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Gold-catalyzed -Furanylations of Quinoline N-Oxides with 
Alkenyldiazo Carbonyl Species 

Vinayak Vishnu Pagar and Rai-Shung Liu* 

Gold-catalyzed -furanylations of 8-alkylquinoline N-oxides has 

been achieved using alkenyldiazo carbonyl species as nucleophiles. 

The reactions are applicable to a reasonable range of alkenyldiazo 

species and 8-alkylquinoline N-oxides. The reaction mechanism is 

postulated to involve an initial nucleophilic of diazocarbonyl 

species at 8-alkylquinoline N-oxides, followed by diazo 

decompositions.  

Quinoline cores are widely found in natural products, 

pharmaceutics and common synthetic building blocks in organic 

synthesis.
1
 The reactions of quinoline compounds generally follow 

those of pyridine derivatives. -Arylations of pyridines are generally 

performed with Pd-catalyzed coupling reactions
2-4 

using -halo- or 

metallated pyridyl reagents. Direct C-H functionalizations of 

pyridine derivatives can avoid an extra “prefunctionalization” of a 

pyridine core.
5-6

 Although there are literature reports on the 

addition of Grignard reagents to pyridine N-oxides to obtain -aryl 

substituted pyridines, satisfactory yields can be obtained only in the 

presence of electrophiles such as acetic anhydride in a large 

proportion (1.2 equiv, eq 1).
7
 Although -functionalizations of 

pyridine N-oxide can be achieved with alkenes and alkynes 

catalyzed by Ni, Pd or Rh complexes,
 5-6

 no corresponding arylation 

reactions are reported yet.
 
Herein, we report new gold-catalyzed 

heteroarylations of 8-alkylquinoline N-oxide 2 with alkenyldiazo 

carbonyl species with its reaction protocol depicted in eq 3. The 

mechanism of this non-oxidation process has been elucidated with 

suitable experiments.  

         Table 1 shows the optimization of the reactions between 

ethenyldiazo acetate 1a and 8-methylquinoline N-oxide 2a using 

various acid catalysts. In a typical operation, diazo species 1a (1.0 

equiv) and 2a (1.5 equiv) were mixed together in 1,2-

dichloroethane (DCE) before an addition of a DCE solution of 

catalyst at 25 
o
C. The resulting mixture was then stirred at 55 

o
C for 

2-3 h to consume initial diazo reagents completely. With 

LAuCl/AgNTf2 (L= P(t-Bu)2(o-biphenyl) (5 mol %), its reaction in 

dichloroethane at mild conditions (25 
o
C, 6 h) gave the desired 

product, 2-(5-ethoxyfuran-2-yl)-8-methylquinoline 3a in 25% yield 

(Table 1, entry 1). The product yield was improved significantly to 

60% if the reaction was operated at 55 
o
C for 2.5 h (entry 2). An 

alteration of silver salt as in LAuCl/ AgSbF6 increased the yield of 

furan 3a in 64% (entry 3). Other gold catalysts IPrAuCl/AgSbF6 (IPr = 

1,3-bis(diisopropylphenyl)imidazol-2-ylidene) and 

 

PPh3AuCl/AgSbF6 appeared to be less efficient to obtain furan 3a in 

30-40 % yields respectively (entries 4-5). In a control experiment, 

P(t-Bu)2(o-biphenyl)AuCl alone gave only 20 % furan product in 4 h 

(entry 6). We also tested the reaction with LAuCl (5 mol %)/AgSbF6 

(20 mol%), and its reaction was complete within 2 h to give the 

desired product 3a in 52 % (entry 7). The data in entries 6-7 suggest 

that silver enhances the addition of vinyldiazo acetate to 8-

methylquinoline N-oxide to accelerate the reaction, but the diazo 

decomposition is activated by cationic gold species. In the absence 
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of catalyst, the reaction gave a complicated mixture of products due 

to decomposition of starting reagents (entry 8). Silver catalysts 

including AgNTf2 and AgSbF6 gave desired 3a in low yields (7-10 %, 

entries 9-10). We tested the reaction with Rh2(OAc)4 (2.5 mol %) 

and Cu(OTf)2 (5 mol %); both cases gave complicated  mixture of 

products (entries 11-12). Among these tests, self-cyclization of 

vinyldiazo acetates did occur but to a less extent, and resulting 

ethyl 1H-pyrazole-3-carboxylate was produced in small proportions 

(<20 %).
8
 

Table1. Reactions over various metal catalysts 

 

 

