Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Facile synthesis of 4- and 7-azaindoles from corresponding imines by palladium-catalyzed cascade $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ coupling

Ngo Nghia Pham, ${ }^{\text {a, b }}$ Thanh Tuan Dang, ${ }^{\text {a }}$ Ngoc Thang Ngo, ${ }^{\text {a,c }}$ Alexander Villinger, ${ }^{\text {a }}$ Peter Ehlers, ${ }^{\text {a }}$ Peter Langer* ${ }^{\text {a, }}$ c

${ }^{a}$ Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany. E-Mail: peter.langer@uni-rostock.de; Fax: +493814986412; Tel: +493814986410
${ }^{b}$ Faculty of Chemistry, VNU University of Science Hanoi (VNU-HUS), 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
${ }^{c}$ Leibniz Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Abstract

The cyclization of 2,3-dihalopyridines with readily available imines provides a convenient and regioselective approach to 4- and 7 -azaindoles. The regioselectivity can be controlled by the choice of the halogen atoms at the pyridine ring (chlorine versus bromine).

Introduction

Azaindoles are considered as biologically important core structures, as these function as bioisosteres of the prevalent subunit indole in biological systems (Figure 1). ${ }^{1}$ A great number of heterocycles derived from the azaindole moiety exhibit interesting biological properties for medicinal applications. For example, 7 -azatryptophan (Aza1, Figure 2) has been used as fluorescent marker for characterizing protein interactions. ${ }^{2}$ Derivative Aza2 has been used as HIV-attachment inhibitor ${ }^{3}$ and Aza3 as anti-tubercular ${ }^{4}$ agent. The binding selectivity and bioavailability of azaindoles can be well controlled by varying their substituents. ${ }^{5}$ Therefore, there has been an increasing number of azaindole-derived drug candidates recently developed and released in the pharmaceutical industry.

Indole

4-Azaindole

5-Azaindole

6-Azaindole

7-Azaindole

Figure 1: Indole and azaindoles

Aza 2

Aza3

Figure 2: Biologically relevant azaindole-derived compounds

Many syntheses of azaindoles start from the pyridine ring, followed by a ring closure to form the pyrrole ring. In classic chemistry, the cyclization was accomplished through different ways, including reactions developed by Fischer, ${ }^{6}$ Madelung, ${ }^{7}$ Reissert, ${ }^{8}$ Bartoli ${ }^{9}$ and

Chichibabin. ${ }^{10}$ These classical strategies, however, are limited by their harsh conditions, low yields, and low functional group compatibility. These shortcomings have been gradually solved in modern chemistry by the use of palladium with its greater $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ formation potential together with its higher functional group tolerance. A number of new syntheses for azaindole have been developed, as shown in Figure 3, including the (a, b) C-N/Heck reaction, ${ }^{11,12}$ (c) Suzuki/C-N reaction, ${ }^{13}$ (d) C-N/C-N-cross coupling reactions, ${ }^{14}$ as well as (e) alkynyl amine cyclizations ${ }^{15}$ and the (f) Larock synthesis. ${ }^{16}$

in this study:

Figure 3: Palladium catalyzed azaindole syntheses
Our goal was to develop a strategy which allows for the preparation of azaindoles from simple starting materials in a facile manner. Herein, we describe a convenient synthesis of both 4and 7-azaindoles which has, to the best of our knowledge, not been previously reported. The protocol is operationally simple using commercially available or easily available starting materials.

Results and discussion

The reaction of dihalopyridine 1a with imine 2a was chosen for the optimization process (Table 1). At the beginning we applied the conditions used by Barluenga et al ${ }^{17}$ for the
synthesis of indoles by an analogous reaction of 1,2-dibromobenzene. However, these conditions only produced a regioisomeric mixture of azaindoles 3a and 4a which were each isolated only in 6% yield (entry 1, Table 1). Subsequently, we tested bidentate ligands, namely S-Phos, BINAP, XantPhos and DavePhos, but these conditions failed completely to deliver the expected results. Therefore, we turned our attention to monodentate ligands (entries 2-7, Table 1). Remarkably higher yields were obtained with the ligands PPh_{3}, CataCXium A and PCy_{3} (entries 4, 6 and 7). Next, we checked the robustness of this system by varying the palladium sources, bases, solvents and temperatures. We found a catalyst system which allowed a regioselective formation of 7 -azaindole (entry 9), however, the conversion was only moderate. In contrast, a high conversion was obtained in case of the catalyst system $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PCy}_{3}$ with the base NaOt Bu in dioxane at $10{ }^{\circ} \mathrm{C}$. However, the regioselectivity was low and a 2:3 mixture of regioisomers 3a and 4a was obtained in 91% yield (entry 8). Notably, these conditions are identical to those of Ackermann's carbazole synthesis by reaction of anilines with ortho-dihalobenzenes. ${ }^{18}$ To improve the regioselectivity, we decided to employ 2-bromo-3-chloropyridine (1b) in the reaction with imine 2a (Scheme 1, Figure 4). Palladium catalyzed cross-coupling reactions of heterocyclic dihalides usually proceed by initial attack at the more electron deficient position of the heterocycle. Position 2 of the pyridine is more electron deficient than position 3. Obviously, this difference in reactivity was not sufficient in case of 2,3-dibromopyridine in order to achieve a good regioselectivity. In case of $\mathbf{1 b}$ two different leaving groups are present. The better leaving group bromine is located at position 2. Therefore, two effects operate in the same direction and the selectivity is higher. In order to obtain a high yield we employed the conditions of entry 8 of Table 1 . Much to our satisfaction, under these conditions, the reaction afforded 4azaindole 3a in very good yield (80%) and with excellent regioselectivity.

Table 1: Optimization study for the synthesis of 4- and 7-azaindoles 3a and 4a

 1a		Pd-source Ligand 12			
Entry	[Pd]-Source	Ligand	Base	Solvent	Yield (3a:4a)
1	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	XPhos	$\mathrm{NaO} t \mathrm{Bu}$	Dioxane	$12 \%^{\text {a }}$ (1:1) ${ }^{\text {a }}$
2	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	DavePhos	$\mathrm{NaO} t \mathrm{Bu}$	Dioxane	$7 \%{ }^{\text {b }}(0: 1)^{\text {b }}$
3	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{P} t \mathrm{Bu}_{3}$	NaOtBu	Dioxane	-
4	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	PPh_{3}	$\mathrm{NaO} t \mathrm{Bu}$	Dioxane	$39 \%{ }^{\text {b }}(1: 0)^{\text {b }}$
5	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}$	$\mathrm{NaO} t \mathrm{Bu}$	Dioxane	-
6	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	CataCXium A	NaOtBu	Dioxane	$53 \%^{\text {b }}(1: 2)^{\text {b }}$
7	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	PCy_{3}	NaOtBu	Dioxane	$73 \%{ }^{\text {b }}(2: 1)^{\text {b }}$
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{NaO} t \mathrm{Bu}$	Dioxane	$91 \%{ }^{\text {a }}(2: 3)^{\text {a }}$
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{K}_{2} \mathrm{CO}_{3}$	Dioxane	$39 \%{ }^{\text {b }}(0: 1)^{\text {b }}$

Reaction conditions: 2,3-dibromopyridine (0.1 mmol), imine $\mathbf{3 j}$ (0.11 mmol), [Pd]-source (0.06 mol), ligand (0.012 mmol), $\mathrm{NaO} t \mathrm{Bu}(0.28 \mathrm{mmol}) 105^{\circ} \mathrm{C}, 48 \mathrm{~h}$.
${ }^{\mathrm{a}}$ isolated yield; ${ }^{\mathrm{b}}$ determined by NMR

The result of our optimization allowed us to study the preparative scope of the reaction. The reaction of $\mathbf{1 b}$ with imines $\mathbf{2 b} \mathbf{b} \mathbf{-}$ afforded 4 -azaindoles $\mathbf{3 b} \mathbf{- o}$ in moderate to high yields. The highest yield was achieved (95%) for the electron rich system $\mathbf{3 b}$. The yields of electron rich products $\mathbf{3 g}$ and $\mathbf{3 h}$ were also relatively high. In comparison, the lowest was observed for $\mathbf{3 e}$ (48%). However, no clear trend between the chemical structures of the imines and the reaction yields was observed.

The structures of 4-azaindole 3c was independently confirmed by X-ray crystal structure analysis (Figure 5). The phenyl group located at the 1-position of the azaindole ring is twisted out of the aromatic plane, due to steric effects between the pyridine and the phenyl ring located at the 2-position. Two $\mathbf{3 c}$ molecules orientate in two different directions in order that
the electronic repulsion of the two methoxyl groups and the two phenyl rings located at the 1position of both molecules 3c are reduced. A $\pi-\pi$ stacking interaction was not clearly observed.

