Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

A	Concise	Synthesis	of	(±)-Antroquinonol	with	Unusual	Scaffold	of

4-Hydroxy-2-cyclohexenone

Che-Sheng Hsu, Ho-Hsuan Chou, and Jim-Min Fang*

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.

E-mail: jmfang@ntu.edu.tw

[†] Electronic supplementary information (ESI) available: Synthetic procedure, compound characterization, ¹H, ¹³C and 2D NMR spectra, as well as crystal data. See DOI:

Drganic & Biomolecular Chemistry Accepted Manuscript

Abstract.

Antroquinonol, first isolated from an endemic mushroom Antrodia cinnamomea, is an anticancer with of compound unique structure а core 4-hydroxy-2,3-dimethoxycyclohex-2-enone carrying methyl, farnesyl and hydroxyl substituents in the 4,5-cis-5,6-trans configuration. A concise synthesis of (±)-antroquinonol is accomplished in 7 steps from 2,3,4-trimethoxyphenol, which is oxidized in methanol to a highly electron-rich substrate of 2,3,4,4-tetramethoxycyclohexadienone for Michael reaction with dimethylcuprate as the strategic key step, followed by alkylation, reduction and epimerization to incorporate the required substituents at three contiguous stereocenters.

Introduction

Antrodia cinnamomea is an indigenous rare mushroom which only parasitizes the camphor tree, Cinnamomum kanehirai Hayata that grows in the mountain ranges at high altitude in Taiwan. This fungus is used as a precious traditional Chinese herbal prescription because it contains many bioactive constituents, such as terpenoids, flavonoids, polyphenolics, polysaccharides and benzoquinone derivatives.¹⁻³ Antroquinonol (1a) is first isolated from the cultured mycelia of A. cinnamomea in low quantity.¹⁻³ Unlike ubiquinones, antroquinonol has a sensitive core structure of 4-hydroxycyclohex-2-enone rarely found in nature. Elimination of water molecule or oxidation of this core structure will lead to facile aromatization. The natural analogous compounds of 4-hydroxycyclohexenone type include antroquinonol B⁴⁻⁶ with modification at the fifteen-carbon substituent, 4-acetylantroquinonol B_{1}^{6} and antroquinonol D $(2)^7$ having the structure without a methoxy substituent at the C-3 position. A function of antroquinonol is to block Ras and Rho processing via inhibition of isoprenyltransferases to cause associated cell death.⁸ This anticancer agent is currently under clinical evaluation in patients with non-small cell lung cancer.^{9, 10}

arnesyl Antroquinonol D (2) Antroquinonol (1a)

The relative 4,5-*cis*-5,6-*trans* configuration of antroquinonol has been determined by spectroscopic methods,² and the absolute (4R,5R,6R)-configuration for natural (+)-antroquinonol is recently established by a total synthesis.¹¹ The core structure of antroquinonol is an electron-rich dimethoxy-substituted cyclohex-2-enone ring that contains methyl, farnesyl and hydroxyl substituents to construct three contiguous stereocenters. As antroquinonol and the related bioactive compounds are only obtained in low quantity from natural source, organic synthesis is an alternative to obtain these materials.

Chen and coworkers have succeeded in a conjugate addition of malonate ion to 4,4-dimethoxycyclohexadienone (**4a**) (Figure 1).¹² However, Chen's synthesis¹¹ of antroquinonol is conducted by another pathway that requires a long linear synthetic sequence (over 20 steps) because they could not carry out the Michael reaction of 2,3,4,4-tetramethoxy-6-methylcyclohexa-2,5-dienone (**4b**) with various organometallic reagents.¹²

Figure 1. Chen's synthesis¹² of (\pm) -antroquinonol D via Michael reaction of **4a**. The Michael reactions of cyclohexadienone **4b** fail when nucleophile (Nu⁻) is an enolate generated from dimethyl malonate, an organocuprate reagent prepared from ethyl bromoacetate, or a combined reagent of organozinc with Cu(OTf)₂. PIDA represents an iodine(III) oxidizing reagent phenyliodine diacetate.

We conceived that realization of the Michael reaction of 2,3,4,4-tetramethoxycyclohexa-2,5-dienone (9) with a methylmetal reagent under appropriate conditions would provide a straightforward route to antroquinonol. In our retrosynthetic analysis (Figure 2), the intermediate enolate ion might be trapped by alkylation with farnesyl bromide from the less hindered face to give *trans*-8 in a stereoselective manner. The carbonyl reduction of *trans-8* with an appropriate hydride reagent could occur at the less hindered face to afford 7a, and the subsequent acid-catalyzed hydrolysis of the dimethyl ketal group would culminate in the target compound **1a**. Compared with benzoquinone analogs, using benzoquinone-monoketal 9 in preparation of the cyclohexene-1,4-dione monoketal 8 is advantageous to prohibit facile aromatization after the Michael reaction and provide a distinct chemical environment for the regioselective transformation. We thus undertook a study of this attractive approach to synthesize antroquinonol in a very short sequence.

