g, 94 %). mp <25 °C; TLC R_f (20 % ethyl
- 470 acetate, 80 % hexanes): 0.40; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2968, 2891, 2250, 1238; ¹H
- 471 NMR (400 MHz, CDCl₃) δ (ppm): 6.70 (2H, app t, J = 8.4 Hz), 4.17 (2H, t, J = 5.7 Hz),
- 472 2.66 (2H, t, J = 7.2 Hz), 2.10 (2H, app pentet, J = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃)
- 473 δ (ppm): 157.5 (dt, J = 246 Hz, J = 14 Hz), 156.1 (ddd, J = 250 Hz, J = 15 Hz, J = 8 Hz),
- 474 132.1 (td, *J* = 15 Hz, *J* = 6 Hz), 101.0 (app t, *J* = 27 Hz), 72.4, 26.2, 13.9; LRMS (ESI)
- 475 m/z (relative intensity): 238.0 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for
- 476 C₁₀H₈F₃NO: 238.0450, found: 238.0460.
- 477
- 478 **4-(2,3,4,5,6-Pentafluorophenoxy)butanenitrile (1p).**

479 General procedure A: Flash column chromatography (10 % ethyl acetate, 90 % hexanes)

480 yielded the product as a colourless oil (0.198 g, 79 %). CAS: 1155103-22-2; mp < 25 °C;

481 TLC R_f (10 % ethyl acetate, 90 % hexanes): 0.22; IR (KBr, thin film) \overline{V}_{max} (cm⁻¹): 2969,

- 482 2897, 2252, 1161; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.28 (2H, t, *J* = 5.7 Hz), 2.66
- 483 (2H, t, J = 7.1 Hz), 2.16 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃)
- 484 δ (ppm): 141.8 (dm, J = 248 Hz), 138.0 (dm, J = 246 Hz), 137.7 (dm), 133.2 (t, J = 13

485 Hz) 118.8, 73.1, 26.1, 13.9; ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm): -157 (dm, *J* = 24 Hz),

486 -163 (tm, J = 21 Hz), -164 (tm, J = 22 Hz); LRMS (APCI) m/z (relative intensity): 252.0

487 (100%); HRMS (APCI) m/z: $[M + H]^+$ calcd for C₁₀H₆F₅NO: 252.0442, found: 252.0431.

488

489 **4-(4-Chlorophenoxy)butanenitrile (1q).**

- 490 General procedure A: Flash column chromatography (30 % ethyl acetate, 70 % hexanes)
- 491 yielded the product as a colourless crystalline solid (0.166 g, 85 %). CAS: 501941-41-9;
- 492 mp 43-44 °C (lit.³⁴ mp 44.5-45.3 °C); TLC R_f (30 % ethyl acetate, 70 % hexanes): 0.45;
- 493 IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3097, 2953, 2248, 1244, 1090, 822; ¹H NMR (400 MHz,
- 494 CDCl₃) δ (ppm): 7.24 (2H, d, J = 8.7 Hz), 6.82 (2H, d, J = 8.7 Hz), 4.04 (2H, t, J = 5.8

495 Hz), 2.58 (2H, t, J = 7.1 Hz), 2.13 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz,

- 496 CDCl₃) δ(ppm): 157.1, 129.5, 126.2, 119.1, 115.9, 65.7, 25.5, 14.2; LRMS (ESI) *m/z*
- 497 (relative intensity): 218.0 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{10}H_{10}CINO$:

498 218.0343, found: 218.0338.

499

500 **4-(2,4-Dichlorophenoxy)butanenitrile (1r).**

501 General procedure A: Flash column chromatography (10 % ethyl acetate, 90 % hexanes) 502 yielded the product as a colourless crystalline solid (0.228 g, 99 %). CAS: 63867-25-4; mp 45-47 °C (lit.³⁴ mp 46-48 °C, lit.³⁵ mp 46-50 °C); TLC R_f (20 % ethyl acetate, 80 % 503 hexanes): 0.44; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3100, 2946, 2885, 2249, 1266, 1064; ¹H 504 505 NMR (400 MHz, CDCl₃) δ (ppm): 7.38 (1H, d, J = 2.5 Hz), 7.19 (1H, dd, J = 8.8 Hz, J =506 2.5 Hz), 6.85 (1H, d, J = 8.8 Hz), 4.12 (2H, t, J = 5.7 Hz), 2.66 (2H, t, J = 7.0 Hz), 2.19 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 152.8, 130.1, 127.7, 507 126.5, 124.0, 119.1, 114.5, 66.8, 25.5, 14.1; LRMS (ESI) m/z (relative intensity): 252.0 508 509 (100%), 254.0 (30%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₉Cl₂NO: 251.9953,

- 510 found: 251.9962.
- 511

512 **4-(2,6-Dichlorophenoxy)butanenitrile (1s).**

- 513 General procedure A: Flash column chromatography (10 % ethyl acetate, 90 % hexanes)
- 514 yielded the product as a colourless oil (0.185 g, 80 %). CAS: 40324-60-5; mp <25 °C;
- 515 TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.48; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3080,
- 516 2954, 2884, 2249, 1250, 1036; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.30 (2H, d, J = 8.3
- 517 Hz), 7.01 (1H, t, *J* = 8.3 Hz), 4.13 (2H, t, *J* = 5.7 Hz), 2.75 (2H, t, *J* = 7.2 Hz), 2.19 (2H,
- 518 app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 150.9, 129.5, 129.1, 125.5,
- 519 119.4, 70.6, 26.4, 14.2; LRMS (ESI) *m/z* (relative intensity): 252.0 (100%), 254.0 (45%);
- 520 HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₉Cl₂NO: 251.9953, found: 251.9947.