Scheme 1. Reaction conditions: 1b (0.3 mmol), $2(0.33 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.018 \mathrm{mmol}), \mathrm{PCy}_{3}(0.036$ $\mathrm{mmol}), \mathrm{NaO} t \mathrm{Bu}(0.84 \mathrm{mmol})$, dioxane $(6 \mathrm{ml}), 105^{\circ} \mathrm{C}, 16-48 \mathrm{~h}$.

3j (52\%)

3m (59\%)

3k (79\%)

3n (89\%)

31 (53\%)

30 (84\%)

Figure 4: Synthesis of 4-azaindoles

Figure 5: Molecular structure of crystalline azaindole 3c

The reaction of 3-bromo-2-chloropyridine (1c) with imines 2a-o afforded, under identical conditions, 7 -azaindoles 4a-o with excellent regioselectivity (Scheme 2, Figure 6). The change of the selectivity can be explained by the better leaving group ability of bromine
which overrides the higher reactivity usually observed for the more electron deficient and thus more reactive 2-position of the pyridine moiety. No clear trend of the yields was observed depending on the substituents. The highest yield was observed for the large π-system 40 (86%), while the lowest yield was observed for $\mathbf{4 e}$ and $\mathbf{4 f}$ (both at 47%), presumably due to steric effects.

Scheme 2. Reaction conditions: $\mathbf{1 c}(0.3 \mathrm{mmol}), 2(0.33 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.018 \mathrm{mmol}), \mathrm{PCy}_{3}(0.036$ mmol), $\mathrm{NaO} t \mathrm{Bu}(0.84 \mathrm{mmol})$, Dioxane (6 ml), $105^{\circ} \mathrm{C}, 16-48 \mathrm{~h}$.

4j (57\%)

4m (76\%)

4k (61\%)

4n (67\%)

41 (56\%)

40 (86%)

Figure 6: Synthesis of 7-azaindoles

Figure 7: Molecular structure of azaindole $\mathbf{4 g}$

Figure 8: Molecular structure of azaindole 4n

The structures of 4 -azaindoles $\mathbf{4 g}$ and $\mathbf{4 n}$ were independently confirmed by X-ray crystal structure analysis (Figures 7 and 8). The phenyl rings located at the 1-position are twisted out of plane, due to the steric effect. In comparison, the naphthalene and the phenyl ring located at the 2-position are twisted only slightly out of the plane of the azaindole ring.

Conclusion

In conclusion, we have developed a convenient synthesis of 4- and 7-azaindoles. The yields varied from moderate to very good. The regioselectivity can be controlled by the choice of the leaving groups of the pyridine moiety.

Experimental section

General information: Hexane, ethyl acetate and dichloromethane were dried and distilled using standard methods. Molecular sieves were dried in the oven at $300{ }^{\circ} \mathrm{C}$ for 12 hours. Other chemicals and solvents, if not otherwise cited, are commercially available and were used without further purification. Column chromatography was performed using normal silica gel with particle size from 0.006 to 0.043 mm . NMR measurements were carried out with Bruker AVANCE 250 II (built 2006), Bruker AVANCE 300 III (built 2007) and Bruker

AVANCE 500 (built 2001) spectrometers. NMR peaks were adjusted according to the standard ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ signals of CDCl_{3} at 7.260 and 77.160 ppm , respectively. For multiplicity description, abbreviations s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and dd (doublet doublet) were used. IR measurements were recorded on a Nicolet 380 FT-IR spectrometer using ATR sampling technique for both liquids and solids. To report peaks, abbreviations w (weak), m (medium) and s (strong) were used. GC/MS measurements were conducted on a Finnigan MAT 95-XP device with HP-5 capillary column using helium carrier gas and using electron ionization (EI) scan technique. Yield calculation via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ technique was carried out using dimethyl sulfone as internal standard.

General procedure for the synthesis of imines: A mixture of ketone (10.0 mmol), amine $(10.0 \mathrm{mmol}), \mathrm{NaHCO}_{3}(4.20 \mathrm{~g})$ and molecular sieve $4 \AA(8.00 \mathrm{~g})$ in dried toluene $(10.0 \mathrm{ml})$ in a flask was heated to $80^{\circ} \mathrm{C}$ or refluxed for 12 hours overnight. The reaction was controlled on the next day for completion by TLC. After completion, the mixture was taken up in dichloromethane and filtered through zeolite. The solvents were evaporated under reduced pressure. The products were purified by recrystallization in heptane/ethyl acetate mixture or by Kugelrohr distillation under reduced pressure.

N,1-bis(4-methoxyphenyl)ethan-1-imine (2a): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.03$ - 7.85 $(\mathrm{m}, 2 \mathrm{H}), 7.00-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,161.7,156.1,145.5,132.7,129.0$ (2C), 121.2 (2C), 114.4 (2C), 113.8 (2C), $55.6,55.5,17.3 .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectral data are in accordance with the literature. ${ }^{19 \mathrm{a}}$
\mathbf{N}-(3-methoxyphenyl)-1-(4-methoxyphenyl)ethan-1-imine (2b): ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.58(\mathrm{~m}, 1 \mathrm{H})$, $6.48-6.33(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (63 MHz , CDCl_{3}) $\delta 165.1,161.8,160.4,153.1,130.7,129.9,129.1$ (2C), 113.8 (2C), 112.2, 109.0, 105.5, 55.6, 55.4, 17.4. ${ }^{1} \mathrm{H}$-NMR spectral data is in accordance with the literature. ${ }^{19 b}$

1-(4-methoxyphenyl)-N-phenylethan-1-imine (2c): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.95$ (d, $\mathrm{J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, \mathrm{J}=$ 8.4, 1.2 Hz, 2H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7$, 161.7, 152.0, 132.3, 129.0 (2C), 129.0 (2C), 123.2, 119.7 (2C), 113.7 (2C), 55.5, 17.3. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data are in accordance with the literature. ${ }^{19 \mathrm{c}}$

1-(4-methoxyphenyl)-N-(naphthalen-2-yl)ethan-1-imine (2d): Pale yellow crystal, mp. 107 $-108{ }^{\circ} \mathrm{C}$, purified by recrystallization, 61% yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.05$ $(\mathrm{m}, 2 \mathrm{H}), 7.89-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.79(\mathrm{dt}, \mathrm{J}=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.0,162.1,148.3,134.5,132.2,129.4$ (2C), 128.3, 126.5, 126.4, 126.2, 125.7, 124.0, 123.4, 114.1, 114.0 (2C), 55.8, 17.8. IR (ATR, cm^{-1}) 3060 (w), 3012 (w), 2975 (w), 2954 (w), 2840 (w), 2050 (w=, 1962 (w), 1913 (w), 1849 (w), 1821 (w), 1788 (w), 1632 (m), 1596 (m), 1504 (m), 1437 (m), 1360 (m), 1307 (m), 1251 (s), 1173 (m), 1024 (m), 960 (m), 838 (s), 777 (s), $572(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=275(80),[\mathrm{M}]^{+} 276$ (16), 261 (20), 260 (100), 217 (20), 127 (64). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}[M]^{+} 275.13047$, found 275.13030.
\mathbf{N}-(2,3-dihydro-1H-inden-5-yl)-1-(4-methoxyphenyl)ethan-1-imine (2e): Yellow solid, mp. $61-62^{\circ} \mathrm{C}$, purified by Kugelrohr distillation, 54% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ $-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-$ $6.48(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,145.2,138.9,132.5,130.7,129.0$ (2C), 124.6 (2C), 117.7, $115.9,113.7$ (2C), 55.5, 33.2, 32.5, 25.77, 17.3. IR (ATR, cm^{-1}) 3093 (w), 3015 (w), 2967 (w), 2931 (m), 2841 (m), 2062 (w), 2051 (w), 1983 (w), 1923 (w), 1671 (w), 1628 (m), 1598 (s), 1507 (m), 1483 (m), 1444 (m), 1364 (m), 1304 (m), 1255 (s), 1234 (m), 1173 (s$), 1118$ (m), 1027 (s), 839 (s), 832 (s), 573 (s). MS (EI, 70 eV): m/z (\%) = 265 (47), [M] 266 (9), 250 (100), 115 (30), 91 (13). HRMS (EI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ON}[M]^{+}$265.14612, found 265.14612.
\mathbf{N}-(3,5-dimethylphenyl)-1-(4-methoxyphenyl)ethan-1-imine (2f): Yellow solid, mp. 74 $75{ }^{\circ} \mathrm{C}$, purified by Kugelrohr distillation, 54% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.26-$ 2.17 (m, 3H). 13C NMR ($63 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 164.4,161.6$ (2C), 151.9, 138.6, 132.4, 130.7, 128.9 (2C), 124.8, 117.4 (2C), 113.7 (2C), 55.5, 21.5, 17.31. IR (ATR, cm^{-1}) 3005 (w), 2959 (w), 2913 (m), 2838 (w), 2732 (w), 2052 (w), 1910 (w), 1626 (m), 1590 (s), 1509 (m), 1454 (m), 1366 (m), 1308 (m), 1251 (s), 1171 (m), 1028 (s$), 829$ (s), 689 (m), 571 (s). MS (EI, 70 $\mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=253(51),[\mathrm{M}]^{+} 254(10), 239$ (21), 238 (100), 105 (13), 77 (17). HRMS (EI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ON}[\mathrm{M}]^{+}$253.14612, found 253.14642.