Figure 2. Retrosynthetic analysis of antroquinonol (1a). PIFA: phenyliodine bis(trifluoroacetate).

Results and discussion

According to the previously reported procedure,¹³ trimethoxybenzaldehyde was subjected to Baeyer–Villiger oxidation with hydrogen peroxide in the presence of sulfuric acid, followed by *in situ* hydrolysis of the formate intermediate, to give trimethoxyphenol **10** in 95% yield. Oxidation of phenol **10** with PIFA in anhydrous MeOH afforded the desired product of benzoquinone-monoketal **9** in 81% yield.¹⁴

Although Michael additions of 4,4-disubstituted cyclohexadienones with alkylmetal reagents^{15–17}, dialkylmalonate^{12, 18} and acyl-nickel complexes¹⁹ have been reported, there is no precedent for Michael reaction of a highly electron-rich system such as **9** with four electron-donating methoxy groups. In our initial attempt (Table 1, entry 1), the dimethylcuprate reagent was prepared from Grignard reagent MeMgBr (2 equiv) and CuBr•Me₂S (1 equiv) at -78 °C in THF solution, and then reacted with compound **9** for 17 h.

Instead of the desired Michael addition, the reaction tended to give an aromatic compound **10** and a 1,2-addition product, which was hydrolyzed on silica gel column to yield **11** (Figure 3). Formation of **10** might involve electron-transfer of the cuprate reagent to reduce the cyclohexenedione 9,²⁰ followed by elimination of a molecule of MeOH to assume aromaticity. Raising the reaction temperature to -60 °C (Table 1, entry 2), the desired 1,4-adduct **12** was obtained in low yield (13%) along with significant amounts of **10** and **11**.

Figure 3. Three reaction modes of cyclohexadienone 9 with organocuprate reagent MeMgBr/CuX. The electron-transfer pathway led to phenol 10, which can be recycled to compound 9 by oxidation with PIFA in methanol. The 1,2-addition at carbonyl led to the product 11 due to hydrolysis on silica gel chromatography. The 1,4-addition at β -carbon gave the Michael adduct 12.

We then investigated the effects of reaction temperature, solvents and various methyl metallic reagents in the Michael reaction of compound 9. The yield of 1,4-adduct 12 increased to 30% as the reaction temperature increased from -60 °C to -50 °C (Table 1, entry 3). No 1,2-adduct was observed, presumably the kinetic 1,2-addition product might be reverted to the thermodynamically favored 1,4-adduct at -50 °C.²¹ However, the yields of 1,4-adduct 12 at a reaction temperature higher than -50 °C also decreased (Table 1, entries 4 and 5), presumably due to the instability of the cuprate reagent. When MeMgBr was replaced by MeLi, MeMgCl or MeMgI for preparation of cuprate reagent, the yield of 1,4-adduct 12 deteriorated (Table 1, entries 6-8). No reaction occurred by using Me₂Zn/CuBr•Me₂S or Me₃Al/CuBr•Me₂S as the nucleophilic agent (Table 1, entries 9 and 10). Less 1,4-adduct 12 was obtained when the reaction was performed in t-BuOMe, Et₂O or toluene instead of THF solution (Table 1, entries 11-13). After screening various copper(I) salts (Table 1, entries 14-20), CuCl was found to be the best choice for preparation of cuprate reagent with MeMgBr to achieve the conjugate addition of compound 9 (THF, -50 °C, 7 h), giving the desired product 12 in 50% yield (Table 1, entry 14). Under such reaction conditions, exclusive regioselectivity for 1,4-addition was realized without formation of 1,2-adduct. Though the electron-transfer process could not be avoided, the side product of trimethoxyphenol 10 could be oxidized with PIFA in methanol to regenerate the starting material of benzoquinone-monoketal 9.

cyclohexenone 12.