521

522 **4-(2,4,6-Trichlorophenoxy)butanenitrile (1t).**

523	General procedure A: Flash	column chromatography (10 % ethyl acetate,	90 % hexanes)
-----	----------------------------	-------------------------	---------------------	---------------

- 524 yielded the product as a colourless crystalline solid (0.258 g, 98 %). CAS: 1039893-81-6;
- 525 mp 37-39 °C; TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.63; IR (KBr, thin film) $\overline{\nu}_{max}$
- 526 (cm⁻¹): 3078, 2955, 2885, 2449, 1257, 1034; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.32
- 527 (2H, s), 4.11 (2H, t, J = 5.7 Hz), 2.73 (2H, t, J = 7.2 Hz), 2.18 (2H, app pentet, J = 6.4
- 528 Hz); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 149.8, 130.0, 128.9, 119.2, 70.8, 26.3, 14.1;
- 529 LRMS (ESI) *m/z* (relative intensity): 286.0 (100%), 288.0 (95%), 290.0 (8%); HRMS
- 530 (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₈Cl₃NO: 285.9564, found: 285.9561.
- 531

532 **4-(4-Bromophenoxy)butanenitrile (1u).**

- 533 General procedure A: The product was obtained from the extraction as a colourless
- 534 amorphous solid (0.181 g, 75 %). CAS: 439798-58-0; mp 38-40 °C (lit.³⁶ mp 62 °C, lit.³⁷
- 535 mp <25 °C); TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.40; IR (KBr, thin film) \overline{V}_{max}
- 536 (cm⁻¹): 2930, 2249, 1489, 1244, 1052; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.38 (2H, d,
- 537 *J* = 9.0 Hz), 6.78 (2H, d, *J* = 9.0 Hz), 4.05 (2H, t, *J* = 5.7 Hz), 2.58 (2H, t, *J* = 7.2 Hz),
- 538 2.14 (2H, app pentet, J = 6.4 Hz) (consistent with lit.^{36,37}); ¹³C NMR (100 MHz, CDCl₃)
- 539 δ(ppm): 157.5, 132.3, 119.1, 116.3, 113.2, 65.6, 25.3, 14.1 (consistent with lit.³⁷); LRMS
- 540 (ESI) m/z (relative intensity): 262.0 (97%), 264.0 (100%); HRMS (ESI) m/z: $[M + Na]^+$
- 541 calcd for $C_{10}H_{10}BrNO$: 261.9838, found: 261.9845.
- 542

543 **4-(2,4-Dibromophenoxy)butanenitrile (1v).**

- 544 General procedure A: Flash column chromatography (30 % ethyl acetate, 70 % hexanes)
- 545 yielded the product as a colourless crystalline solid (0.209 g, 65 %). CAS: 1340260-50-5;

546 mp 56-58 °C; TLC R_f (30 % ethyl acetate, 70 % hexanes): 0.22; IR (KBr, thin film) \overline{V}_{max}

- 547 (cm⁻¹): 2950, 2878, 2249, 1556, 1245, 1069, 1034; ¹H NMR (400 MHz, CDCl₃) δ(ppm):
- 548 7.68 (1H, d, *J* = 2.4 Hz), 7.37 (1H, dd, *J* = 8.7 Hz, *J* = 2.4 Hz), 6.77 (1H, d, *J* = 8.7 Hz),
- 549 4.11 (2H, t, J = 5.6 Hz), 2.67 (2H, t, J = 7.1 Hz), 2.19 (2H, app pentet, J = 6.3 Hz); ¹³C
- 550 NMR (100 MHz, CDCl₃) δ(ppm): 153.9, 135.4, 131.3, 119.0, 114.5, 113.5, 113.1, 66.6,
- 551 25.3, 14.0; LRMS (APCI) *m/z* (relative intensity): 317.9 (17%), 319.9 (100%), 321.9
- 552 (18%); HRMS (APCI) m/z: $[M + H]^+$ calcd for C₁₀H₉Br₂NO: 317.9124, found: 317.9124.
- 553

554 **4-(2,6-Dibromophenoxy)butanenitrile (1w).**

- 555 General procedure A: The product was obtained from the extraction as a colourless oil
- 556 (0.147 g, 46 %). CAS: 1016834-03-9; mp <25 °C; TLC R_f (20 % ethyl acetate, 80 %
- 557 hexanes): 0.42; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3074, 2950, 2878, 2249, 1556, 1245,
- 558 1069, 1034; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.50 (2H, d, J = 8.0 Hz), 6.88 (1H, t, J
- 559 = 8.1 Hz), 4.12 (2H, t, J = 5.5 Hz), 2.75 (2H, t, J = 7.3 Hz), 2.21 (2H, app pentet, J = 6.4
- 560 Hz); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 152.6, 132.9, 126.8, 119.5, 118.4, 70.3, 26.5,
- 561 14.3; LRMS (APCI) *m/z* (relative intensity): 317.9 (20%), 319.9 (100%), 321.9 (18%);
- 562 HRMS (APCI) m/z: $[M + H]^+$ calcd for C₁₀H₉Br₂NO: 317.9124, found: 317.9114.
- 563

564 **4-(2,4,6-Tribromophenoxy)butanenitrile (1x).**

- 565 General procedure A: The product was obtained from the extraction as a colourless
- 566 crystalline solid (0.118 g, 30 %). CAS: 1039943-44-6; mp 87-88 °C; TLC R_f (20 % ethyl
- 567 acetate, 80 % hexanes): 0.42; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3105, 3064, 2953, 2898,
- 568 2253, 1562, 1247, 1032; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.65 (2H, s), 4.10 (2H, t, J

569 = 5.7 Hz), 2.73 (2H, t,
$$J$$
 = 7.0 Hz), 2.20 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100

- 570 MHz, CDCl₃) δ(ppm): 152.2, 135.3, 119.4, 119.0, 118.0, 70.5, 26.4, 14.3; LRMS (APCI)
- 571 *m/z* (relative intensity): 395.8 (5%), 397.8 (100%), 399.8 (93%), 401.8 (5%); HRMS
- 572 (APCI) m/z: $[M + H]^+$ calcd for C₁₀H₈Br₃NO: 395.8229, found: 395.8244.
- 573

574 **4-(4-Iodophenoxy)butanenitrile (1y).**

- 575 General procedure A: The product was obtained from the extraction as a colourless
- 576 crystalline solid (0.217 g, 75 %). CAS: 79887-21-1; mp 59-60 °C; TLC R_f (20 % ethyl
- 577 acetate, 80 % hexanes): 0.37; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3087, 3070, 2971, 2944,
- 578 2250, 1586, 1244, 1042, 511; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.56 (2H, d, J = 8.9
- 579 Hz), 6.67 (2H, d, *J* = 8.9 Hz), 4.03 (2H, t, *J* = 5.8 Hz), 2.57 (2H, t, *J* = 7.0 Hz), 2.12 (2H,
- 580 app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 158.4, 138.4, 119.1, 117.0,
- 581 83.5, 65.5, 25.5, 14.3; LRMS (ESI) *m/z* (relative intensity): 309.9 (100%); HRMS (ESI)
- 582 m/z: $[M + Na]^+$ calcd for C₁₀H₁₀INO: 309.9699, found: 309.9697.
- 583

584 4-(2,4,6-Triiodophenoxy)butanenitrile (1z).