N-(4-methoxyphenyl)-1-phenylethan-1-imine (2g): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ $7.91(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C} \mathrm{NMR} \mathrm{(} 63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,156.1,144.9,139.9,130.5,128.5$ (2C),
127.3 (2C), 120.9 (2C), 114.4 (2C), 55.9, 17.5. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data are in accordance with the literature. ${ }^{17}$

N-(4-methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)ethan-1-imine (2h): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=9.3,2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83-6.66(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .19 \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.7. 13C NMR ($63 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 164.4,156.3,144.1,142.9,131.9(q, \mathrm{~J}=32.4 \mathrm{~Hz}), 127.5$ (2C), $125.4(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz})(2 \mathrm{C}), 124.1(\mathrm{q}, \mathrm{J}=269.9 \mathrm{~Hz}), 120.7(2 \mathrm{C}), 114.3(2 \mathrm{C}), 55.5,17.4$. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectral data are in accordance with the literature. ${ }^{19 \mathrm{~d}}$

1-(4-fluorophenyl)-N-(4-methoxyphenyl)ethan-1-imine (2i): Orange solid, mp. $66-67^{\circ} \mathrm{C}$, purified by Kugelrohr distillation, 51% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.92$ (m, $2 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.69(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-110.7. 13C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,164.4(\mathrm{~d}, \mathrm{~J}=$ 250.4 Hz), $156.2,144.8,136.1(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 129.3(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz})(2 \mathrm{C}), 120.9(2 \mathrm{C}), 115.4$ $(\mathrm{d}, \mathrm{J}=21.6 \mathrm{~Hz})(2 \mathrm{C}), 114.4(2 \mathrm{C}), 55.7,17.4 .{ }^{1} \mathrm{H}-$ and ${ }^{19} \mathrm{~F}$-NMR spectral data are in accordance with the literature. ${ }^{19 \mathrm{e}}$

1-(4-fluorophenyl)-N-phenylethan-1-imine (2j): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta 8.04$ - 7.94 (m, 2H), $7.35(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.76(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.34$. 13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6(\mathrm{~d}, \mathrm{~J}=252 \mathrm{~Hz}$), $164.5,152.8,136.1,130.2(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}), 130.2,124.6,120.2,116.7(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 17.5$. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectral data are in accordance with the literature. ${ }^{19 \mathrm{f}}$
\mathbf{N}-(4-fluorophenyl)-1-phenylethan-1-imine (2k): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24$ (s, $3 \mathrm{H})$, 6.74-6.78 (m, 2H), 7.04-7.08 (m, 2H), 7.43-7.49 (m, 3H), 7.96-7.99 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,159.5(\mathrm{~d}, \mathrm{~J}=241 \mathrm{~Hz}), 147.8(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 139.5,130.7$, 128.4 (2C), $127.3(2 \mathrm{C}), 120.8(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz})(2 \mathrm{C}), 115.7(\mathrm{~d}, \mathrm{~J}=22 \mathrm{~Hz})(2 \mathrm{C}), 17.4 .{ }^{1} \mathrm{H}-\mathrm{and}{ }^{13} \mathrm{C}-$ NMR spectral data are in accordance with the literature. ${ }^{19 \mathrm{c}}$

N,1-diphenylethan-1-imine (2l): Yellow solid, mp. $40-41{ }^{\circ} \mathrm{C}$, purified by Kugelrohr distillation, 51% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,152.9,140.3,131.2,129.7,129.0,128.0,123.8,120.0,17.2 .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectral data are in accordance with the literature. ${ }^{17}$

1-([1,1'-biphenyl]-4-yl)-N-phenylethan-1-imine (2m): Yellow solid, mp. $136-137{ }^{\circ} \mathrm{C}$, purified by recrystallization, 71% yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): $\delta 8.05(\mathrm{~d}, \mathrm{~J}=8.4$
$\mathrm{Hz}, 2 \mathrm{H}), 7.68$ (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33$ (m, $3 \mathrm{H}), 7.09$ (t, J = 7.2 Hz, 1H), 6.81 (d, J = 7.6 Hz, 2H), $2.26(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (63 MHz , CDCl_{3}) $\delta 165.2,151.9,143.3,140.6,138.5,129.1$ (2C), 129.0 (2C), 127.9, 127.8 (2C), 127.3 (2C), 127.2 (2C), 123.4, 119.6 (2C), 17.5. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data are in accordance with the literature. ${ }^{19 \mathrm{~g}}$

1-(naphthalen-2-yl)-N-phenylethan-1-imine (2n): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ $8.35(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=7.6$ $\mathrm{Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (63 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,151.8,137.0,134.6,133.1,129.1$ (2C), 129.1, 128.2, 127.8 (2C), 127.3, 126.5, 124.4, 123.5, 119.6 (2C), 17.5. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data are in accordance with the literature. ${ }^{19 \mathrm{f}}$

N,1-di(naphthalen-2-yl)ethan-1-imine (20): Brown crystal, mp. $136-137^{\circ} \mathrm{C}$, purified by recrystallization, yield 47%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{dd}, \mathrm{J}=8.7,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02-7.80(\mathrm{~m}, 5 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.7,134.8,134.4,133.1$, 129.7, 129.2, 128.6, 128.3, 128.2, 128.1, 127.9, 127.5, 126.6, 126.3, 126.2, 126.1, 125.6, 124.5, 123.8, 123.6, 113.8, 17.9. IR (ATR, cm^{-1}) 3468 (w), 3397 (w), 3239 (w), 3084 (w), 3050 (m), 3006 (w), 2963 (w), 2852 (w), 2704 (w), 2561 (w), 1938 (w), 1915 (w), 1848 (w), 1690 (w), 1625 (s), 1570 (m), 1504 (m), 1433 (w), 1387 (m), 1366 (m), 1292 (m), 1293 (m), 1223 (m), 1129 (m), 1080 (m), 1014 (m), 858 (m), 802 (m), 777 (s), 747 (m), 868 (m). MS (EI, 70 eV): m/z (\%) = 295 (74), [M] 296 (17), 281 (23), 280 (100), 153 (15), 127 (67), 126 (29). HRMS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}[M]^{+}$295.13555, found 295.13563.

General procedure for the synthesis of 4-azaindoles: 2-Bromo-3-chloropyridine $\mathbf{1 b}$ (0.3 mmol), imine 2a-20 (0.33 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.018 \mathrm{mmol}), \mathrm{PCy}_{3}(0.036 \mathrm{mmol})$ and NaOtBu (0.84 mmol) were put into a dried pressure tube. The tube was then evacuated and backfilled three times with argon. Dioxane (6 ml) was added to the tube, evacuated and backfilled three times again. The reaction mixture was sealed and stirred in 10 minutes under room temperature and was subsequently heated at $105{ }^{\circ} \mathrm{C}$ for $16-48$ hours. The reaction was controlled by TLC for completion. After that, it was cooled down to room temperature, taken up in dichloromethane and filtered through zeolite. The solvent was removed by evaporation in vacuo. The residue was put into column chromatography using the elute mixture heptane/ethyl acetate.

1,2-bis(4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (3a): Yellow solid, mp. 188 - 189 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dt}, \mathrm{J}=5.0,2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{dt}, \mathrm{J}=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dt}, \mathrm{J}=5.3,3.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.78-$ $6.63(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4$, $158.8,146.5$ (2C), 144.2, 143.8, 132.4, 130.3 (2C), 128.9 (2C), 124.2, 117.5, 116.6, 114.6 (2C), 113.8 (2C), 102.9, 55.5, 55.2. IR (ATR, cm^{-1}) 3122 (w), 3076 (w), 2918 (m), 2848 (w), 2045 (w), 1923 (w), 1716 (w), 1608 (m), 1510 (s), 1498 (s), 1458 (m), 1414 (s), 1247 (s), 1186 (m), 1104 (m), 1025 (s), 923 (m), 834 (s), 800 (s), 789 (s), 729 (m), 644 (w), 580 (s). MS (EI, 70 eV): m/z (\%) = 330 (100), $[\mathrm{M}]^{+} 331$ (24), 315 (28), 243 (17). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 331.14410$, found 331.14419.