         We examined the reactions using various alkenyldiazo 

carbonyl compounds and 8-alkylquinoline N-oxides. In a typical 

operation, initial alkenyldiazo reagents were treated with 8-

alkylquinoline N-oxides and LAuCl/AgSbF6 (L = P(t-Bu)2(o-biphenyl), 

5 mol %) in DCE (55 
o
C) for 2-3 h, leading to a complete 

consumption of starting vinyldiazo to yield -arylated quinoline 

derivatives 3b-3o in moderate to good yields. Entries 1-3 shows the 

compatibility of this arylation with diazo species 1b-1d bearing 

various esters (X = OMe, O
t
Bu, OBn), providing desired products 3b-

3d in 54-61% yields. We examined also the reactions of diazo 

species 1e and 1f bearing variable substituents at the alkenyl C(2)-

carbon (R
1
= methyl and isopentyl), yielding desired products 3e and 

3f in 59-52% yields respectively (entries 4 and 5). Herein, the 

molecular structure of furan product 3e was determined by X-ray 

diffraction study to confirm its structure.
9
  We also tested the 

arylation reactions using the diazo ketones 1g-1h (X = n-propyl and 

cyclohexyl); the corresponding products were obtained in 3g-3h in 

65% and 67% yields respectively (entries 6-7). In entries 8-9 we 

examined the reactions of alkenyldiazo arylketones 1i and 1j (X = 

phenyl, 4-methoxyphenyl) that afforded expected products 3i and 

3j with satisfactory yields (70-72%). The reactions were also suitable 

for the heteroaryl vinyldiazo ketones (X=3-furanyl, 2-thienyl) to 

afford desired compounds 3k and 3l in 69-73% yields, respectively 

(entries 10 and 11). To expand the reaction scope, we also prepared 

other 8-substituted quinoline N-oxide 2b-2d (R
2 

= ethyl, isopropyl 

and benzyl); their reaction with ethenyldiazo ester 1a afforded 

furan products 3m-3o in moderate yields (60-64%, entries 12-14).  

We also tested the reaction on 2-arylsubstituted pyridine oxides, 

but the reactions were unsuccessful. 

Table 2 Reaction scopes for the formation of furan 

 

 

        Shown in equation (4) is a deuterium labeling experiment to 

elucidate the reaction mechanism. We prepared deuterated diazo 

species d1-1a in which its alkenyl C(2)-proton was fully deuterated; 

its resulting product d1-3a contained a fully deuterium at its C(3)-

furyl carbon. We envisage that the success of 8-alkylquinoline 

oxides is due to their better electrophilicity than a monomeric 

pyridine oxide like species 2e; we test this hypothesis with two 

separate experiments as depicted in eqs 5 and 6. Indeed, gold 

catalyzed allylation of 8-methylquinoline oxide worked well to yield 
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addition product 5a in 62% yield at a brief period (3 h) whereas 2-

phenylpyridine oxide 2e gave unreacted 2e and addition product 5b 

in 26% and 42% yields respectively after a prolonged period (24 h). 

8-methylqunoline oxide is obviously more reactive than 2-

phenylpyridine oxide in the gold-catalyzed electrophilic additions. 

 

Scheme 1 depicts a plausible mechanism to rationalize this 

-hetereoarylation reaction, involving a prior addition of 

alkenyldiazo esters at 8-methylquinoline oxide before a diazo 

decomposition; such a nucleophilic addition/diazo decomposition 

route has several literature precedents.
10,11

 The feasibility of a prior 

nucleophilic addition is supported by a control experiment in eq 5.  

We envisage that gold complex coordinates to the oxygen of 8- 

methylquinoline N-oxide to increase its C()-carbon electrophilicity. 

A subsequent nucleophilic attack of alkenyldiazo ester at this Au(I)-

bound oxide complex generates an addition product B, which 

undergoes a loss of water to form species C. At this stage, gold 

complexes activates the diazo decomposition of species C to yield 

gold carbenes D that undergo an oxa-Nazarov 
12 

cyclization to yield 

furanylium cation E,
 
ultimately affording observed compound d1-3a 

via a protodeauration. This proposed mechanism also rationalizes 

our deuterium labeling experiment that no loss of deuterium is 

observed for resulting d1-3a. This mechanism is highly speculative 

and additional work is required for its confirmation.  

 
Scheme 1 Plausible mechanism 

 

Conclusions 

         We report here a new gold-catalyzed reaction between 

vinyldiazo carbonyl compounds and 8-alkylquinoline N-oxides 

to yield 2-furanyl-quinoline products.
13

 The reactions are 

operable with a reasonable range of alkenyldiazo species and 

quinoline oxides but inapplicable to monomeric pyridine N-

oxides. We postulate a mechanism involving an initial 

nucleophilic addition of diazocarbonyl esters at 8-alkylquiniline 

N-oxides, followed by gold-induced diazo decomposition.  This 

instance provides an additional example for a nucleophilic 

addition/diazo decomposition cascade of alkenyldiazo 

carbonyl reagents. 

Experimental section 

General catalytic procedure for the synthesis of furan (3a) 

A dichloroethane (1 mL) solution of P(t-Bu)2(o-biphenyl)AuCl (18.9 

mg, 0.035 mmol) and AgSbF6 (12.2 mg, 0.035 mmol) was stirred 

under argon atmosphere at 25
o
C for 10 min. To this solution was 

added dropwise a dichloroethane (2 mL) solution of 

ethyldiazoacetate (1a) (100 mg, 0.71 mmol) and 8-methylquinoline 

N-oxide (2a) (170 mg, 1.07 mmol) over 5 minute. The resulting 

solution was stirred at 55 
o
C for additional 2.5 h before it was 

filtered over a short silica bed. The filtrate was concentrated and 

the residue was purified by column chromatography on silica gel 

using hexane-ethyl acetate (9:1) as eluent to give 2-(5-ethoxyfuran-

2-yl)-8-methylquinoline (3a) as yellow oil (115 mg, 0.45 mmol, 64% 

yield).  
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