- 585 General procedure A: The product was obtained from the extraction as a colourless
- 586 crystalline solid (0.143 g, 27 %). CAS: 1038977-67-1; mp 137-138 °C; TLC R_f (20 %
- 587 ethyl acetate, 80 % hexanes): 0.42; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 2947, 2359, 1237,
- 588 1031, 557; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.05 (2H, s), 4.06 (2H, t, *J* = 5.6 Hz),
- 589 2.75 (2H, t, J = 7.2 Hz), 2.25 (2H, app pentet, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃)
- 590 δ(ppm): 157.4, 147.5, 119.5, 91.9, 89.8, 70.3, 26.5, 14.5; LRMS (APCI) *m/z* (relative

591 intensity): 412.9 (100%), 539.8 (5%); HRMS (APCI) *m/z*: [M + H]⁺ calcd for

- 592 C₁₀H₈I₃NO: 539.7813, found: 539.7790.
- 593

594 Preparation of Rearrangement Products 2a, 2c-g, 2j, 2r-t, 2w, and Products 3, 4 and

595 **5**

596

597 General Procedure B

598 To a round-bottom flask was added the rearrangement substrate (1) (0.5 mmol) and the

599 flask was evacuated and backfilled with nitrogen three times. Anhydrous DMF (10 mL)

600 was added and the solution was cooled with stirring using an ice water cooling bath.

601 Sodium hydride (60% dispersion in oil) (0.030 g, 0.75 mmol, 1.5 equiv.) was added and

602 low temperature was maintained for 10 minutes. The reaction mixture was removed from

the cooling bath and brought to a temperature for an amount of time as described in

Table 2 and Table 3. The solution was neutralized at room temperature with 1 M HCl_(aq),

605 diluted with ethyl acetate (20 mL), washed with 1 M HCl_(aq) (15 mL), and washed with

606 water (2 × 20 mL). The organic layer from the extraction was dried, filtered, and

607 concentrated.

608

609 General Procedure C

610 To a round-bottom flask was added the rearrangement substrate (1) (0.5 mmol) and the

611 flask was evacuated and backfilled with nitrogen three times. Anhydrous DMSO (10 mL)

612 was added followed by sodium hydride (60% dispersion in oil) (0.030 g, 0.75 mmol, 1.5

613 equiv.) and the reaction mixture was stirred for 20 hours. The solution was neutralized

- 614 with 1 M HCl_(aq), diluted with ethyl acetate (20 mL), washed with 1 M HCl_(aq) (15 mL),
- 615 and washed with water $(2 \times 20 \text{ mL})$. The organic layer from the extraction was dried,
- 616 filtered, and concentrated.
- 617

618 **4-Hydroxy-2-(4-nitrophenyl)butanenitrile (2a).**

- 619 General Procedure B: Flash column chromatography (40 % ethyl acetate, 60 % hexanes)
- 620 yielded the product as a yellow oil (0.088 g, 86 %). mp <25 °C; TLC R_f (40 % ethyl
- 621 acetate, 60 % hexanes): 0.26; IR (KBr, thin film) \overline{V}_{max} (cm⁻¹): 3413, 3081, 2937, 2245,
- 622 1524, 1348, 1049, 852; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 8.27 (2H, d, J = 8.8 Hz),
- 623 7.59 (2H, d, *J* = 8.8 Hz), 4.29 (1H, dd, *J* = 9.0 Hz, *J* = 6.5 Hz), 3.93-3.88 (1H, m), 3.77-
- 624 3.72 (1H, m), 2.26-2.08 (2H, m), 1.85 (1H, br s); ¹H NMR (400 MHz, (CD₃)₂SO)
- 625 δ(ppm): 8.28 (2H, d, J = 8.8 Hz), 7.71 (2H, d, J = 8.8 Hz), 4.87 (1H, t, J = 5.0 Hz), 4.51
- 626 (1H, dd, *J* = 8.9 Hz, *J* = 6.5 Hz), 3.57-3.35 (2H, m), 2.10 (1H, ddt, *J* = 14.0 Hz, *J* = 8.5
- 627 Hz, J = 5.5 Hz), 2.03-1.95 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 147.8, 142.8,
- 628 128.6, 124.4, 119.8, 58.6, 37.9, 33.5; ¹³C NMR (100 MHz, (CD₃)₂SO) δ(ppm): 147.1,
- 629 143.7, 129.0, 124.1, 120.5, 57.5, 37.2, 32.6; LRMS (ESI) *m/z* (relative intensity): 229.1
- 630 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₁₀N₂O₃: 229.0584, found: 229.0577.
- 631

632 **4-Hydroxy-2-(2-nitrophenyl)butanenitrile (2c).**

- 633 General Procedure B: Flash column chromatography (50 % ethyl acetate, 50 % hexanes)
- 634 yielded the product as a light yellow oil (0.097 g, 94 %). mp <25 °C; TLC R_f (50 % ethyl
- 635 acetate, 50 % hexanes): 0.29; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3346, 3110, 2886, 2244,
- 636 1529, 1350, 1055, 849; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.04 (1H, dd, J = 8.3 Hz, J

- 637 = 1.3 Hz), 7.80 (1H, dd, *J* = 7.7 Hz, *J* = 1.5 Hz), 7.72 (1H, app td, *J* = 7.6 Hz, *J* = 1.3
- 638 Hz), 7.54 (1H, app td, *J* = 7.8 Hz, *J* = 1.5 Hz), 4.94 (1H, dd, *J* = 9.3 Hz, *J* = 5.3 Hz),
- 639 3.91-3.84 (2H, m), 2.27-2.16 (2H, m), 1.84 (1H, br s); ¹³C NMR (100 MHz, CDCl₃)
- 640 δ(ppm): 148.0, 134.3, 130.9, 130.5, 129.6, 125.8, 119.9, 59.6, 37.9, 30.6; LRMS (ESI)
- 641 m/z (relative intensity): 229.1 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for
- $C_{10}H_{10}N_2O_3$: 229.0584, found: 229.0591.
- 643