1-(3-methoxyphenyl)-2-(4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (3b): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{dd}, \mathrm{J}=4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.76$ - $6.69(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (63 MHz , CDCl_{3}) $\delta 160.4,159.6,146.9,144.3,144.0,138.8,132.1,130.4$ (2C), 130.2, 124.3, 120.1, 117.6, 116.9, 113.9 (2C), 113.6, 113.4, 103.7, 55.5, 55.3. IR (ATR, cm^{-1}) 3036 (w), 2002 (w), 2933 (w), 2834 (w), 2926 (w), 2034 (w), 1891 (w), 1676 (w), 1588 (s), 1491 (s), 1454 (m), 1411 (s , 1281 (m), 1246 (s$), 1172$ (s$), 1027$ (s$), 833$ (m), 778 (s$), 725$ (m), 694 (m), 552 (m). MS (EI, 70 eV): m/z (\%) = 330 (100), [M] 331 (25), 315 (24), 243 (17). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}]^{+} 330.13628$, found 330.13602.

2-(4-methoxyphenyl)-1-phenyl-1H-pyrrolo[3,2-b]pyridine (3c): Yellow solid, mp. 137 $138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 159.6,146.8,144.1,137.8,132.2,130.5$ (2C), 129.6 (2C), 127.9 (2C), 127.7, 124.2, 117.6, 116.9, 113.9, 103.6, 55.3. IR (ATR, cm^{-1}) 3117 (w), 3060 (w), 2960 (w), 2834 (w), 1595 (m), 1500 (s), 1414 (s), 1242 (m), 1179 (m), 1023 (m), 834 (m), 782 (s), $700(\mathrm{~s}), 598(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=300(100),[\mathrm{M}]^{+}, 301$ (23), 285 (39), 255 (27), 128 (10), 77 (10), 51(8). HRMS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ON}_{2}[\mathrm{M}]^{+} 300.12571$, found 300.12513

2-(4-methoxyphenyl)-1-(naphthalen-2-yl)-1H-pyrrolo[3,2-b]pyridine (3d): Yellow solid, mp. $140-141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{dd}, \mathrm{J}=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (63 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 159.6,146.8,145.5,144.1,134.5,134.5,133.4,131.2,129.8$ (2C), 129.1, 128.6, $127.5,127.3,126.88,125.7,124.3,123.2,118.2,116.9,113.9$ (2C), 103.1, 55.3. IR (ATR, cm^{-1}) 3048 (w), 2921 (w), 2850 (w), 1607 (m), 1496 (m), 1417 (m), 1251 (s , 1178 (m), 1024 (m), 842 (m), 806 (s), 797 (s), 773 (s$), 590(\mathrm{~m}), 539(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=350$ (100) $[\mathrm{M}]^{+} 351$ (22), 335 (17), 305 (20), 153 (11). HRMS (EI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.14919$, found 351.14934

1-(2,3-dihydro-1H-inden-5-yl)-2-(4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (3e):

Yellow solid, mp. $51-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.95-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=8.3,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.05-2.86(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,146.8$, $145.8,144.2,144.1,144.0,135.8,132.5,130.4$ (2C), 125.9, 125.1, 124.5, 123.8, 117.7, 116.7, 113.9 (2C), 103.2, 55.4, 33.0, 32.7, 25.7. IR (ATR, cm^{-1}) 3038 (w), 3005 (w), 2924 (m), 2844 (m), 2197 (w), 2058 (w), 2035 (w), 1889 (w), 1722 (w), 1674 (w), 1068 (m), 1596 (w), 1496 (s), 1412 (s), 1281 (m), 1246 (s), 1174 (s), 1028 (m), 832 (m), 780 (s), 726 (m). MS (EI, 70 $\mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=340(100),[\mathrm{M}]^{+} 341(25), 325$ (18), 156 (12), 115 (6). HRMS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ON}_{2}[\mathrm{M}]^{+} 340.15701$, found 340.15685 .

1-(3,5-dimethylphenyl)-2-(4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (3f): Yellow solid, mp. $143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{dd}, \mathrm{J}=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (dd, J = 8.2, 2.1 Hz, 1H), 7.19-7.13 (m, 2H), $6.96(\mathrm{dd}, \mathrm{J}=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,146.9,144.1,144.0,139.3,137.62,132.3,130.4$ (2C), $129.5,125.6$ (2C), 124.5, 117.7, 116.7, 113.9 (2C), 103.3, 55.4, 21.4 (2C). IR (ATR, cm^{-1}) 3038 (w), 3008 (w), 2920 (w), 2837 (w), 1610 (m), 1594 (m), 1497 (s), 1413 (s), 1377 (m), 1250 (s), 1177 (m), 1037 (m), 837 (m), 783 (m). MS (EI, 70 eV): m/z (\%) = 328 (100), [M] ${ }^{+}$ 329 (25), 313 (21), 269 (13), 157 (12). HRMS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ON}_{2}[\mathrm{M}]^{+}$ 328.15701 , found 328.15685 .

1-(4-methoxyphenyl)-2-phenyl-1H-pyrrolo[3,2-b]pyridine (3g): Yellow solid, mp. 146 $147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9,146.3,144.2,143.9,132.6$, 131.7, 130.2, 129.1 (2C), 128.9 (2C), 128.3 (2C), 127.9, 117.8, 116.9, 114.7 (2C), 103.8, 55.5. IR (ATR, cm^{-1}) 3128 (w), 3012 (w), 2921 (w), 2850 (w), 2044 (w), 1891 (w), 1852 (w),

1597 (m), 1510 (s), 1414 (s), 1245 (s), 1176 (m), 1022 (m), 843 (m), 769 (s), 696 (s), 583 (m). MS (EI, 70 eV): m/z (\%) = 300 (100), [M] 301 (22), 209 (19), 285 (18), 255 (22), 128 (11). HRMS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ON} \mathrm{N}_{2}[\mathrm{M}]^{+} 300.12571$, found 300.12562.

1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-1H-pyrrolo[3,2-b]pyridine (3h):

Yellow solid, mp. $143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{dd}, \mathrm{J}=4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.56-7.47$ (m, 3H), 7.41 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.16-7.06$ (m, 3H), $7.04(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7 .{ }^{13} \mathrm{C}$ NMR (63 MHz , CDCl_{3}) $\delta 159.3,146.4,144.7,142.2,135.4,133.0,130.0,129.8(\mathrm{q}, \mathrm{J}=32.6 \mathrm{~Hz}), 129.2$ (2C), $129.0(2 \mathrm{C}), 125.4(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz})(2 \mathrm{C}), 124.1(\mathrm{q}, \mathrm{J}=272.1 \mathrm{~Hz}), 118.0,117.7,115.0$ (2C), 105.2, 55.6. IR (ATR, cm^{-1}) 3044 (w), 3014 (w), 2959 (w), 2932 (w), 2840 (w), 1726 (w), 1616 (w), 1514 (s), 1416 (m), 1322 (s), 1317 (s), 1245 (m), 1167 (s), 1109 (s), 1061 (m), 856 (m), 804 (s), $758(\mathrm{~m}), 623(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=368(100),[\mathrm{M}]^{+} 369$ (23), 367 (19), 255 (11), 182 (11), 128 (11). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ON}_{2} \mathrm{~F}_{3}[\mathrm{M}]^{+} 368.11310$, found 368.11256 .

2-(4-fluorophenyl)-1-(4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (3i): Yellow solid, mp. $143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H})$, $6.90-6.83(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.25 .{ }^{13} \mathrm{C}$ NMR (63 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{~d}, \mathrm{~J}=248.6 \mathrm{~Hz}), 159.1,146.5,144.4,143.1,132.6,131.0(\mathrm{~d}, \mathrm{~J}=8.2$ Hz (2C), 130.1, 129.0 (2C), 128.1 (d, J = 3.4 Hz), 117.8, 117.2, 115.6 (d, J = 21.7 Hz) (2C), 114.8 (2C), 103.9, 55.6. IR (ATR, cm^{-1}) 3117 (w), 3050 ($\mathrm{w}=, 3014$ (w), 2916 (w), 2835 (w), 1600 (m), 1558 (w), 1515 (s$), 1496$ (s$), 1419$ (m), 1359 (m), 1248 (s), 1221 (m), 1158 (m), 1108 (m), 1024 (s), 840 (s), 681 (s), 577 (s). MS (EI, 70 eV): m/z (\%) = 318 (100), [M] 319 (23), 317 (17), 275 (18), 137 (9). HRMS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ON}_{2} \mathrm{~F}[\mathrm{M}]^{+}$318.11629, found 318.11615.

2-(4-fluorophenyl)-1-phenyl-1H-pyrrolo[3,2-b]pyridine (3j): Yellow solid, mp. 128-129 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.82(\mathrm{~m}, 3 \mathrm{H}) .19 \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.85 .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7(\mathrm{~d}, \mathrm{~J}=249.0 \mathrm{~Hz}), 146.1,143.8,143.4,137.3$, $131.0(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz})(2 \mathrm{C}), 129.8(2 \mathrm{C}), 128.1,127.9(2 \mathrm{C}), 127.8(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 118.3,117.3$, 115.6 (d, J = 21.7 Hz) (2C), 104.1. IR (ATR, cm^{-1}) 3046 (w), 2920 (w), 2851 (w), 1893 (w), 1596 (m), 1495 (s), 1412 (s$), 1359$ (m), 1219 (m), 1156 (m), 1013 (m), 835 (s$), 798$ (s$), 782$ (s), 696 (s), 594 (s). MS (EI, 70 eV): m/z (\%) = 288 (100), [M] 289 (20), 287 (47), 286 (15),

120 (7), 77 (12), 51 (12). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FN}_{2}$ [M] ${ }^{+}$288.10573, found 288.10600 .

