This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Efficient total synthesis of leukotriene B4

Karoline Gangestad Primdahl,* Jørn Eivind Tungen,* Marius Aursnes,* Trond Vidar Hansen* and Anders Vik.*

aDepartment of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.

E-mail authors:
k.g.primdahl@farmasi.uio.no
j.e.tungen@farmasi.uio.no
marius.aurnes@farmasi.uio.no
t.v.hansen@farmasi.uio.no

Corresponding author:
E-mail: anders.vik@farmasi.uio.no
Phone: +47 22857451
Fax: +47 22855947

Abstract
Lipid mediators have attracted a great interest from scientists within the chemical, medicinal, and pharmaceutical research community. One such example is leukotriene B4 (LTB4) which has been the subject of many pharmacological studies. Herein, we report a convergent and stereoselective synthesis of this potent lipid mediator in 5% yield over 10 steps in the longest linear sequence from commercial starting materials. The key steps were a stereocontrolled acetate-aldol reaction with Nagao’s chiral auxiliary and a Z-selective Boland reduction. All spectroscopic data were in agreement with those previously reported.

Introduction
Leukotriene B4 (LTB4, 1) is a highly potent pro-inflammatory lipid mediator that promotes accumulation and activation of leukocytes at sites of inflammation.1 In the first phase of acute inflammation, this dihydroxylated polyunsaturated fatty acid plays an important role, allowing leukocytes to cross from the bloodstream and into the tissue at the site of injury or infection.
LTB$_4$ (1) mediates its biological effects through two G protein-coupled receptors, BLT1 and BLT2. BLT1 appears to mediate the major activities of LTB$_4$ on leukocytes and is important in inflammation, whereas BLT2 may be involved in various aspects of cancer progression. The structure of LTB$_4$ (1) was reported by Borgeat and Samuelsson in 1979. Shortly thereafter the first total synthesis by Corey and co-workers established the stereochemistry of the conjugated triene to be $6Z,8E,10E$. The name leukotriene was coined to reflect two attributes of this class of lipid mediators. The first relates to those white blood cells, like the polymorphonuclear leukocytes, that synthesize this class of eicosanoids, while the second part of the name reflects the conjugated triene present in the leukotrienes. LTB$_4$ (1) is produced by enzymatic conversion of arachidonic acid (2) as outlined in Figure 1. First, insertion of molecular oxygen at the 5-position of 2 by 5-lipoxygenase (5-LO) produces 5-(S)-hydroperoxycicosatetraenoic acid (5-HPETE, 3), which is converted to leukotriene A$_4$ (LTA$_4$, 4) by the second catalytic activity of 5-LO, see Figure 1. LTA$_4$ (4) is the precursor of LTB$_4$, as well as leukotriene C$_4$, D$_4$ and E$_4$. The latter three belongs to the cysteinyl leukotriene class of natural products. These are formed by addition of glutathione on LTA$_4$ (4) to form first LTC$_4$, which is further converted successively by peptidases to LTD$_4$ and then LTE$_4$. Enzymatic hydrolysis of LTA$_4$ (4) by LTA$_4$ hydrolase produces LTB$_4$ (1). On the other hand, nonenzymatic hydrolysis of LTA$_4$ (4) produces two all trans isomers of LTB$_4$ (1) and two 4,5-dihydoxy eicosatetraenoic acids, all of which are lacking significant biological activity. Further metabolism of LTB$_4$ (1) produce 20-OH and 20-COOH leukotriene B$_4$, and these metabolites have significantly lower biological activity than LTB$_4$ (1).

![Figure 1. Outline of the biosynthesis of leukotriene B$_4$ (1).](image-url)
Although several syntheses of LTB₄ (1) have been reported in the literature,¹¹ this highly potent lipid mediator is still of interest to the scientific community. The stability of the conjugated Z,E,E-triene found in 1 is a challenge for all synthesis of 1. This moiety is prone to undergo isomerization in the presence of light, oxygen and acidic conditions. The instability of the Z,E,E-triene is further intensified by the presence of the two chiral allylic alcohols, rendering this moiety prone to water elimination. Based on our success with the acetate-aldol reaction in recent synthesis of some lipid mediators,¹² we were motivated to demonstrate this strategy in an efficient and convergent synthesis of LTB₄ (1). The retrosynthetic analysis, shown in Figure 2, allows for the installment of the sensitive Z,E,E-triene at a late stage of the synthesis.

