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An efficient and useful rhodium-catalyzed denitrogenative thioacetalization of N-sulfonyl-1,2,3-
triazoles has been developed for the first time. The protocol uses readily available N-sulfonyl-1,2,3-
triazoles and diaryl disulfides as the starting materials, the corresponding hydrolytic and reductive 
products with thioacetals were obtained in good to excellent yields, and the reactions were carried 10 

out well under the mild conditions with tolerance of some functional groups. Further, the generated 
thioacetals could be transferred into some useful compounds. Therefore, the present method 
provides a novel and valuable strategy for diverse transformation of alkynes. 

Alkynes are an important class of organic compounds, and they 
provide various opportunities for transformations of diverse 15 

organic molecules.1 For example, copper-catalyzed cycloaddition 
of terminal alkynes with N-sulfonyl azides can easily get N-
sulfonyl-1,2,3-triazoles.2 Recently, N-sulfonyl-1,2,3-triazoles 
have attracted some attention because they can transfer into 
useful α-imino metal carbenes in the presence of transition 20 

metals,3 the generated α-imino and metal carbene parts exhibit 
high nucleophilic and electrophilic reactivity, and some 
interesting reactions have been developed by using various 
partners.4 On the other hand, thioacetalization of carbonyl groups 
is a popular protocol in organic synthesis,5 and it is often used in 25 

synthesis of various molecules because of inherent stability of the 
thioacetals under both acidic and basic conditions.6 The 
traditional methods for synthesis of thioacetals are from the 
reaction of carbonyl compounds with thiols or dithiols in the 
presence of protic and Lewis acids.7 In addition, thioacetalization 30 

of diazo compounds has also been investigated.8 To the best of 
our knowledge, thioacetalization of N-sulfonyl-1,2,3-triazoles has 
not been reported thus far. As shown in Scheme 1, our strategy in 
this paper is as follows: copper-catalyzed cycloaddition of 
terminal alkynes with N-sulfonyl azides provides N-sulfonyl-35 

1,2,3-triazoles according to the previous literatures,2 and 
rhodium-catalyzed denitrogenative thioacetalization N-sulfonyl-
1,2,3-triazoles with disulfides gives intermediates IV. Hydrolysis 
of IV affords 1-(aryl(arylthio)methylthio)benzene (3), alkylation 
of 3 leads to 6, and removal of Ar2S in 3 and 6 yields aldehydes 40 

and ketones (7). Reduction of IV generates 2-aryl-2,2-
bis(arylthio)-N-sulfonylethanamine (4), and deprotection of 4 
affords 1-aryl-2-(sulfonylamino)ethanone (5). 
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Scheme 1  Our strategy for diverse transformation of terminal alkynes in 45 

which a key rhodium-catalyzed denitrogenative thioacetalization of N-
sulfonyl-1,2,3-triazoles with disulfides is performed. 

As shown in Scheme 2, reaction of 4-phenyl-1-tosyl-1H-1,2,3-
triazole (1a) with diphenyl disulfide (2a) was used as the model 
to screen optimized conditions including Rh catalysts, solvents, 50 

temperature, time and atmosphere. The results showed that 1a 
almost quantitatively transformed into 2-phenyl-2,2-
bis(phenylthio)-N-tosylethanimine (IVa) (determination by TCL) 
by using 2.5 mol% Rh2(Oct)4 as the catalyst, toluene as the 
solvent at 60 oC under nitrogen atmosphere for 6 h (see 55 

Supporting Information for the details). After a work-up, IVa 
was isolated in only 44% yield because of instability of IVa 
during the work-up, so we decided to continue the following two 
procedures (Reactions A and B). When IVa was hydrolyzed in 
the presence of aqueous K2CO3 at 40 oC for 2 h (Reaction A), 1-60 

(phenyl(phenylthio)methylthio)benzene (3a) was obtained in 
75% yield (entry 1). Reduction of IVa with NaBH4 provided 2-
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phenyl-2,2-bis(phenylthio)-N-tosylethanamine (4a) in 81% yield 
(Reaction B) (entry 1). 

3aN
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Ts

PhS SPh

N
SPhPhS

Ts

cat. solvent, temp
time, atmos.

1a

2a

IVa

MeOH, K2CO3
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Scheme 2 Optimization of conditions on rhodium-catalyzed 
thioacetalization of 4-phenyl-1-tosyl-1H-1,2,3-triazole (1a) with diphenyl 5 

disulfide (2a) leading to 2-phenyl-2,2-bis(phenylthio)-N-tosylethanimine 
(IVa), and synthesis of 1-(phenyl(phenylthio)methylthio)benzene (3a) 
and 2-phenyl-2,2-bis(phenylthio)-N-tosylethanamine (4a). 