1-(4-fluorophenyl)-2-phenyl-1H-pyrrolo[3,2-b]pyridine (3k): Yellow solid, mp. 120 - 121 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{dd}, \mathrm{J}=4.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~s}, 5 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-113.2. ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8(\mathrm{~d}, \mathrm{~J}=248.2 \mathrm{~Hz}), 146.8,144.6,144.1$, 133.7 (d, J = 3.0 Hz), 131.6, 129.5 (d, J = 8.5 Hz) (2C), 129.2 (2C), 128.5 (2C), 128.3, 117.6, 117.3, 116.6 (d, J = 22.8 Hz) (2C), 104.7. IR (ATR, cm^{-1}) 3054 (w), 2924 (w), 2853 (w), 1888 (w), 1599 (w), 1560 (w), 1507 (s), 1415 (s), 1221 (s$), 1153$ (m), 965 (m), 850 (m), 763 (s), 693 (s), 581 (s). MS (EI, 70 eV): m/z (\%) = 288 (100), [M] 289 (21), 287 (45), 286 (14), 143 (8), 75 (7). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NF}[\mathrm{M}]^{+} 288.10573$, found 288.10531.

1,2-diphenyl-1H-pyrrolo[3,2-b]pyridine (31): Yellow solid, mp. $117-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.28-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, \mathrm{J}=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7$, 144.3, 144.1, 137.8, 132.4, 131.8, 129.6 (2C), 129.2 (2C), 128.4 (2C), 128.2, 127.9 (2C), 127.8, 117.9, 117.2, 104.5. IR (ATR, cm^{-1}) 3046 (w), 2920 (w), 2850 (w), 1595 (m), 1558 (w), 1598 (m), 1454 (w), 1412 (s), 1382 (m), 1327 (m), 1290 (m), 1178 (m), 1113 (m), 963 (m), 769 (s), 690 (s), 604 (s). MS (EI, 70 eV): m/z (\%) = 270 (100), $[\mathrm{M}]^{+} 271$ (21), 269 (52), 268 (18), 77 (12), 51 (14). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.12297, found 271.12302. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data are in accordance with the literature. ${ }^{19 \mathrm{~h}}$

2-([1,1'-biphenyl]-4-yl)-1-phenyl-1H-pyrrolo[3,2-b]pyridine (3m): Yellow solid, mp. 169 $-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.25(\mathrm{~m}, 13 \mathrm{H}), 7.24$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,144.4,143.7$, $140.8,140.3,137.7,132.5,130.7,129.7$ (2C), 129.5 (2C), 128.9 (2C), 127.92 (2C), 127.9, 127.7, 127.1 (4C), 117.8, 117.2, 104.6. IR (ATR, cm^{-1}) 3113 (w), 3061 (w), 2921 (w), 2851 (w), 1920 (w), 1681 (w), 1596 (m), 1494 (m), 1411 (s), 1353 (m), 844 (m), 805 (m), 785 (m), 769 (s), 698 (s), 605 (m). MS (EI, 70 eV): m/z (\%) = 346 (100), [M] 347 (27), 345 (32), 269 (8), 77 (11), 51 (7). HRMS (EI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}]^{+} 346.14645$, found 346.14578.

2-(naphthalen-2-yl)-1-phenyl-1H-pyrrolo[3,2-b]pyridine (3n): Brownish solid, mp. 130 $131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.11-6.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.6,144.2$,
137.7, 133.2, 132.8, 129.7 (2C), 129.2, 128.6, 128.4, 128.0, 127.9 (2C), 127.8, 126.7, 126.60, 126.6, 118.0, 117.3, 104.8. IR (ATR, cm^{-1}) 3053 (w), 2923 (w), 2851 (w), 1592 (m), 1497 (s), 1414 (s), 1288 (m), 865 (m), 827 (m), 781 (s$), 759$ (m), 693 (s). MS (EI, 70 eV): m/z (\%) = 320 (100), $[\mathrm{M}]^{+} 321$ (26), 319 (49), 318 (16), 159 (7). HRMS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 320.13080$, found 320.13045 .

1,2-di(naphthalen-2-yl)-1H-pyrrolo[3,2-b]pyridine (3o): yellow solid, mp. $157-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{dd}, \mathrm{J}=4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, \mathrm{J}=8.2,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.04$ $(\mathrm{ddd}, \mathrm{J}=8.2,1.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 146.7, 145.3, 144.4, 134.4, 134.3, 133.6, 133.0, 132.7, 131.1, 129.2, 129.1, 128.5, 128.2, $127.9,127.8,127.5,127.5,127.2,126.8,126.4,126.3,125.9,125.5,123.1,118.2,117.2$, 104.4. IR (ATR, cm^{-1}) 3050 (w), 2923 (w), 2850 (w), 1595 (m), 1505 (m), 1465 (m), 1415 (m), 1399 (m), 1284 (m), 1016 (m), $863(\mathrm{~m}), 798(\mathrm{~m}), 770(\mathrm{~s}), 755(\mathrm{~m}), 663(\mathrm{~m}), 589(\mathrm{~m}) . \mathrm{MS}$ (EI, 70 eV): m/z (\%) = 370 (100), $[\mathrm{M}]^{+}, 371$ (31), 369 (36), 368 (13), 367 (15), 184 (13). HRMS (EI): Calculated for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}]^{+} 370.14645$, found 370.14572 .

General procedure for the synthesis of $\mathbf{7}$-azaindoles: 2-Bromo-3-chloropyridine $\mathbf{1 c}(0.3$ $\mathrm{mmol})$, imine $\mathbf{2 a}$ - $\mathbf{2 0}$ (0.33 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.018 \mathrm{mmol}), \mathrm{PCy}_{3}(0.036 \mathrm{mmol})$ and $\mathrm{NaOt} t \mathrm{Bu}$ $(0.84 \mathrm{mmol})$ were put into a dried pressure tube. The tube was then evacuated and backfilled with argon. Dioxane (6 ml) was added to the tube, evacuated and backfilled again. The reaction mixture was sealed and stirred in 10 minutes under room temperature and subsequently $16-48$ hours at $105^{\circ} \mathrm{C}$. The reaction was controlled by TLC for completion. After that, it was cooled down to room temperature, taken up in dichloromethane and filtered through zeolite. The solvent was removed by evaporation in vacuo. The residue was put into column chromatography using the elute mixture heptane/ethyl acetate.

1,2-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4a): White solid, mp. $145-146{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{dd}, \mathrm{J}=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.69(\mathrm{~m}, 2 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,158.6,150.0$, 143.2, 141.2, 130.2, 129.9, 129.5, 128.0, 124.6, 120.9, 116.8, 114.4, 113.8, 99.9, 77.5, 77.2, 77.0, 76.5, 55.4, 55.2. IR (ATR, cm ${ }^{-1}$) 3114 (w), 3049 (w), 3018 (w), 2929 (w), 2835 (w), 2037 (w), 1905 (w), 1833 (w), 1610 (m), 1567 (w), 1515 (s), 1500 (s), 1454 (m), 1371 (m), 1301 (m), 1242 (s), 1184 (m), 1024 (m), 833 (s), 798 (s), 766 (s), 584 (m). MS (EI, 70 eV):
m/z (\%) = 330 (83), [M] 331 (18), 329 (100), 286 (11), 243 (17), 121 (7). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 331.14410$, found 331.14454.

1-(3-methoxyphenyl)-2-(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4b): Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.06(\mathrm{~m}$, $3 \mathrm{H}), 7.06-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.62(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, $3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,159.5,150.0,143.4,141.2$, $138.3,130.2$ (2C), 129.8, 128.1, 124.8, 121.1, 121.0, 117.07, 114.3, 113.9 (2C), 113.5, 100.6, 55.5, 55.4. IR (ATR, cm^{-1}) 3041 (w), 3001 (w), 2933 (w), 2834 (w), 22228 w), 2032 (w), 1920 (w), 1731 (w), 1604 (m), 1588 (m), 1498 (s), 1455 (m), 1406 (s), 1368 (m), 1283 (m), 1247 (s , , 1173 (m), 1028 (m), 833 (m), 802 (m), 767 (m), 692 (m), 612 (m). MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=330(98),[M]^{+} 331(20), 329$ (100), 243 (16), 121 (13). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}]^{+} 330.13628$, found 330.13539 .