Results and discussion

Our synthesis of LTB₄ (1) commenced with the preparation of terminal alkyne 7 in six steps and 24% overall yield from commercially available (S)-(-)-α-hydroxy-γ-butyrolactone (10), as outlined in Scheme 1. Protection of 10 using TBS-triflate¹³ in the presence of 2,6-lutidine in dichloromethane at -78 °C afforded the protected alcohol 11. Reduction of the lactone in 11 with DIBAL-H produced the corresponding lactol 12 which was directly converted in a Colvin rearrangement to give the terminal alkyne 13 in 57% yield over the two steps.¹²d Oxidation with Dess-Martin periodinane afforded the aldehyde 14, which was treated with methyl (triphenylphosphoranylidene)acetate to afford the α,β-unsaturated ester 15 in 88% yield. Various procedures for the 1,4-reduction of the α,β-unsaturated ester 15 were attempted. Tsuada and co-workers have reported that selective 1,4-reductions of α,β-unsaturated esters may be achieved using DIBAL-H in the presence of MeCu in a mixture of HMPA and THF as solvent.¹⁴ In our hands, this procedure gave low conversion of the starting material 15. We then tried this reduction using the Stryker reagent.¹⁵ This gave the ester 7 in 41% yield.
Reduction using magnesium in methanol16 proved to be the best method of those attempted, affording ester 7 in 60% yield from 15.

![Scheme 1](image)

Scheme 1. Synthesis of the terminal alkyne 7.

Aldehyde 6 was prepared in six steps from salt 16 essentially as previously reported (Scheme 2).12a, b Commercially available pyridinium-1-sulfonate (16) was treated with aqueous potassium hydroxide to yield potassium salt 17,17 which was first treated with PPh\textsubscript{3}/Br\textsubscript{2} in dichloromethane, and then p-TsOH in diethyl ether, to form (2E,4E)-5-bromopenta-2,4-dienal 9 in 75% yield over the two steps.18 The aldehyde 9 was reacted with thiazolidinone 819 in an acetate-alcohol in 15.3:1 diastereomeric ratio. Purification by chromatography yielded diastereomeric pure 18 in 92% yield. Next, protection of the secondary alcohol to give 19, followed by removal of the chiral auxiliary with DIBAL-H afforded aldehyde 6 which was used immediately in the next step.

![Scheme 2](image)

As for the assembly of the fragments, aldehyde 6 was reacted in a Z-selective Wittig reaction with the ylide of commercially available hexyltriphenylphosphonium bromide (5), the latter
obtained by reaction with NaHMDS, to afford vinyl bromide 20 in 74% yield from 19 (Scheme 3). Using low temperature and HMPA as a co-solvent in the Wittig-reaction, only the Z-isomer could be detected by 1H or 13C NMR analyses after purification.12a The vinyl bromide 20 was reacted in a Sonogashira cross-coupling reaction21 with terminal alkyne 7 at room temperature in the presence of catalytic Pd(PPh$_3$)$_4$ and Cul using diethyl amine as solvent. This afforded the conjugated dienyne 21 in 85% yield. Removal of the two TBS-groups was achieved with five equivalents of TBAF in THF at 0 °C to give the corresponding diol 22 in 57% yield. The conjugated alkyne 22 was then stereoselectively reduced. We first attempted a modified Lindlar hydrogenation reaction.22 This gave a low yield of the desired Z,E,E-triene 23 that was contaminated with by-products which we were unable to remove by chromatography. The Boland reduction23 was then attempted. Gratifyingly, this produced chemically pure LTB$_4$ methyl ester (23) in an acceptable 53% yield after chromatography. Finally, saponification of the methyl ester 23 with dilute aqueous LiOH in a mixture of methanol and THF at 0 °C followed by work up with aqueous Na$_2$PO$_4$ afforded LTB$_4$ (1) in 78% yield (Scheme 3). All spectroscopic data of 1 were in agreement with those previously reported.$^{11a, c, d, 24}$

![Scheme 3. Synthesis of leukotriene B$_4$ (1).](image)