	nucleophile	Cu(I) reagent	1	(°C)	time (h)	yield of 12
entry	(2 equiv)	(1 equiv)	solvent	temp. (°C)	time (h)	(%)
1	MeMgBr	CuBr•Me ₂ S	THF	-78	17	$0^{a,b}$
2	MeMgBr	CuBr•Me ₂ S	THF	-60	7	13 ^{<i>a,b</i>}
3	MeMgBr	CuBr•Me ₂ S	THF	-50	7	30^b
4	MeMgBr	CuBr•Me ₂ S	THF	-30	7	18
5	MeMgBr	CuBr•Me ₂ S	THF	-20	15	5
6	MeLi	CuBr•Me ₂ S	THF	-50	12	0^b
7	MeMgCl	CuBr•Me ₂ S	THF	-50	12	10^{b}
8	MeMgI	CuBr•Me ₂ S	THF	-50	15	2^b
9	Me ₂ Zn	CuBr•Me ₂ S	THF	-50	50	NR ^c
10	Me ₃ Al	CuBr•Me ₂ S	THF	-50	43	NR ^c
11	MeMgBr	CuBr•Me ₂ S	t-BuOMe	-50	25	10
12	MeMgBr	CuBr•Me ₂ S	Et ₂ O	-50	30	18

13	MeMgBr	CuBr•Me ₂ S	PhMe	-50	38	8
14	MeMgBr	CuCl	THF	-50	7	50 ^b
15	MeMgBr	CuBr	THF	-50	12	10^b
16	MeMgBr	CuI	THF	-50	15	20^b
17	MeMgBr	CuOAc	THF	-50	8	23 ^{<i>b</i>}
18	MeMgBr	CuSPh	THF	-50	18	20^b
19	MeMgBr	$CuTC^d$	THF	-50	20	28^b
20	MeMgBr	CuCN	THF	-50	21	25^b

^{*a*} Compound **11** was obtained in 18–25% yields as the 1,2-addition product hydrolyzed on silica gel column chromatography.

^b The major product was phenol **10** (50–80% yields) derived from an electron-transfer pathway.

^c No reaction occurred, and the starting material **9** was recovered.

^dCuTC represents copper(I) thiophene-2-carboxylate.

In our original design (Figure 2), the alkylation reaction is anticipated to occur in a stereoselective manner to give 8 in the *trans*-configuration. Indeed, ketone 12 was treated with lithium diisopropylamide (LDA) in THF solution to generate the lithium enolate, which reacted with farnesyl bromide at -78 °C to afford *trans*-8 product exclusively (Table 2, entry

1), albeit in a low conversion (30%). Alternatively, compound 12 was treated with lithium hexamethyldisilazide (LHMDS), sodium hexamethyldisilazide (NHMDS) or potassium hexamethyldisilazide (KHMDS) to generate the enolate ion (Table 2, entries 2–6), which reacted smoothly with farnesyl bromide in high conversion (60–95%) to give the alkylation product 8 (as a mixture of *trans* and *cis* isomers) after a prolonged reaction time (12 h). The *trans-8* isomer showed the proton signal of 6-methyl at $\delta_{\rm H}$ 0.94 (d, J = 6.5 Hz) and two methine protons on the cyclohexene ring at $\delta_{\rm H}$ 2.69–2.51 (m). In comparison, the 6-methyl of *cis*-8 isomer appeared at a relatively high field of $\delta_{\rm H}$ 0.78 (d, J = 7.0 Hz) presumably due to the shielding effect of the adjacent farnesyl substituent. The two methine protons exhibited as distinct signals at $\delta_{\rm H}$ 2.40 (H-6,qd, J = 7.0, 4.4 Hz) and 2.80 (H-5, dt, J = 9.7, 4.4 Hz). The alkylation reaction utilizing NaH or t-BuOK as the base (Table 2, entries 7 and 8) only produced cis-8 isomer in low yields (< 35%). Unlike cyclohexanones, stereochemical outcome of the alkylation reactions in the cyclohex-2-en-1-one system appeared to be less predictive. From the data shown in Table 2, we assumed that epimerization of 8 might occur at room temperature to favor the *cis* isomer. When a mixture of *trans*-8 and *cis*-8 isomers (1:1) was treated with NaH (0.1 equiv) in DMF solution at room temperature for a period of 24 h, cis-8 actually became the predominant isomer (75%) over trans-8 (25%). This result supports that *cis*-8 is indeed the thermodynamically favored isomer.

It is an attractive strategy to perform three-component coupling reaction in a one-pot operation.^{22, 23} As shown in our original design (Figure 2), Michael addition of a methyl metallic reagent to cyclohexadienone **9** would generate an enolate ion, which could be trapped *in situ* by farnesyl bromide to afford compound **8**. Unfortunately, all our attempts for the consecutive α -alkylation failed presumably due to the instability of the enolate ion.