2-(4-methoxyphenyl)-1-phenyl-1H-pyrrolo[2,3-b]pyridine (4c): Yellow solid, mp. 138 $139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{dd}, \mathrm{J}=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.75(\mathrm{~m}, 1 \mathrm{H})$, $7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,163.5$, $159.3,149.9,143.3,141.1,137.2,130.6,130.2,129.1,128.5,128.1,127.3,124.6,121.0$, 117.0, 113.8, 113.7, 100.5, 55.2. IR (ATR, cm ${ }^{-1}$) 3044 (w), 3008 (w), 2953 (m), 2833 (m), 1674 (w), 1608 (m), 1500 (s), 1408 (s), 1368 (m), 1242 (s), 1182 (m), 1024 (s), 836 (m), 799 (s), 766 (s), 696 (s), 597 (s). MS (EI, 70 eV): m/z (\%) = 300 (91), [M] ${ }^{+}, 301$ (18), 299 (100), 285 (8), 255 (31), 128 (18), 51 (9). HRMS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ON}_{2}[\mathrm{M}]^{+}$300.12571, found 300.12482 .

2-(4-methoxyphenyl)-1-(naphthalen-2-yl)-1H-pyrrolo[2,3-b]pyridine (4d): Yellow solid, mp. $123-124^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{dd}, \mathrm{J}=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, \mathrm{J}=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.97$ $(\mathrm{m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.47(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$, $150.9,143.4,142.5,134.4,134.2,131.7,129.5$ (2C), 129.0, 128.5, 128.3, 128.1, 127.6, 127.0, $126.4,125.5,124.6,123.5,120.9,116.9,113.7$ (2C), 100.0. IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3604$ (w), 3388 (w), 3044 (w), 2961 (w), 2835 (w), 1609 (m), 1497 (s), 1469 (m), 1425 (m), 1298 (m), 1245 (s), 1176 (m), 1024 (m), 833 (m), 798 (s), 761 (s). MS (EI, 70 eV): m/z (\%) = $350(100)[\mathrm{M}]^{+}$, 351 (23), 349 (87), 305 (29), 243 (25), 153 (13). HRMS (EI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.14919$, found 351.14934 .

1-(2,3-dihydro-1H-inden-5-yl)-2-(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridine
Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, \mathrm{J}=7.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.09-1.93(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,150.3,145.3,143.8,143.3,141.4,135.3,130.3$ (2C), 128.0, 126.5, 125.0, 124.8, 124.6, 121.0, 116.8, 113.9 (2C), 100.0, 55.4, 33.1, 32.8, 25.7. IR (ATR, cm^{-1}) 3042 (w), 2944 (m), 2839 (w), 1675 (w), 1609 (m), 1499 (s), 1407 (m), 1248 (s), 1176 (m), 1030 (m), $834(\mathrm{~m}), 803(\mathrm{~m}), 769(\mathrm{~m})$. MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=340$ (79), $[\mathrm{M}]^{+} 341$ (17), 339 (100), 296 (10), 115 (12). HRMS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ON}_{2}$ $[\mathrm{M}]^{+} 339.14919$, found 339.14923 .

1-(3,5-dimethylphenyl)-2-(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4f): Yellow solid, mp. $95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.85$ $(\mathrm{s}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,150.2,143.3,141.3,138.7,137.1,130.7,130.2$ (2C), 129.6, 128.0, 126.5 (2C), 124.9, 121.0, 116.8, 113.8 (2C), 113.2, 100.1, 55.3, 21.5. IR (ATR, cm^{-1}) 3040 (w), 3006 (w), 2917 (w), 2836 (w), 1609 (m), 1546 (w), 1498 (s), 1473 (m), 1405 (s), 1369 (m), 1247 (s , 1175 (m), 1026 (m), 836 (m), 801 (m), 767 (m), $696(\mathrm{~m})$. MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=$ 328 (99), [M] 329 (21), 327 (100), 313 (12), 312 (14), 269 (17), 157 (12), 135 (10). HRMS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ON}_{2}[\mathrm{M}-\mathrm{H}]{ }^{+} 327.14919$, found 327.14906 .

1-(4-methoxyphenyl)-2-phenyl-1H-pyrrolo[2,3-b]pyridine (4g): Yellow solid, mp. 188 $189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.11(\mathrm{~m}, 7 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,150.1,143.5,141.2,132.2,129.8$, 129.4 (2C), 128.9 (2C), 128.3, 128.3 (2C), 127.7, 120.8, 116.9, 114.4 (2C), 100.9, 55.4. IR (ATR, cm^{-1}) 3067 (w), 3043 (w), 3010 (w), 2840 (w), 1901 (w), 1856 (w), 1604 (w), 1510 (m), 1419 (m), 1236 (s$), 1025$ (s$), 842$ (m), 806 (m), 752 (s), 693 (s), 556 (s). MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=300(68),[\mathrm{M}]^{+} 301$ (13), 299 (100), 256 (27), 128 (9). HRMS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ON}_{2}[\mathrm{M}]^{+} 299.11789$, found 299.11775 .

1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridine
 (4h):

Yellow solid, mp. $158-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (dd, J = 7.8, 1.6 Hz, 1H), 7.45 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,150.5,144.5,139.5,135.8,129.7(\mathrm{q}, \mathrm{J}=32.6 \mathrm{~Hz}), 129.6$, 129.5 (2C), $129.0(2 \mathrm{C}), 128.9,125.4(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz})(2 \mathrm{C}), 124.2(\mathrm{q}, \mathrm{J}=272.1 \mathrm{~Hz}), 120.6$, 117.3, 114.7 (2C), 102.3, 55.6. IR (ATR, cm^{-1}) 3020 (w), 2971 (w), 2843 (w), 2549 (w), 2315 (w), 2051 (w), 1934 (w), 1869 (w), 1613 (m), 1567 (w), 1515 (s), 1468 (m), 1442 (m), 1323 (s), 1300 (m), 1250 (s), 1162 (s), 1115 (s), 1028 (m), 918 (m), 844 (s), 800 (s), 764 (s), 591 (m), $561(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=368(69),[\mathrm{M}]^{+} 369$ (13), 367 (100), 324 (22), 323 (10), 255 (7). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ON}_{2} \mathrm{~F}_{3}[\mathrm{M}]^{+} 367.10527$, found 367.10514.

2-(4-fluorophenyl)-1-(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4i): Yellow solid, mp. $173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86(\mathrm{dd}, \mathrm{J}=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 4 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.6 .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{~d}, \mathrm{~J}=248.2 \mathrm{~Hz}), 158.9,150.2,143.9,140.3,130.8(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz})(2 \mathrm{C}), 129.8,129.6$ (2C), 128.5, 128.4, 120.8, 117.1, 115.5 (d, J = 21.7 Hz) (2C), 114.6 (2C), 100.9, 55.6. IR (ATR, cm^{-1}) 3103 (w), 3014 (w), 2969 (w), 2841 (w), 2050 (w), 1893 (w), 1602 (w), 1511 (s), 1496 (s , 1297 (m), 1245 (s$), 1152$ (m), 1106 (m), 1029 (m), 834 (s$), 813$ (s$), 773$ (s$), 581$ (s$)$. MS (EI, 70 eV): m/z (\%) = 318 (67), [M] 319 (12), 317 (100), 274 (29), 273 (21), 137 (7), 63 (8). HRMS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ON}_{2} \mathrm{~F}[\mathrm{M}-\mathrm{H}]^{+}$317.10847, found 317.10836.

2-(4-fluorophenyl)-1-phenyl-1H-pyrrolo[2,3-b]pyridine (4j): White solid, mp. 141 - 142 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.23$ $(\mathrm{m}, 7 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.4 .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6(\mathrm{~d}, \mathrm{~J}=248.4 \mathrm{~Hz}$), 149.8, 143.8, $140.3,136.9,130.8(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz})(2 \mathrm{C}), 129.3(2 \mathrm{C}), 128.6,128.5(2 \mathrm{C}), 128.4(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz})$, 127.7, 121.0, 117.3, $115.5(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz})(2 \mathrm{C})$, 101.5. IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3064(\mathrm{w}), 3043$ (w), 2921 (w), 1589 (m), 1543 (m), 1496 (s), 1424 (m), 1402 (m), 1220 (s), 1157 (m), 840 (s), 802 (s), 768 (s), 691 (s), 592 (s), 539 (m). MS (EI, 70 eV): m/z (\%) = 288 (62), [M] 289 (10), 287 (100), 286 (21), 143 (6), 51 (7). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$289.11355, found 289.11359 .