Conclusions

In summary, a short and efficient total synthesis of the potent inflammatory lipid mediator leukotriene B$_4$ (1) has been achieved over 10 steps (longest linear sequence) using 19 synthetic operations in a non-optimized 5% overall yield. Our synthesis of leukotriene B$_4$ (1) compares well with those previously reported.11 In particular, the acetate-aldol reaction was central for this synthesis.
Experimental (S)-3-((tert-Butyldimethylsilyl)oxy)pent-4-ynal (14)
A solution of the alcohol 13 (0.52 g, 2.4 mmol, 1.0 eq.) in CH₂Cl₂ (8.0 mL) was added to a stirring solution of Dess-Martin periodinane (1.3 g, 3.0 mmol, 1.3 eq.) in dry CH₂Cl₂ (15 mL). The mixture was stirred at room temperature for four hours before it was quenched with a solution of sat. aq. Na₂S₂O₃ (16 mL) and sat. aq. NaHCO₃ (16 mL). The layers were separated and the aq. layer was extracted with Et₂O (3×16 mL). The combined organic layers were washed with brine (9.0 mL), dried over MgSO₄ and concentrated in vacuo. The crude product was passed through a silica plug using hexane/EtOAc 8:2 as eluent to afford the aldehyde 14 as a colorless oil. Yield: 0.41 g (81%). TLC (hexane/EtOAc 8:2, KMnO₄ stain): Rᶠ = 0.40. Spectroscopic and physical data were agreement with those reported in the literature.²⁵ ¹H NMR (300 MHz, CDCl₃) δ 9.82 (t, J = 2.1 Hz, 1H), 4.86 (ddd, J = 6.9, 5.0, 2.2 Hz, 1H), 2.75 (m, 2H), 2.49 (d, J = 2.2 Hz, 1H), 0.88 (s, 9H), 0.16 (s, 3H), 0.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.18, 83.85, 73.85, 58.19, 51.45, 25.75 (3C), 18.19, -4.48, -5.09.

Methyl (S,E)-5-((tert-butyldimethylsilyl)oxy)hept-2-en-6-ynoate (15)
To a solution of aldehyde 14 (0.27 g, 1.3 mmol, 1.0 eq.) in CH₂Cl₂ (8.0 mL) was added methyl (triphenylphosphoranylidene) acetate (0.56 g, 1.7 mmol, 1.3 eq.). After stirring for three hours the solvent was removed in vacuo. The residue was passed through a silica plug using hexane/EtOAc 8:2 as eluent to give the α,β-unsaturated methyl ester 15 as a colorless oil. Yield: 0.30 g (88%); TLC (hexane/EtOAc 9:1, KMnO₄ stain): Rᶠ = 0.48; [α]₂⁰° = -42 (c = 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 6.97 (dt, J = 15.6, 7.3 Hz, 1H), 5.91 (dt, J = 15.8, 1.5 Hz, 1H), 4.45 (td, J = 6.2, 2.1Hz, 1H), 3.73 (s, 3H), 2.57 (ddd, J = 7.5, 6.2, 1.4 Hz, 2H), 2.43 (d, J = 2.1 Hz, 1H), 0.89 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.78, 144.08, 123.95, 84.35, 73.28, 61.73, 51.62, 41.45, 25.83 (3C), 18.31, -4.47, -4.98. HRMS (TOF ES⁺): Exact mass calculated for C₁₄H₂₄O₃Si₄Na [M+Na]⁺: 291.1392, found 291.1388.

Methyl (S)-(tert-butyldimethylsilyl)oxy)hept-6-ynoate (7)
Magnesium turnings (0.27 g, 11 mmol, 10 eq.) (pre dried in an oven at 120 °C) was added to a solution of the α,β-unsaturated methyl ester 15 (0.33 g, 1.2 mmol, 1.0 eq.) in MeOH (9.0 mL). The mixture was stirred for two hours. The crude product was passed through a short
silica plug using hexane/EtOAc 8:2 as eluent before the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 98:2) to afford the title compound 7 as a clear oil. Yield: 0.20 g (60%). Spectroscopic and physical data were in agreement with those reported in the literature. TLC (hexane/EtOAc 9:1, KMnO₄ stain): Rₖ = 0.48; [α]₁²⁰ = -36 (c = 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 4.37 (td, J = 6.0, 2.1 Hz, 1H), 3.67 (s, 3H), 2.35 (m, 3H), 1.83–1.66 (m, 4H), 0.90 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.97, 85.31, 72.46, 62.51, 51.63, 37.90, 33.81, 25.90 (3C), 20.76, 18.33, -4.44, -4.96. HRMS (TOF ES⁺): Exact mass calculated for C₁₄H₂₆O₃SiNa [M+Na]⁺: 293.1548, found 293.1552.