	Base, Farnesyl bromide ➤	Farnesyl	Farnesyl
(±)- 12		(±)- <i>trans</i> -8	(±)- <i>cis</i> -8

Table 2. Alkylation of ketone 12 with farnesyl bromide, giving compound 8.^a

	1	1	temp.	time	conversion (%)	trans/cis ratio
entry	base	solvent	(°C)	(h)	of 12	of 8
1	LDA	THF	-78→25	5	30	1:0
2	LHMDS	THF	-78→25	12	95	1:1
3	LHMDS	PhMe	-78→25	12	67	1:1
4	LHMDS	Et ₂ O	-78→25	12	75	1:2
5	NHMDS	THF	-78→25	12	60	1:1
6	KHMDS	THF	-78→25	12	65	1:1
7	NaH	THF	0→25	12	20	0:1
8	t-BuOK	t-BuOH	0→25	12	34	0:1

^{*a*} Ketone **12** was treated with a base (2 equiv) at -78 °C (entries 1–6) or 0 °C (entries 7 and 8) for 2 h to generate the corresponding enolate ion. After addition of farnesyl bromide (2 equiv), the mixture was stirred at the indicated temperature for a period of 5–12 h. The ratio of *trans*-**8** to *cis*-**8** was estimated by the ¹H NMR spectral analysis.

In general, the trajectory of H⁻ approach in reduction of carbonyl should determine the orientation of the resulting hydroxyl group. The delicate selection between axial and equatorial approaches to cyclohexenone 8 might be related to the torsional effect and 1,3-diaxial interactions. At the first glance, we thought the carbonyl reduction of trans-8 would occur by H^- attack from the less hindered face to afford 7a in the 4,5-cis configuration (Figure 4). In contrast to our prediction, the reduction of *trans*-8 with LiAlH₄ in THF at -78°C gave exclusively the all-trans product 7b (Figure 4), which was subjected to an acid-catalyzed hydrolysis to afford 1b and 13b in 18% and 73% yields, respectively (Table 3, entry 1). Compound 1b having the hydroxyl substituent at the C-4 position was derived from a direct hydrolysis (C-1 hydrolysis) of the dimethylketal group in 7b, whereas the C-3 hydrolysis proceeded with the participation of a C-3 methoxy group to yield the 1,3-transpositional isomer **13b** having the carbonyl group adjacent to the hydroxyl substituent. The C-3 hydrolysis was a preferable pathway, presumably due to facilitation by the stereoelectronic effect and participation of the adjacent hydroxyl group,^{12, 24} though the real

reaction mechanism would be accounted on advanced computations and experimental evidence.

Figure 4. Stereo- and regiochemistry in reduction of ketone **8**. Subsequent hydrolysis of the reduction product **7** gave compound **1** and the 1,3-transpositional isomer **13**.

By a similar procedure, a 1:1 mixture of *trans*-8 and *cis*-8 was reduced with LiAlH₄ (Table 3, entry 2), followed by consecutive hydrolysis, to give 1b (9%), 13b (37%), 1c (7%), 13c (18%), 1d (18%) and 13d (2%). The all-*cis* products (1c and 13c) were derived from 7c, and the 4,5-*trans*-5,6-*cis* products (1d and 13d) were derived from 7d (Figure 4). In comparison, the axial attack of H⁻ (from LiAlH₄) onto *trans*-8 compound, giving 7b in

Organic & Biomolecular Chemistry

all-*trans* configuration, was favored because the equatorial approach of H⁻ would exert a torsional strain between farnesyl and the emerging hydroxyl group (Figure 4). In contrast, the axial attack of H⁻ onto *cis*-8 compound, giving 7d in the 4,5-*trans* configuration, was disfavored due to the steric hindrance of the methyl substituent on the axial orientation.

 Table 3. Reduction of ketone 8 to alcohol 7, followed by hydrolysis in acidic conditions,

 gives compounds 1 and 13.

Page	16	of	37
------	----	----	----

6	1:1	LiEt ₃ BH ^b	THF	-78	0	0	1	3	1	2	1	0
7	1:1	Li(s-Bu) ₃ BH ^b	THF	-40	0	1	1	3	2	3	0	0
8	1:1	Li(siamyl) ₃ BH ^b	THF	-40	0	0	1	4	2	3	0	0
9	1:3	Li(siamyl) ₃ BH ^b	THF	-40	0	0	1	4	6	9	0	0

^{*a*} The ratio was determined by the weights of isolated products.