644 **4-Hydroxy-2-(2,4-dinitrophenyl)butanenitrile (2d).**

- 645 General Procedure B: Flash column chromatography (50 % ethyl acetate, 50 % hexanes)
- yielded the product as a light yellow oil (0.025 g, 22 %) and 2,4-dinitrophenol (0.008 g, 9

647 %). mp <25 °C; TLC R_f (40 % ethyl acetate, 60 % hexanes): 0.19; IR (KBr, thin film)

648 $\overline{\nu}_{max}$ (cm⁻¹): 3112, 2924, 2888, 2248, 1537, 1349, 1059; ¹H NMR (400 MHz, CDCl₃)

- 649 δ(ppm): 8.90 (1H, d, J = 2.5 Hz), 8.55 (1H, dd, J = 8.7 Hz, J = 2.5 Hz), 8.07 (1H, d, J =
- 650 8.8 Hz), 5.07 (1H, dd, *J* = 9.3 Hz, *J* = 5.3 Hz), 3.94-3.89 (2H, m), 2.30-2.16 (2H, m), 1.57
- 651 (1H, t, J = 4.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.1, 147.9, 137.5, 132.2,
- 652 128.2, 121.1, 118.7, 59.4, 37.6, 31.0; LRMS (ESI) *m/z* (relative intensity): 274.0 (100%);

653 HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₉N₃O₅: 274.0434, found: 274.0442.

654

655 4-Hydroxy-2-(4-cyanophenyl)butanenitrile (2e).

- 656 General Procedure B: Flash column chromatography (2 % methanol, 98 %
- dichloromethane) yielded the product as a light yellow oil (0.054 g, 58 %) and recovered
- 658 reactant **1e** (0.013 g, 14 %). mp <25 °C; TLC R_f (60 % ethyl acetate, 40 % hexanes):
- 659 0.22; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3512, 3096, 2936, 2232, 1049, 833; ¹H NMR (400

- 660 MHz, CDCl₃) δ(ppm): 7.71 (2H, d, J = 8.4 Hz), 7.52 (2H, d, J = 8.4 Hz), 4.22 (1H, dd, J
- 661 = 9.0 Hz, J = 6.5 Hz), 3.92-3.85 (1H, m), 3.76-3.70 (1H, m), 2.23-2.05 (2H, m), 1.65
- 662 (1H, t, J = 4.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 140.9, 133.1, 128.5, 119.7,
- 663 118.2, 112.6, 58.8, 38.0, 33.8; LRMS (ESI) *m/z* (relative intensity): 209.1 (100%);
- 664 HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₁H₁₀N₂O: 209.0685, found: 209.0684.

- 666 4-Hydroxy-2-(2-cyanophenyl)butanenitrile (2f).
- 667 General Procedure C: Flash column chromatography (40 % ethyl acetate, 60 % hexanes)
- yielded the product as a colourless oil (0.042 g, 44 %) and **3** (0.029 g, 31 %). mp <25 $^{\circ}$ C;
- 669 TLC R_f (40 % ethyl acetate, 60 % hexanes): 0.23; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3446,
- 670 2934, 2886, 2227, 1053; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.73-7.67 (3H, m), 7.50-
- 671 7.46 (1H, m), 4.54 (1H, dd, *J* = 8.4 Hz, *J* = 6.6 Hz), 3.92-3.80 (2H, m), 2.26-2.18 (2H,
- 672 m), 1.66 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 139.5, 134.0, 133.7, 129.0,
- 673 128.7, 119.3, 116.8, 111.9, 59.3, 38.0, 32.7; LRMS (ESI) *m/z* (relative intensity): 209.1
- 674 (100%); HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₁H₁₀N₂O: 209.0685, found: 209.0691.

675

676 **4-Hydroxy-2-(6-cyanonaphthalen-2-yl)butanenitrile (2g).**

- 677 General Procedure B: Flash column chromatography (50 % ethyl acetate, 50 % hexanes)
- yielded the product as a colourless crystalline solid (0.073 g, 64 %). mp 77-78 °C; TLC
- 679 R_f (40 % ethyl acetate, 60 % hexanes): 0.11; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3060, 2959,
- 680 2934, 2886, 2229, 1050, 820; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 8.24 (1H, s), 7.96-
- 681 7.93 (3H, m), 7.66 (1H, d, *J* = 8.6 Hz), 7.59 (1H, d, *J* = 8.6 Hz), 4.35 (1H, t, *J* = 7.6 Hz),
- 682 3.95-3.89 (1H, m), 3.79-3.74 (1H, m), 2.30-2.17 (2H, m); ¹³C NMR (100 MHz, CDCl₃)

- 683 δ(ppm): 136.5, 134.8, 134.0, 131.8, 129.8, 129.3, 127.4, 126.9, 126.8, 120.4, 119.0,
- 684 110.2, 59.0, 38.1, 33.9; LRMS (ESI) *m/z* (relative intensity): 259.1 (100%); HRMS (ESI)
- 685 m/z: $[M + Na]^+$ calcd for C₁₅H₁₂N₂O: 259.0842, found: 259.0837.
- 686

687 4-Hydroxy-2-[4-(benzoyl)nitrophenyl]butanenitrile (2j).

- 688 General Procedure B: Flash column chromatography (50 % ethyl acetate, 50 % hexanes)
- yielded the product as a light yellow oil (0.093 g, 70 %) and recovered reactant 1j (0.016
- 690 g, 12 %). mp <25 °C; TLC R_f (50 % ethyl acetate, 50 % hexanes): 0.20; IR (KBr, thin
- 691 film) $\overline{\nu}_{max}$ (cm⁻¹): 3482, 3060, 2933, 2243, 1652, 1281, 1049, 849; ¹H NMR (400 MHz,
- 692 CDCl₃) δ(ppm): 7.84-7.78 (4H, m), 7.61 (1H, app t, J = 7.4 Hz), 7.52-7.48 (4H, m), 4.23
- 693 (1H, dd, *J* = 9.0 Hz, *J* = 6.6 Hz), 3.92-3.86 (1H, m), 3.78-3.72 (1H, m), 2.26-2.09 (2H,
- 694 m), 2.05 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 196.2, 140.1, 137.6, 137.3,
- 695 132.9, 131.0, 130.1, 128.5, 127.6, 120.3, 58.9, 38.1, 33.6; LRMS (ESI) *m/z* (relative
- 696 intensity): 288.1 (95%), 553.2 (100%), 818.3 (35%); HRMS (ESI) *m/z*: [M + Na]⁺ calcd

697 for C₁₇H₁₅NO₂: 288.0995, found: 288.1002.