(R₁,E,3E,7Z)-1-Bromo-5-((tert-butyldimethylsilyl)oxy)trideca-1,3,7-trien-5-yl (20)

Commercially available hexyltriphenylphosphonium bromide (5) (1.8 g, 4.2 mmol, 2.0 eq.) was added THF (40 mL) and HMPA (5.0 mL), and the mixture was cooled to -78 °C before NaHMDS (7.0 mL, 0.6 M in toluene, 2.0 eq.) was added dropwise. The resulting mixture was stirred for one hour. Then a solution of freshly prepared aldehyde 6 in THF (5.0 mL) was added dropwise at -78 °C. The solution was allowed to slowly warm up to room temperature in the dry ice/aceton bath over 24 hours before it was quenched with aq. phosphate buffer (30 mL, pH = 7.2). Et₂O (50 mL) was added and the combined organic layers were separated. The aq. layer was extracted with Et₂O (2×50 mL) and the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 97:3) to afford the title compound 20 as a yellow oil. Yield: 0.60 g (74% yield over two steps from 19). TLC (hexane/EtOAc, KMnO₄ stain): Rₖ = 0.66; [α]₁²⁰ = -17 (c = 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 6.68 (dd, J = 13.5, 10.9 Hz, 1H), 6.27 (d, J = 13.5 Hz, 1H), 6.14–6.03 (m, 1H), 5.72 (dd, J = 15.2, 5.8 Hz, 1H), 5.50–5.41 (m, 1H), 5.38–5.29 (m, 1H), 4.14 (q, J = 5.8 Hz, 1H), 2.31–2.19 (m, 1H), 2.00 (q, J = 6.9 Hz, 2H), 1.38–1.23 (m, 6H), 0.93–0.86 (m, 12H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (400 MHz, CDCl₃) δ 138.15, 137.20, 132.40, 126.54, 124.86, 108.17, 72.76, 36.30, 31.71, 29.44, 27.60, 26.02 (3C), 22.74, 18.42, 14.23, -4.37, -4.60. HRMS (CI⁺): Exact mass calculated for C₁₉H₃₅BrOSi [M+1]⁺: 387,1719, found 387,1708.

Methyl (5S,8E,10E,12R,14Z)-5,12-bis((tert-butyldimethylsilyl)oxy)icosa-8, 10, 14-trien-6-ynoate (21)
To a solution of vinyl bromide 20 (0.29 g, 0.74 mmol, 1.0 eq.) in Et₂NH (3.3 mL) and benzene (0.6 mL), Pd(PPh₃)₄ (26 mg, 0.02 mmol, 3.0 mol%) was added and the reaction was stirred for 45 min in the dark. CuI (7.0 mg, 0.04 mmol, 5.0 mol%) in a minimum amount of Et₂NH was added followed by dropwise addition of alkyne 7 (0.20 mg, 0.74 mmol, 1.0 eq.) in Et₂NH (1.5 mL). After stirring for 20 hours at room temperature, the reaction was quenched by addition of saturated aq. NH₄Cl (20 mL). Et₂O (15 mL) was added and the layers were separated. The aq. layer was extracted with Et₂O (2×20 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 98:2) to afford the title compound 21 as a yellow oil in 85% yield (0.36 g). Spectroscopic and physical data were in agreement with those reported in the literature.²⁶ TLC (hexane/EtOAc 95:5, KMnO₄ stain): Rf = 0.28; [α]D²⁰ = -33 (c = 0.14, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 6.51 (dd, J = 15.5, 10.8 Hz, 1H), 6.18 (dd, J = 15.2, 10.9 Hz, 1H), 5.77 (dd, J = 15.2, 5.9 Hz, 1H), 5.57 (d, J = 15.6 Hz, 1H), 5.45 (m, 1H), 5.34 (m, 1H), 4.50 (t, J = 5.2 Hz, 1H), 4.17 (q, J = 6.0 Hz, 1H), 3.67 (s, 3H), 2.35 (t, J = 7.2 Hz, 2H), 2.25 (m, 2H), 2.00 (q, J = 7.2 Hz, 2H), 1.75 (m, 4H), 1.27-1.10 (m, 6H), 0, 82-0.74 (m, 21H), 0.13 (s, 3H), 0.11 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.05, 141.30, 139.48, 132.33, 128.51, 124.97, 110.48, 93.07, 83.77, 72.94, 63.27, 51.63, 38.09, 36.42, 33.88, 31.70, 29.44, 27.60, 26.03 (3C), 25.97 (3C), 22.73, 20.95, 18.43, 18.39, 14.23, -4.27, -4.34, -4.60, -4.85. HRMS (TOF ES⁺): Exact mass calculated for C₃₃H₆₀O₄Si₂Na [M+Na]⁺: 599.3930, found 599.3963.