After getting the optimized conditions, we investigated the 
scope for the rhodium-catalyzed denitrogenative thioacetalization 10 

of N-sulfonyl-1,2,3-triazoles (1) with disulfides (2) and synthesis 
of 3 and 4 (Table 1). For substituent R in 1, the substrates 
containing electron-donating groups provided higher yields than 
those containing electron-withdrawing groups. For Ar1, the 
substrates with electron-withdrawing groups exhibited slightly 15 

better reactive activity than those with neutral and electron-
donating groups. Diaryl disulfides (2) with electron-donating 
groups afforded higher yields than those with electron-
withdrawing groups. Unfortunately, aliphatic N-sulfonyl-1,2,3-
triazoles and dialkyl disulfides were poor substrates. The 20 

rhodium-catalyzed denitrogenative thioacetalization of N-
sulfonyl-1,2,3-triazoles (1) with disulfides (2) showed tolerance 
of some functional groups including ether (entries 5, 6, 14 and 
16), C-F bond (entry 7), C-Cl bond (entries 8, 15 and 20), C-Br 
bond (entries 9 and 17), ester (entry 10), and CF3 (entry 18). 25 

Table 1 Rhodium-catalyzed denitrogenative thioacetalization of N-
sulfonyl-1,2,3-triazoles (1) with disulfides (2) and synthesis of 3 and 4.a 
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a Reaction conditions: under nitrogen atmosphere, N-sulfonyl-1,2,3-
triazole (1) (0.2 mmol), disulfide (2) (0.22 mmol), Rh2(Oct)4 (0.005 
mmol), PhMe (2.0 mL), temperature (60 oC), time (6-20 h) in a sealed 
Schlenk tube for reaction of 1 with 2. For Reaction A, MeOH (2.0 mL), 
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K2CO3 (0.4 mmol), H2O (0.2 mL) at 40 oC for 2 h; For Reaction B, NaBH4 
(0.2 mmol), MeOH (0.5 mL) at 0 oC for 0.5 h. b Isolated yield. 
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Scheme 3 Possible mechanism for the rhodium-catalyzed denitrogenative 
thioacetalization and synthesis of 3 and 4. 

A possible mechanism on the rhodium-catalyzed 
denitrogenative thioacetalization of N-sulfonyl-1,2,3-triazoles (1) 5 

with disulfides (2) and synthesis of 3 and 4 is suggested in 
Scheme 3 according to the results above and the previous 
references.3,4 Treatment of 1 with Rh(II) catalyst affords I freeing 
nitrogen, reaction of I with 2 gives thioacetalizating product II 
regenerating Rh(II) catalyst. Addition of water to imine in II 10 

under basic aqueous condition provides III, and desorption of 
amide (IV) from III yields 3. Hydrolysis of IV in the presence of 
K2CO3 leads to V and VI (note: Ar1SO3H was obtained after the 
resulting solution was acidified with 1 M HCl in our experiments). 
Reduction of imine in II with NaBH4 in methanol affords 4. 15 

Deprotection of thioacetals was attempted. As shown in 
Scheme 4, 4n transformed into 5 in 89% yield in the presence of 
I2 and NaHCO3 in acetonitrile.4o,9 Therefore, the present method 
is useful approach to α-amino ketone derivatives from N-
sulfonyl-1,2,3-triazoles. 20 
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4n 5 (89% yield)
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HN
S

Ph

O O
MeO

I2, NaHCO3, CH3CN
0 oC to RT, 2 h

 
Scheme 4 Deprotection of thioacetal 4n. 

As shown in Scheme 5, treatment of 3a with n-BuLi in the 
presence of N,N,N',N'-tetramethylethylenediamine (TMEDA) and 
the subsequent reaction with 1-(bromomethyl)benzene10 provided 25 

6 in 82% yield. Removal of PhS in 6 gave ketone 7 in the 
presence of CuCl2 in acetone. 

(i) n-BuLi, TMEDA
    THF, -78。C

(ii) PhCH2Br, -78 oC to RT
CH2Ph

O

3a

H

SPhPhS

6 (82% yield)

CH2Ph

SPhPhS
CuCl2, acetone

RT, 0.5 h

7 (70% yield)  
Scheme 5 Preparation of ketone 7 from 3a. 

We explored further application of 4. After treatment of 4m 30 

with NaH in THF, 1-(chloromethyl)benzene was added, and 8 
was prepared in 90% yield. Reaction of 8 in the presence of I2 
and NaHCO3 in acetonitrile afforded 9 in 85% yield (Scheme 
6).11 Therefore, the results above indicates that the rhodium-
catalyzed denitrogenative thioacetalization of N-sulfonyl-1,2,3-35 

triazoles is a very useful strategy for synthesis of various 
molecules. 
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     0 oC, 0.5 h

(ii) PhCH2Cl, TBAI
     60 oC, 5 h
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N
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Scheme 6 Synthesis of 9 from 4m (TBAI = Tetrabutylammonium iodide). 

In summary, we have developed an efficient and useful 40 

rhodium-catalyzed denitrogenative thioacetalization of N-
sulfonyl-1,2,3-triazoles, and the corresponding hydrolytic and 
reductive products with thioacetals were obtained in good to 
excellent yields. The protocol uses readily available N-sulfonyl-
1,2,3-triazoles and diaryl disulfides as the starting materials, and 45 

the reactions were carried out well under the mild conditions with 
tolerance of some functional groups. Further, the generated 
thioacetals could be transferred into some useful compounds. 
Therefore, the present method provides a novel and valuable 
strategy for diverse transformation of alkynes. 50 
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