698

699 **4-Hydroxy-2-(2,4-dichlorophenyl)butanenitrile (2r).**

- 700 General Procedure C: Flash column chromatography (20 % ethyl acetate, 80 % hexanes)
- yielded the product as a colourless oil (0.048 g, 42 %) and recovered reactant 1r (0.026 g,
- 702 23 %). mp <25 °C; TLC R_f (20 % ethyl acetate, 80 % hexanes): 0.17; IR (KBr, thin film)
- 703 *V*_{max} (cm⁻¹): 3446, 2885, 2245, 1475, 1045; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.51
- 704 (1H, d, *J* = 8.4 Hz), 7.44 (1H, d, *J* = 2.2 Hz), 7.33 (1H, dd, *J* = 8.4 Hz, *J* = 2.2 Hz), 4.53
- 705 (1H, dd, *J* = 9.5 Hz, *J* = 5.6 Hz), 3.90-3.81 (2H, m), 2.20-2.05 (2H, m), 1.53 (1H, br s);

- ¹³C NMR (100 MHz, CDCl₃) δ(ppm): 135.2, 133.7, 132.2, 130.2, 130.1, 128.2, 119.8,
- 707 59.5, 36.6, 31.1; LRMS (ESI) *m/z* (relative intensity): 252.0 (100%) 254.0 (61%); HRMS
- 708 (ESI) m/z: $[M + Na]^+$ calcd for C₁₀H₉Cl₂NO: 251.9953, found: 251.9950.
- 709

710 **4-Hydroxy-2-(2,6-dichlorophenyl)butanenitrile (2s).**

- 711 General Procedure C: Flash column chromatography (40 % ethyl acetate, 60 % hexanes)
- yielded the product as a colourless oil (0.065 g, 56 %). mp <25 °C; TLC R_f (40 % ethyl
- 713 acetate, 60 % hexanes): 0.30; IR (KBr, thin film) \overline{V}_{max} (cm⁻¹): 3444, 2941, 2884, 2244,
- 714 1436, 1057, 782; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37 (2H, d, J = 8.1 Hz), 7.23
- 715 (1H, dd, *J* = 8.7 Hz, *J* = 7.5 Hz), 5.06 (1H, dd, *J* = 9.0 Hz, *J* = 6.6 Hz), 3.93-3.85 (1H, m),
- 716 3.81-3.75 (1H, m), 2.52-2.44 (1H, m), 2.17-2.08 (1H, m), 1.62 (1H, br t, J = 4.7 Hz); ¹³C
- 717 NMR (100 MHz, CDCl₃) δ(ppm):135.3, 130.8, 130.1, 129.4 (br), 118.4, 59.3, 33.7, 29.4;
- 718 LRMS (ESI) *m/z* (relative intensity): 252.0 (100%), 483.0 (37%); HRMS (ESI) *m/z*: [M +
- 719 Na]⁺ calcd for $C_{10}H_9Cl_2NO$: 251.9953, found: 251.9950.
- 720

721 **4-Hydroxy-2-(2,4,6-trichlorophenyl)butanenitrile (2t).**

- General Procedure B: Flash column chromatography (35 % ethyl acetate, 65 % hexanes)
- yielded the product as a colourless crystalline solid (0.033 g, 25 %) and recovered
- 724 reactant **1t** (0.065 g, 49 %).
- General Procedure C: Flash column chromatography (35 % ethyl acetate, 65 % hexanes)
- yielded the product as a colourless crystalline solid (0.045 g, 34.3 %) and recovered
- 727 reactant **1t** (0.027 g, 20.1 %). mp 74-76 °C; TLC R_f (35 % ethyl acetate, 65 % hexanes):
- 728 0.42; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3078, 2939, 2886, 2246, 1168, 1055; ¹H NMR (400

- 729 MHz, CDCl₃) δ (ppm): 7.40 (2H, s), 5.02 (1H, dd, J = 9.1 Hz, J = 6.6 Hz), 3.92-3.86 (1H,
- 730 m), 3.80-3.75 (1H, m), 2.46 (1H, dddd, J = 14.2 Hz, J = 9.3 Hz, J = 5.6 Hz, J = 4.3 Hz),

731 8.09 (1H, dddd, J = 14.2 Hz, J = 8.5 Hz, J = 6.3 Hz, J = 4.8 Hz), 1.57 (1H, br s); ¹³C

732 NMR (100 MHz, CDCl₃) δ(ppm): 135.9, 135.3, 129.6, 129.4 (br), 118.0, 59.2, 33.6, 29.2;

733 LRMS (ESI) *m/z* (relative intensity): 286.0 (100%), 288.0 (91%), 290.0 (6%); HRMS

734 (ESI) m/z: $[M + Na]^+$ calcd for $C_{10}H_8Cl_3NO$: 285.9564, found: 285.9555.