Methyl (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicos- 8,10,14-triene-6-ynoate (22) TBAF (0.67 mL, 1.0 M in THF, 0.66 mmol, 5.0 eq.) was added to a solution of 21 (76 mg, 0.13 mmol, 1.0 eq.) in THF (3.5 mL) at 0 °C. The reaction was stirred for five hours at 0 °C, before it was quenched with phosphate buffer (pH = 7.2, 2.0 mL). Brine (3.5 mL) and CH₂Cl₂ (7.0 mL) were added and the layers were separated. The aq. layer was extracted with CH₂Cl₂ (2×7.0 mL) and the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane/EtOAc 6:4) to afford the diol 22 as a pale yellow oil. Yield: 26 mg (57%). Spectroscopic and physical data of 22 were in agreement with those reported in the literature.²⁶-²⁷ TLC (hexane/EtOAc 4:6, KMnO₄ stain): Rf = 0.39; [α]D²⁰ = -10 (c = 0.05, MeOH); ¹H NMR (300 MHz, CD₃OD) δ 6.55 (dd, J = 15.5,10.8 Hz, 1H), 6.27 (dd, J = 15.3, 10.9 Hz, 1H), 5.81 (dd, J = 15.2, 6.3 Hz, 1H), 5.66 (d, J = 15.5, 1H), 5.43 (m, 2H), 4.45 (dd, J = 6.5, 1.7 Hz, 1H), 4.12 (q, J = 6.2 Hz, 1H)
3.66 (s, 3H), 2.38 (t, J = 7.0 Hz, 2H), 2.29 (m, 2H), 2.04 (q, J = 6.8 Hz, 2H), 1.84-1.62 (m, 4H) 1.40-1.25 (m, 6H), 0.90 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CD3OD) δ 175.62, 142.53, 139.92, 133.19, 130.24, 125.85, 111.64, 93.66, 84.37, 72.80, 62.88, 52.01, 38.23, 36.25, 34.38, 32.67, 30.40, 28.38, 23.64, 21.93, 14.45; HRMS (TOF ES+): Exact mass calculated for C21H32O4Na [M+Na]+: 371.2198, found 371.2205.