1-(4-fluorophenyl)-2-phenyl-1H-pyrrolo[2,3-b]pyridine (4k): Yellow solid, mp. 164 - 165 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz , $\mathrm{CDCl} 3) \delta$-114.4. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7(\mathrm{~d}, \mathrm{~J}=247.1 \mathrm{~Hz}), 150.1,143.8,141.2$, 133.1 (d, J = 3.2 Hz), 132.0, 130.1 (d, J = 8.6 Hz (2C), 129.1 (2C), 128.6, 128.5 (2C), 128.1, 121.0, 117.3, $116.1(\mathrm{~d}, \mathrm{~J}=22.8 \mathrm{~Hz})(2 \mathrm{C})$, 101.6. IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3110(\mathrm{w}), 3059(\mathrm{w}), 3008$
(w), 2924 (w), 1907 (w), 1858 (w), 1675 (w), 1568 (w), 1508 (m), 1420 (m), 1208 (m), 1096 (w), 852 (m), 804 (s), 747 (s). 698 (s), 552 (m). MS (EI, 70 eV): m/z (\%) = 288 (60), [M] ${ }^{+}$ 289 (10), 287 (100), 286 (21), 75 (11). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{H}]^{+}$ 287.09790 , found 287.09747 .

1,2-diphenyl-1H-pyrrolo[2,3-b]pyridine (41): White solid, mp. $130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.26(\mathrm{~m}$, $10 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,143.8$, $141.3,137.2,132.3,129.2$ (2C), 129.1 (2C), 128.5 (3C), 128.4 (2C), 127.9, 127.5, 121.0, 117.2, 101.6. IR (ATR, cm^{-1}) 3116 (w), 3064 (w), 2925 (w), 1852 (w), 1594 (m), 1540 (m), 1496 (s , 1474 (m), 1425 (m), 1401 (m), 1370 (m), 1224 (s$), 1158$ (m), 841 (m), 799 (s), 767 (s), 692 (s), 593 (s). MS (EI, 70 eV): m/z (\%) = $270(59),[\mathrm{M}]^{+} 271$ (11), 269 (100), 268 (21), 135 (8). HRMS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.12297, found 271.12322. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectral data are in accordance with the literature. ${ }^{19 \mathrm{i}}$

2-([1,1'-biphenyl]-4-yl)-1-phenyl-1H-pyrrolo[2,3-b]pyridine (4m): White solid, mp. 182 $183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{dd}, \mathrm{J}=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, \mathrm{J}=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63-7.33(\mathrm{~m}, 14 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (63 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,143.8,140.9,140.5,140.4,137.2,131.1,129.3$ (2C), 129.3 (2C), 128.9 (2C), 128.6 (2C), $128.5,127.6,127.5$ (2C), 127.1 (2C), 127.0, 121.0, 117.2, 101.6. IR (ATR, cm^{-1}) 3110 (w), 3050 (w), 3034 (w), 3001 (w), 1591 (w), 1500 (m), 1421 (m), 1293 (w), 1247 (w), 997 (w), 842 (m), 807 (m), 760 (s), 694 (s), 610 (w). MS (EI, 70 eV): m/z (\%) = 345 (100), $[\mathrm{M}]^{+}, 347$ (19), 346 (84), 268 (8), 173 (6), 77 (9). HRMS (EI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 347.15419$, found 347.15428 .

2-(naphthalen-2-yl)-1-phenyl-1H-pyrrolo[2,3-b]pyridine (4n): Yellow solid, mp. 180 $181{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{dd}, \mathrm{J}=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.90-7.65$ (m, 4H), $7.54-7.43$ (m, 2H), $7.43-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.17$ (dd, J = 7.8, 4.7 $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,143.8,141.2,137.2,133.3,132.8$, 129.7, 129.3 (2C), 128.6, 128.5 (2C), 128.3, 128.3, 127.9, 127.8, 127.5, 126.6, 126.6, 126.5, 121.1, 117.3, 102.0. IR (ATR, cm^{-1}) 3053 (w), 2923 (w), 2851 (w), 1957 (w), 1930 (w), 1879 (w), 1865 (w), 1674 (w), 1592 (m), 1499 (m), 1416 (s), 1293 (m), 827 (m), 802 (s), 772 (s), 755 (s), 596 (s), 578 (m). MS (EI, 70 eV): m/z (\%) = 320 (68), [M] 321 (15), 319 (100), 318 (22), 317 (10), 159 (13). HRMS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$321.13862, found 321.13885 .

1,2-di(naphthalen-2-yl)-1H-pyrrolo[2,3-b]pyridine (4o): Yellow solid, mp. $168-169{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{dd}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ $(\mathrm{dd}, \mathrm{J}=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.2,144.0,142.5$, $134.4,134.2,133.0,132.6,131.7,129.5,129.1,128.5,128.4,128.2,127.7,127.7,127.5$ (2C), $127.1,126.5,126.3,126.2,125.8,125.5,123.4,120.8,117.1,101.4$. IR (ATR, $\left.\mathrm{cm}^{-1}\right) 3052$ (w), 2922 (w), 2851 (w), 1929 (w), 1595 (m), 1415 (m), 1297 (m), 958 (w), 786 (m), 768 (s), 758 (s). MS (EI, 70 eV): m/z (\%) = 370 (99), [M] 371 (28), 369 (100), 367 (16), 243 (25), 184 (10), 127 (11), 77 (6). HRMS (EI): Calculated for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}]^{+} 370.14645$, found 370.14531 .

Acknowledgements. Financial support by the DAAD (scholarship for N.N.P.) is gratefully acknowledged.

References

1. (a) M. Layek, Y. Syam Kumar, A. Islam, R. Karavarapu, A. Sengupta, D. Halder, K. Mukkanti and M. Pal, MedChemComm, 2011, 2, 478; (b) K. Gao and N. Yoshikai, J. Am. Chem. Soc., 2013, 135, 9279-82; (c) J.-Y. Mérour, F. Buron, K. Plé, P. Bonnet and S. Routier, Molecules, 2014, 19, 19935-79.
2. (a) K. L. Rich, M. Négrerie, J. Li, S. Elliott, R. W. Thornburg and J. W. Petrich, Photochem. Photobiol., 1993, 58, 28-30; (b) R. L. Rich, F. Gai, J. W. Lane, J. W. Petrich and A. W. Schwabacher, J. Am. Chem. Soc., 1995, 117, 733-739; (c) P. Soumillion, L. Jespers, J. Vervoort and J. Fastrez, "Protein Eng. Des. Sel., 1995, 8, 451-456; (d) S. Lepthien, M. G. Hoesl, L. Merkel and N. Budisa, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 16095-100.
3. (a) T. Wang, Z. Yin, Z. Zhang, J. A. Bender, Z. Yang, G. Johnson, Z. Yang, L. M. Zadjura, C. J. D'Arienzo, D. DiGiugno Parker, C. Gesenberg, G. A. Yamanaka, Y.-F. Gong, H.-T. Ho, H. Fang, N. Zhou, B. V McAuliffe, B. J. Eggers, L. Fan, B. NowickaSans, I. B. Dicker, Q. Gao, R. J. Colonno, P.-F. Lin, N. A. Meanwell and J. F. Kadow,
J. Med. Chem., 2009, 52, 7778-87; (b) M. B. Plewe, S. L. Butler, K. R. Dress, Q. Hu, T. W. Johnson, J. E. Kuehler, A. Kuki, H. Lam, W. Liu, D. Nowlin, Q. Peng, S. V Rahavendran, S. P. Tanis, K. T. Tran, H. Wang, A. Yang and J. Zhang, J. Med. Chem., 2009, 52, 7211-9; (c) S. P. Tanis, M. B. Plewe, T. W. Johnson, S. L. Butler, D. Dalvie, D. DeLisle, K. R. Dress, Q. Hu, B. Huang, J. E. Kuehler, A. Kuki, W. Liu, Q. Peng, G. L. Smith, J. Solowiej, K. T. Tran, H. Wang, A. Yang, C. Yin, X. Yu, J. Zhang and H. Zhu, Bioorg. Med. Chem. Lett., 2010, 20, 7429-34; (d) T. Wang, Z. Yang, Z. Zhang, Y.-F. Gong, K. A. Riccardi, P.-F. Lin, D. D. Parker, S. Rahematpura, M. Mathew, M. Zheng, N. A. Meanwell, J. F. Kadow and J. A. Bender, Bioorg. Med. Chem. Lett., 2013, 23, 213-7.
4. (a) P. S. Shirude, R. Shandil, C. Sadler, M. Naik, V. Hosagrahara, S. Hameed, V. Shinde, C. Bathula, V. Humnabadkar, N. Kumar, J. Reddy, V. Panduga, S. Sharma, A. Ambady, N. Hegde, J. Whiteaker, R. E. McLaughlin, H. Gardner, P. Madhavapeddi, V. Ramachandran, P. Kaur, A. Narayan, S. Guptha, D. Awasthy, C. Narayan, J. Mahadevaswamy, K. G. Vishwas, V. Ahuja, A. Srivastava, K. R. Prabhakar, S. Bharath, R. Kale, M. Ramaiah, N. R. Choudhury, V. K. Sambandamurthy, S. Solapure, P. S. Iyer, S. Narayanan and M. Chatterji, J. Med. Chem., 2013, 56, 9701-8; (b) M. Chatterji, R. Shandil, M. R. Manjunatha, S. Solapure, V. Ramachandran, N. Kumar, R. Saralaya, V. Panduga, J. Reddy, P. K R, S. Sharma, C. Sadler, C. B. Cooper, K. Mdluli, P. S. Iyer, S. Narayanan and P. S. Shirude, Antimicrob. Agents Chemother., 2014, 58, 5325-31; (c) P. S. Shirude, R. K. Shandil, M. R. Manjunatha, C. Sadler, M. Panda, V. Panduga, J. Reddy, R. Saralaya, R. Nanduri, A. Ambady, S. Ravishankar, V. K. Sambandamurthy, V. Humnabadkar, L. K. Jena, R. S. Suresh, A. Srivastava, K. R. Prabhakar, J. Whiteaker, R. E. McLaughlin, S. Sharma, C. B. Cooper, K. Mdluli, S. Butler, P. S. Iyer, S. Narayanan and M. Chatterji, J. Med. Chem., 2014, 57, 5728-37.
5. (a) B. K. Koe, J. A. Nielsen, J. E. Macor and J. Heym, Drug Dev. Res., 1992, 26, $241-$ 250; (b) J. Tang, T. Hamajima, M. Nakano, H. Sato, S. H. Dickerson and K. E. Lackey, Bioorg. Med. Chem. Lett., 2008, 18, 4610-4; (c) H. Koolman, T. Heinrich, H. Böttcher, W. Rautenberg and M. Reggelin, Bioorg. Med. Chem. Lett., 2009, 19, 1879-82; (d) K. Takeuchi, J. A. Bastian, D. S. Gifford-Moore, R. W. Harper, S. C. Miller, J. T. Mullaney, D. J. Sall, G. F. Smith, M. Zhang and M. J. Fisher, Bioorg. Med. Chem. Lett., 2000, 10, 2347-2351; (e) H. Matter, B. Scheiper, H. Steinhagen, Z. Böcskei, V. Fleury and G. McCort, Bioorg. Med. Chem. Lett., 2011, 21, 5487-92; (f) B. Scheiper, H.