735

736 **4-Hydroxy-2-(2,6-dibromophenyl)butanenitrile (2w).**

- 737 General Procedure C: Flash column chromatography (30 % ethyl acetate, 70 % hexanes)
- yielded the product as a colourless oil (0.037 g, 30 %), recovered reactant **1w** (0.037 g,
- 739 30 %), and 2,6-dibromophenol (0.040 g, 41 %). mp <25 °C; TLC R_f (30 % ethyl acetate,

740 70 % hexanes): 0.22; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻¹): 3443, 2934, 2883, 2242, 1576,

- 741 1430, 1058; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.60 (2H, d, *J* = 8.1 Hz), 7.06 (1H, t, *J*
- 742 = 8.1 Hz), 5.15 (1H, dd, *J* = 9.3 Hz, *J* = 6.3 Hz), 3.94-3.87 (1H, m), 3.85-3.78 (1H, m),
- 743 2.53 (1H, qd, J = 9.4 Hz, J = 4.7 Hz), 2.14 (1H, dddd, J = 13.9 Hz, J = 8.6 Hz, J = 6.3
- 744 Hz, J = 5.1 Hz), 1.55 (1H, br t, J = 5.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 134.5
- 745 (br), 133.4, 133.0 (br), 130.9, 125.7 (br), 124.1 (br), 118.3, 59.4, 34.5, 33.7; LRMS (ESI)
- 746 *m/z* (relative intensity): 339.9 (48%), 341.9 (100%), 343.9 (45%); HRMS (ESI) *m/z*: [M
- 747 + Na]⁺ calcd for C₁₀H₉Br₂NO: 339.8943, found: 339.8927.
- 748

749 **1,2-Dihydrofuro**[**2,3***c*]isoquinolin-5-amine (**3**).

To a round-bottom flask was added the rearrangement substrate (1f) (0.093 g, 0.5 mmol)

and the flask was evacuated and backfilled with nitrogen three times. Anhydrous DMF

752	(10 mL) was added and the solution was cooled with stirring using an ice water cooling
753	bath. Sodium hydride (60% dispersion in oil) (0.030 g, 0.75 mmol, 1.5 equiv.) was added
754	and low temperature was maintained for 10 minutes. The reaction mixture was removed
755	from the cooling bath and brought to 60 $^{\circ}$ C for 20 hours. The solution was neutralized at
756	room temperature with 1 M $HCl_{(aq)}$, diluted with ethyl acetate (20 mL), washed with 1 M
757	$HCl_{(aq)}$ (15 mL), and washed with water (2 × 20 mL). The organic layer from the
758	extraction was dried, filtered, and concentrated. Flash column chromatography (50 $\%$
759	ethyl acetate, 50 % hexanes) yielded the product as an orange crystalline solid (0.015 g,
760	17 %). CAS: 194724-61-3; mp 188 °C (dec.) (lit. ²⁴ 109-192 °C); TLC $R_{\rm f}$ (40 % ethyl
761	acetate, 60 % hexanes): 0.20; ¹ H NMR (400 MHz, CDCl ₃) δ (ppm): 7.71 (1H, d, $J = 8.5$
762	Hz), 7.55 (1H, t, <i>J</i> = 7.5 Hz), 7.43 (1H, d, <i>J</i> = 8.3 Hz), 7.22 (1H, t, <i>J</i> = 7.7 Hz), 5.14 (2H,
763	br s), 4.71 (2H, t, $J = 8.7$ Hz), 3.33 (2H, t, $J = 8.7$ Hz) (consistent with lit. ²⁴); LRMS
764	(ESI) m/z (relative intensity): 187.1(100%); HRMS (ESI) m/z : $[M + H]^+$ calcd for
765	C ₁₁ H ₁₀ N ₂ O: 187.0866, found: 187.0860.
766	

767 (2*E*)-2-[(2-Hydroxyphenyl)(phenyl)methylidene]but-3-enenitrile (4).

To a round-bottom flask was added the rearrangement substrate (1k) (0.133 g, 0.5 mmol)

and the flask was evacuated and backfilled with nitrogen three times. Anhydrous DMSO

(10 mL) was added followed by sodium hydride (60% dispersion in oil) (0.030 g, 0.75

mmol, 1.5 equiv.) and the reaction mixture was stirred for 20 hours. The solution was

- neutralized with 1 M HCl_(aq), diluted with ethyl acetate (20 mL), washed with 1 M HCl_(aq)
- (15 mL), and washed with water $(2 \times 20 \text{ mL})$. The organic layer from the extraction was
- dried, filtered, and concentrated. Flash column chromatography (50 % ethyl acetate, 50 %

hexanes) yielded the product as a colourless crystalline solid (0.106 g, 85 %). mp 111-

- 113 °C; TLC R_f (30 % ethyl acetate, 70 % hexanes): 0.50; IR (KBr, thin film) $\overline{\nu}_{max}$ (cm⁻)
- ¹): 3061, 2220, 1643, 1603, 1263; ¹H NMR (400 MHz, CDCl₃) δ(ppm): 7.49-7.47 (2H,
- 778 m), 7.42-7.36 (3H, m), 7.31 (1H, ddd, *J* = 8.2 Hz, *J* = 7.2 Hz, *J* = 1.9 Hz), 7.02 (1H, dd,
- 779 *J* = 7.7 Hz, *J* = 2.0 Hz), 6.97 (1H, td, *J* = 7.2 Hz, *J* = 1.0 Hz), 6.91 (1H, dd, *J* = 8.3 Hz, *J*
- 780 = 0.8 Hz), 6.32 (1H, dd, *J* = 17.1 Hz, *J* = 10.5 Hz), 5.89 (1H, d, *J* = 17.0 Hz), 5.44 (1H, d,
- 781 J = 10.5 Hz), 4.86 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.0, 152.2, 138.3,
- 782 131.4, 131.3, 131.2, 130.4, 129.5, 128.8, 124.9, 121.0, 120.8, 116.9, 116.9, 113.1; LRMS
- 783 (ESI) m/z (relative intensity): 270.1 (100%), 517.2 (37%); HRMS (ESI) m/z: $[M + Na]^+$
- 784 calcd for $C_{17}H_{13}NO$: 270.0889, found: 270.0889.
- 785

786 **5,7-Dibromo-3,4-dihydro-2***H***-chromene-4-carbonitrile** (5).