Methyl (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxy-6,8,10,14-icosatetraenoate (23)
The Zn(Cu/Ag) mixture was prepared as described by Boland et al.23 Zinc dust (1.8 g) was stirred under argon for 15 min. Cu(OAC)2 (0.18 g) was then added and the reaction mixture was stirred for 15 min, before AgNO3 (0.18 g) was added and the solution was stirred for an additional 30 minutes. The mixture was filtered and washed successively with H2O, MeOH, acetone and Et2O before it was transferred to a flask containing the reaction solvents (MeOH/H2O, 1:1, 7.4 mL). A solution of alkyne 22 (26 mg, 0.080 mmol) in MeOH/H2O (1:1, 1.0 mL) was added and the mixture was stirred at room temperature and in the dark for five hours. The reaction mixture was filtered through a pad of Celite and washed with Et2O. Water was added to the filtrate, and the organic layers were separated and the aq. layer was extracted with Et2O (2×5.0 mL). The combined organic layers were washed with brine and dried (Na2SO4). The solvent was removed in vacuo and the crude product was purified by column chromatography on silica gel (hexane/EtOAc 1:1) to afford the methyl ester 23 in 54% yield (14 mg). Spectroscopic and physical data for 23 were in agreement with those reported in the literature.11c,26-27 TLC (heptane/EtOAc 2:8, KMnO4 stain): $R_f = 0.60$; [α]D20 = 5.6 (c = 0.050, CCl4); UV (MeOH) $λ_{max}$ 261, 270, 281 nm; 1H NMR (600 MHz, CD3OD) δ 6.54 (m, 1H), 6.27 (m, 2H), 6.08 (t, J = 11.1 Hz, 1H), 5.75 (dd, J = 14.5, 6.6 Hz, 1H), 5.53-5.32 (m, 3H), 4.56 (q, J = 6.9 Hz, 2H), 4.12 (q, J = 6.6 Hz, 1H), 3.65 (s, 3H), 2.39-2.21 (m, 4H), 2.04 (q, J = 6.9 Hz, 2H), 1.70-1.58 (m, 2H), 1.50-1.28 (m, 8H), 0.90 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CD3OD) δ 175.75, 138.11, 135.10, 135.08, 133.08, 131.33, 130.56, 128.65, 126.00, 73.14, 68.12, 51.99, 37.91, 36.36, 34.61, 32.68, 30.41, 28.39, 23.65, 22.01, 14.43; HRMS (TOF ES+): Exact mass calculated for C21H32O4Na [M+Na]+: 373.2354, found 373.2362.

(5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxy-6,8,10,15-icosatetraenoic acid (LTB4, 1)
To a solution of methyl ester 23 (5.1 mg, 0.014 mmol, 1 eq.) in THF/MeOH/H2O (2:2:1, 1.7 mL), solid LiOH (10 mg, 0.43 mmol, 31 eq.) was added at 0 °C. The reaction mixture was stirred at 0 °C for three hours and then allowed to warm up to room temperature. The solution
was acidified with sat. aq. NaH$_2$PO$_4$ (1.9 mL). EtOAc (2.0 mL) was added and the layers were separated. The aq. layer was extracted with EtOAc (2x 2.0 mL). The combined organic layers were dried (Na$_2$SO$_4$) and concentrated \textit{in vacuo}. The crude product was purified by column chromatography on silica gel (CH$_2$Cl$_2$/MeOH 95:5) to afford LTB$_4$ (1) in 78% yield (3.8 mg).

Spectroscopic and physical data were in agreement with those reported in the literature.11a,c,d,24 TLC (CH$_2$Cl$_2$/MeOH 95:5, KMnO$_4$ stain): R_f = 0.10; [α]$^D_{20}$ = 12 (c = 0.050, CHCl$_3$); UV (MeOH) λ_{max} 261, 270, 281 nm; 1H NMR (600 MHz, CD$_3$OD) δ 6.54 (dd, J = 14.1, 11.7 Hz, 1H), 6.33 – 6.19 (m, 2H), 6.08 (t, J = 11.2 Hz, 1H), 5.74 (dd, J = 14.7, 6.6 Hz, 1H), 5.51 – 5.31 (m, 3H), 4.60 – 4.53 (m, 1H), 4.11 (q, J = 6.5 Hz, 1H), 2.36-2.21 (m, 4H), 2.04 (q, J = 7.2 Hz, 2H), 1.70 – 1.59 (m, 2H), 1.51 – 1.42 (m, 1H), 1.38 – 1.25 (m, 7H), 0.90 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CD$_3$OD) δ 180.19, 138.00, 135.25, 135.00, 133.07, 130.49, 128.78, 126.01, 73.15, 68.26, 38.28, 36.46, 36.35, 32.68, 30.42, 28.39, 23.65, 22.63, 14.43; HRMS (TOF ES$^+$): Exact mass calculated for C$_{20}$H$_{32}$O$_4$Na [M+Na]$^+$: 359.2198, found 359.2203.

Acknowledgements

The School of Pharmacy, University of Oslo is gratefully acknowledged for Pd.D.-scholarships to K. G. P. and J. E. T. The Norwegian Research Council is acknowledged for a post doctoral research grant to M. A.

Notes and references