Matter, H. Steinhagen, Z. Böcskei, V. Fleury and G. McCort, Bioorg. Med. Chem. Lett., 2011, 21, 5480-6; (g) S. Chowdhury, E. H. Sessions, J. R. Pocas, W. Grant, T. Schröter, L. Lin, C. Ruiz, M. D. Cameron, S. Schürer, P. LoGrasso, T. D. Bannister and Y. Feng, Bioorg. Med. Chem. Lett., 2011, 21, 7107-12.
6. (a) M. Jeanty, J. Blu, F. Suzenet and G. Guillaumet, Org. Lett., 2009, 11, 5142-5; (b) M. Jeanty, J. Blu, F. Suzenet and G. Guillaumet, Synfacts, 2010, 2010, 0155-0155; (c) D. Thomae, M. Jeanty, J. Coste, G. Guillaumet and F. Suzenet, European J. Org. Chem., 2013, 2013, 3328-3336; (d) R. S. Alekseyev, S. R. Amirova, E. V. Kabanova and V. I. Terenin, Chem. Heterocycl. Compd., 2014, 50, 1305-1315.
7. (a) M. M. Robinson and B. L. Robison, J. Am. Chem. Soc., 1955, 77, 457-460; (b) J. Bergman, P. Sand and U. Tilstam, Tetrahedron Lett., 1983, 24, 3665-3668; (c) E. O. M. Orlemans, A. H. Schreunder, P. G. M. Conti, W. Verboom and D. N. Reinhoudt, Tetrahedron, 1987, 43, 3817-3826; (d) D. A. Wacker and P. Kasireddy, Tetrahedron Lett., 2002, 43, 5189-5191; (e) M. A. Bobko, K. A. Evans, A. C. Kaura, L. E. Shuster and D.-S. Su, Tetrahedron Lett., 2012, 53, 200-202; (f) J. Jadhav, S. Khanapaure, R. Kurane, R. Salunkhe and G. Rashinkar, Tetrahedron Lett., 2013, 54, 6858-6863.
8. (a) R. P. Ryan, R. A. Hamby and Y.-H. Wu, J. Org. Chem., 1975, 40, 724-728; (b) T. Storz, M. Bartberger, S. Sukits, C. Wilde and T. Soukup, Synthesis (Stuttg)., 2008, 2008, 201-214.
9. (a) Z. Zhang, Z. Yang, N. A. Meanwell, J. F. Kadow and T. Wang, J. Org. Chem., 2002, 67, 2345-2347; (b) G. M. P. Giblin, A. Billinton, M. Briggs, A. J. Brown, I. P. Chessell, N. M. Clayton, A. J. Eatherton, P. Goldsmith, C. Haslam, M. R. Johnson, W. L. Mitchell, A. Naylor, A. Perboni, B. P. Slingsby and A. W. Wilson, J. Med. Chem., 2009, 52, 5785-8; (c) A. R. Blaazer, J. H. M. Lange, M. A. W. van der Neut, A. Mulder, F. S. den Boon, T. R. Werkman, C. G. Kruse and W. J. Wadman, Eur. J. Med. Chem., 2011, 46, 5086-98.
10. (a) A. F. Pozharskii, V. V. Kuz'menko, V. A. Azimov and L. N. Yakhontov, Chem. Heterocycl. Compd., 1973, 9, 1119-1125; (b) R. Buchan, M. Fraser and C. Shand, J. Org. Chem., 1977, 42, 2448-2454; (c) R. Buchan, M. Fraser and P. V. S. K. T. Lin, J. Org. Chem., 1985, 50, 1324-1325; (d) M. L. Davis, B. J. Wakefield and J. A. Wardell, Tetrahedron, 1992, 48, 939-952; (e) Y. Ma, S. Breslin, I. Keresztes, E. Lobkovsky and D. B. Collum, J. Org. Chem., 2008, 73, 9610-8.
11. (a) S. D. Debenham, A. Chan, K. Liu, K. Price and H. B. Wood, Tetrahedron Lett., 2005, 46, 2283-2285; (b) N. Lachance, M. April and M.-A. Joly, Synthesis (Stuttg)., 2005, 2005, 2571-2577; (c) S. H. Spergel, D. R. Okoro and W. Pitts, J. Org. Chem., 2010, 75, 5316-9; (d) K. Majumdar, S. Ganai, B. Chattopadhyay and K. Ray, Synlett, 2011, 2011, 2369-2373.
12. T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen and M. Jørgensen, Angew. Chem. Int. Ed. Engl., 2008, 47, 888-90.
13. (a) D. K. Whelligan, D. W. Thomson, D. Taylor and S. Hoelder, J. Org. Chem., 2010, 75, 11-5; (b) Y.-Q. Fang, J. Yuen and M. Lautens, J. Org. Chem., 2007, 72, 5152-60.
14. M. C. Willis, G. N. Brace and I. P. Holmes, Angew. Chem. Int. Ed. Engl., 2005, 44, 403-6.
15. S. Cacchi, G. Fabrizi and L. M. Parisi, J. Comb. Chem., 2005, 7, 510-2.
16. X. Li, W. Yin, P. V. V. S. Sarma, H. Zhou and J. M. Cook, Tetrahedron Lett., 2004, 45, 8569-8573.
17. J. Barluenga, A. Jiménez-Aquino, F. Aznar and C. Valdés, J. Am. Chem. Soc., 2009, 131, 4031-41.
18. L. Ackermann, A. Althammer and P. Mayer, Synthesis (Stuttg)., 2009, 2009, 34933503.
19. (a) N. De Kimpe and C. Stevens, Tetrahedron, 1991, 47, 3407-3416; (b) A. Lühl, H. P. Nayek, S. Blechert and P. W. Roesky, Chem. Commun. (Camb)., 2011, 47, 8280-2; (c) T. Imamoto, N. Iwadate and K. Yoshida, Org. Lett., 2006, 8, 2289-92; (d) B. Lu, J. Wu and N. Yoshikai, J. Am. Chem. Soc., 2014, 136, 11598-601; (e) L. Mitchell, B. Gonzalez-Santiago, J. P. S. Mowat, M. E. Gunn, P. Williamson, N. Acerbi, M. L. Clarke and P. A. Wright, Catal. Sci. Technol., 2013, 3, 606; (f) J. S. M. Samec and J.-E. Bäckvall, Chemistry, 2002, 8, 2955-61; (g) Y. Liu and H. Du, J. Am. Chem. Soc., 2013, 135, 6810-3; (h) S. M. Crawford, C. B. Lavery and M. Stradiotto, Chemistry, 2013, 19, 16760-71; (i) G. Qian, X. Hong, B. Liu, H. Mao and B. Xu, Org. Lett., 2014, 16, 52947.