787 To a round-bottom flask was added the rearrangement substrate (1x) (0.199 g, 0.5 mmol) 788 and the flask was evacuated and backfilled with nitrogen three times. Anhydrous DMF 789 (10 mL) was added and the solution was cooled with stirring using an ice water cooling 790 bath. Sodium hydride (60% dispersion in oil) (0.030 g, 0.75 mmol, 1.5 equiv.) was added 791 and low temperature was maintained for 10 minutes. The reaction mixture was removed 792 from the cooling bath and brought to 40 °C for 20 hours. The solution was neutralized at 793 room temperature with 1 M HCl_(aq), diluted with ethyl acetate (20 mL), washed with 1 M 794 $HCl_{(aq)}$ (15 mL), and washed with water (2 × 20 mL). The organic layer from the 795 extraction was dried, filtered, and concentrated. Flash column chromatography (20 % 796 ethyl acetate, 80 % hexanes) yielded the product as a colourless crystalline solid (0.064 g, 797 40 %) recovered reactant **1x** (0.046 g, 23 %). mp 132-133 °C; TLC R_f (20 % ethyl

798	acetate, 80 % hexanes): 0.49; IR (KBr, thin film) \overline{V}_{max} (cm ⁻¹): 2929, 2887, 2237, 1228,
799	1077, 1059; ¹ H NMR (400 MHz, CDCl ₃) δ (ppm): 7.37 (1H, d, $J = 2.0$ Hz), 7.05 (1H, d, J
800	= 2.0 Hz), 4.45 (1H, ddt, <i>J</i> = 11.6 Hz, <i>J</i> = 3.8 Hz, <i>J</i> = 2.0 Hz), 4.26 (1H, td, <i>J</i> = 12.2 Hz, <i>J</i>
801	= 2.0 Hz), 4.04 (1H, dt, <i>J</i> = 5.4 Hz, <i>J</i> = 1.8 Hz), 2.39 (1H, dq, <i>J</i> = 14.3 Hz, <i>J</i> = 2.2 Hz),
802	2.22 (1H, dddd, $J = 14.3$ Hz, $J = 12.5$ Hz, $J = 5.5$ Hz, $J = 3.8$ Hz); ¹³ C NMR (100 MHz,
803	CDCl ₃) δ(ppm): 156.1, 127.8, 125.7, 123.6, 120.6, 118.9, 114.8, 63.2, 27.8, 25.8; LRMS
804	(ESI) <i>m/z</i> (relative intensity): 337.9 (49%), 339.9 (100%), 341.9 (46%); HRMS (ESI)
805	m/z : $[M + Na]^+$ calcd for C ₁₀ H ₇ Br ₂ NO: 337.8787, found: 337.8782.
806	
807	In situ Preparation of Meisenheimer intermediate
808	
809	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-l5-azanyl]oxidanide.
809 810	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol)
809 810 811	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in (CD ₃) ₂ SO (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60%
809810811812	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in $(CD_3)_2SO$ (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was
 809 810 811 812 813 	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in $(CD_3)_2SO$ (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was vortexed repeatedly over 16 hours. ¹ H NMR (400 MHz, $(CD_3)_2SO$) δ (ppm): 7.38 (1H, dd,
 809 810 811 812 813 814 	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in (CD ₃) ₂ SO (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was vortexed repeatedly over 16 hours. ¹ H NMR (400 MHz, (CD ₃) ₂ SO) δ (ppm): 7.38 (1H, dd, J = 9.5 Hz, $J = 2.4$ Hz), 7.34 (1H, dd, $J = 9.5$ Hz, $J = 2.4$ Hz), 6.38 (1H, dd, $J = 9.5$ Hz, J
 809 810 811 812 813 814 815 	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in (CD ₃) ₂ SO (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was vortexed repeatedly over 16 hours. ¹ H NMR (400 MHz, (CD ₃) ₂ SO) δ (ppm): 7.38 (1H, dd, J = 9.5 Hz, $J = 2.4$ Hz), 7.34 (1H, dd, $J = 9.5$ Hz, $J = 2.4$ Hz), 6.38 (1H, dd, $J = 9.5$ Hz, $J= 2.4 Hz), 6.22 (1H, dd, J = 9.5 Hz, J = 2.4 Hz), 4.61 (1H, br s), 3.42-3.33 (2H, m), 2.28$
 809 810 811 812 813 814 815 816 	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in (CD ₃) ₂ SO (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was vortexed repeatedly over 16 hours. ¹ H NMR (400 MHz, (CD ₃) ₂ SO) δ (ppm): 7.38 (1H, dd, J = 9.5 Hz, $J = 2.4$ Hz), 7.34 (1H, dd, $J = 9.5$ Hz, $J = 2.4$ Hz), 6.38 (1H, dd, $J = 9.5$ Hz, $J= 2.4 Hz), 6.22 (1H, dd, J = 9.5 Hz, J = 2.4 Hz), 4.61 (1H, br s), 3.42-3.33 (2H, m), 2.28(2H, m); 13C NMR (100 MHz, (CD3)2SO) \delta(ppm): 148.4, 127.6, 125.7, 125.2, 124.5,$
 809 810 811 812 813 814 815 816 817 	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in (CD ₃) ₂ SO (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was vortexed repeatedly over 16 hours. ¹ H NMR (400 MHz, (CD ₃) ₂ SO) δ (ppm): 7.38 (1H, dd, J = 9.5 Hz, $J = 2.4$ Hz), 7.34 (1H, dd, $J = 9.5$ Hz, $J = 2.4$ Hz), 6.38 (1H, dd, $J = 9.5$ Hz, $J= 2.4 Hz), 6.22 (1H, dd, J = 9.5 Hz, J = 2.4 Hz), 4.61 (1H, br s), 3.42-3.33 (2H, m), 2.28(2H, m); 13C NMR (100 MHz, (CD3)2SO) \delta(ppm): 148.4, 127.6, 125.7, 125.2, 124.5,117.1, 113.2, 74.0, 60.0, 59.9, 32.2, 32.1.$
 809 810 811 812 813 814 815 816 817 818 	[(4-Cyano-1-oxaspiro[4.5]deca-6,9-dien-8-ylidene)(oxido)-15-azanyl]oxidanide. To a 5 mm NMR tube was added the rearrangement substrate (1a) (0.010g, 0.05 mmol) dissolved in (CD ₃) ₂ SO (99.5 atom% ² H,+ 0.1 v/v TMS) (1 mL). Sodium hydride (60% dispersion in oil) (0.002 g, 0.05 mmol, 1 equiv.) was added and the reaction mixture was vortexed repeatedly over 16 hours. ¹ H NMR (400 MHz, (CD ₃) ₂ SO) δ (ppm): 7.38 (1H, dd, <i>J</i> = 9.5 Hz, <i>J</i> = 2.4 Hz), 6.38 (1H, dd, <i>J</i> = 9.5 Hz, <i>J</i> = 2.4 Hz), 6.22 (1H, dd, <i>J</i> = 9.5 Hz, <i>J</i> = 2.4 Hz), 4.61 (1H, br s), 3.42-3.33 (2H, m), 2.28 (2H, m); ¹³ C NMR (100 MHz, (CD ₃) ₂ SO) δ (ppm): 148.4, 127.6, 125.7, 125.2, 124.5, 117.1, 113.2, 74.0, 60.0, 59.9, 32.2, 32.1.

820 Copies of ¹H and ¹³C NMR spectra of compounds **1a–z**, **2a**, **2c–g**, **2j**, **2r–t**, **2w**, **3**, **4**, and

821 **5**.

822

823 Acknowledgements

- 824 Financial support for this work was provided by the Natural Sciences and Engineering
- 825 Research Council (NSERC) of Canada, the University of Winnipeg, and the Government
- 826 of Manitoba Career Focus Program. Dr. K. Marat (University of Manitoba) is gratefully
- acknowledged for obtaining the ${}^{13}C{}^{19}F{}$ NMR spectrum. We also would like to thank
- 828 Mr. Xiao Feng (Dalhousie University Maritime Mass Spectrometry Laboratories) for
- 829 obtaining the mass spectra of all synthesized compounds.

830

831 **References**

833	1	Truce, W. E.; Ray, W. J.; Norman, O. L.; Eickemeyer, D. B. J. Am. Chem. Soc.
834	1958,	80, 3625-3629.
835	2	Naito, T.; Dohmori, R.; Nagase, O. Yakugaku Zasshi 1954, 74, 593-595.
836	3	Ameen, D.; Snape, T. J. Eur. J. Org. Chem. 2014, 2014, 1925-1934.
837	4	Snape, T. J. Synlett 2008, 2689-2691.
838	5	Okuda, K.; Yoshida, M.; Hirota, T.; Sasaki, K. Chem. Pharm. Bull. 2010, 58, 363-
839	368.	
840	6	Getlik, M.; Wilson, B. J.; Morshed, M. M.; Watson, I. D. G.; Tang, D.;
841	Subrar	nanian, P.; Al-awar, R. J. Org. Chem. 2013, 78, 5705-5710.
842	7	Liu, Y.; Zhang, X.; Ma, Y.; Ma, C. Tetrahedron Lett. 2013, 54, 402-405.
843	8	Alorati, A. D.; Gibb, A. D.; Mullens, P. R.; Stewart, G. W. Org. Process Res.
844	<i>Dev.</i> 2	012, 16 , 1947-1952.
845	9	Dey, C.; Katayev, D.; Ylijoki, K. E. O.; Kuendig, E. P. Chem. Commun.
846	(Camb	oridge, U. K.) 2012, 48 , 10957-10959.
847	10	Ponce Gonzalez, J.; Edgar, M.; Elsegood, M. R. J.; Weaver, G. W. Org. Biomol.
848	Chem.	2011, 9 , 2294-2305.
849	11	El, K. L.; Grimaud, L.; Le, G. X. F.; Schiltz, A. Org. Lett. 2011, 13, 534-536.
850	12	Snape, T. J. Chem. Soc. Rev. 2008, 37, 2452-2458.
851	13	Truce, W. E.; Madaj, E. J., Jr. Sulfur Rep. 1983, 3, 259-287.
852	14	Truce, W. E.; Guy, M. M. J. Org. Chem. 1961, 26, 4331-4336.

853	15	Snyder, D. M.; Truce, W. E. J. Am. Chem. Soc. 1979, 101, 5432-5433.	
854	16	Madaj, E. J., Jr.; Snyder, D. M.; Truce, W. E. J. Am. Chem. Soc. 1986, 108, 3466-	
855	3469.		
856	17	Coutts, I. G. C.; Southcott, M. R. J. Chem. Soc., Perkin Trans. 1 1990, 767-771.	
857	18	Bordwell, F. G.; Van, d. P. M.; Vanier, N. R. J. Org. Chem. 1976, 41, 1885-1886.	
858	19	Terrier, F. Chem. Rev. 1982, 82, 77-152.	
859	20	Ah-kow, G.; Terrier, F.; Pouet, MJ.; Simonnin, MP. J. Org. Chem. 1980, 45,	
860	4399-4404.		
861	21	Strauss, M. J. Chem. Rev. 1970, 70, 667-712.	
862	22	Scott, R.; Golding, B. T. ARKIVOC (Gainesville, FL, U. S.) 2004, 118-133.	
863	23	Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973-	
864	976.		
865	24	Hirota, T.; Tomita, KI.; Sasaki, K.; Okuda, K.; Yoshida, M.; Kashino, S.	
866	Hetero	<i>cycles</i> 2001, 55 , 741-752.	
867	25	Bunnett, J. F.; Zahler, R. E. Chem. Rev. (Washington, DC, U. S.) 1951, 49, 273-	
868	412.		
869	26	Birch, A. J.; Hinde, A. L.; Radom, L. J. Am. Chem. Soc. 1980, 102, 6430-6437.	
870	27	Truce, W. E.; Ray, W. J. J. Am. Chem. Soc. 1959, 81, 484-487.	
871	28	Ashley, J. N.; Collins, R. F.; Davis, M.; Sirett, N. E. J. Chem. Soc. 1959, 897-906.	
872	29	US Pat., US2865751, 1958.	
873	30	Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 26-33.	
874	31	Brandl, M.; Kozhushkov, S. I.; Zlatopolskiy, B. D.; Alvermann, P.; Geers, B.;	
875	Zeeck,	A.; de Meijere, A. Eur. J. Org. Chem. 2004, 123-135.	
876	32	Thakur, V. V.; Nikalje, M. D.; Sudalai, A. Tetrahedron: Asymmetry 2003, 14,	
877	581-58	6.	
878	33	US Pat., US3467692A, 1969.	
879	34	Newman, M. S.; Fones, W.; Renoll, M. J. Am. Chem. Soc. 1947, 69, 718-723.	
880	35	Fawcett, C. H.; Taylor, H. F.; Wain, R. L.; Wightman, F. Proc. R. Soc. London,	
881	Ser. B	1958, 148 , 543-570.	
882	36	Eur. Pat., EP1506959A2, 2005.	
883	37	Zaragoza, F. J. Org. Chem. 2002, 67, 4963-4964.	
884			