^b These commercially available reagents have the trade names Super-Hydride (LiEt₃BH),

L-Selectride [Li(s-Bu)₃BH] and LS-Selectride [Li(siamyl)₃BH].

To our disappointment, this two-step process did not yield the desired antroquinonol (1a) as that predicted in the retrosynthetic analysis (Figure 2). To render the reduction of *trans*-8 by H⁻ attack from the equatorial direction to obtain 7a in the 4,5-*cis* configuration, we examined other reducing agents including *i*-Bu₂AlH, Li(Ot-Bu)₃AlH, NaBH₄/CeCl₃, LiEt₃BH, Li(*s*-Bu)₃BH and Li(siamyl)₃BH (Table 3, entries 3–9). Among them, only the bulky reducing agents Li(Ot-Bu)₃AlH and Li(*s*-Bu)₃BH could deliver H⁻ to *trans*-8 from the equatorial direction to furnish 7a (Table 3, entries 4 and 7). However, the subsequent treatment of 7a with oxalic acid only proceeded with the C-3 hydrolysis to afford 13a without formation of antroquinonol (1a). Since the axial attack of H⁻ to *trans*-8 was a favorable process to obtain 1b in all-*trans* configuration, we considered performing Mitsunobu reaction^{25, 26} of 1b for the

stereochemical inversion of its hydroxyl group. The desired Mitsunobu reaction of **1b** did not work, presumably due to the steric congestion of this molecule.

Realizing that *trans*-8 was not a suitable precursor for the synthesis of antroquinonol, we switched to utilize *cis*-8 as an alternative substrate. In this study, we learned that *cis*-8 was actually the thermodynamically favored isomer over *trans*-8. Reduction of *cis*-8 with Li(siamyl)₃BH was the best way to obtain 7c (Table 3, entries 8 and 9). Finally, the all-*cis* compound 1c was obtained from 7c by the acid-catalyzed C-1 hydrolysis. The subsequent treatment of 1c with a base K_2CO_3 in MeOH solution rendered epimerization at the C-6 position to yield (±)-antroquinonol (Scheme 1). The ¹H and ¹³C NMR spectra of the synthetic (±)-1a were in full agreement with that of natural (+)-antroquinonol (Figures S1 and S2 in Supplementary Information (ESI)).

Scheme 1. Synthesis of (\pm) -antroquinonol

In summary, our synthesis of (\pm) -antroquinonol (Scheme 1) started with a Michael reaction of cyclohexadienone **9** to give cyclohexenone **12** (50%). The other product **10** (50%), derived from an electron-transfer process, could be effectively reverted to the starting material **9** by oxidation with PIFA in methanol (80%). Upon treatment of **12** with LHMDS (Table 2, entry 2), the enolate ion was generated and subjected to α -alkylation with farnesyl bromide to afford **8** as a mixture of the *trans* and *cis* isomers, which proceeded with a base-catalyzed epimerization to end up with *cis*-**8** in 71% overall yield. The all-*cis* isomer **1c**, obtained from reduction of *cis*-**8** with Li(siamyl)₃BH and the subsequent C-1 hydrolysis (Table 3, entry 8), underwent a base-catalyzed epimerization to give (\pm)-antroquinonol in the 4,5-*cis*-5,6-*trans* configuration. We thus accomplished a concise synthesis of (\pm)-antroquinonol from trimethoxyphenol **10** by a 7-step sequence in 7.4% overall yield.

Through our present synthetic method, all possible isomers **1a–1d** and **13a–13d** differing in regio- or stereochemistry were obtained. Their structures were determined by the MS and NMR (¹H, ¹³C, COSY, NOESY, and HSQC) analyses. Table 4 lists the chemical shifts and coupling constants of characteristic proton and carbon resonances. The carbonyl signals of **1a–1d** from C-1 hydrolysis consistently occurred at lower fields (δ_C 197–199) than their C-3 hydrolysis products **13a–13d** (at δ_C 194–196), whereas the difference in proton signals was less diagnostic.

compound	H-4	H-6	Me-6	C-1	C-4	C-6	<u>C</u> H ₃ -6
1a	4.34 (d, 3.1)	2.52 (qd, 6.7, 11.0)	1.16 (d, 6.7)	197.1	68.0	40.3	12.3
1b	4.25 (d, 8.5)	2.24–2.17 (m)	1.19 (d, 6.7)	197.1	69.2	42.0	13.1
1c	4.40 (br s)	2.46 (qd, 7.3, 4.3)	1.23 (d, 7.3)	199.2	69.7	44.1	14.8
1d	4.29 (d, 4.4)	2.88 (qd, 6.8, 3.8)	1.08 (d, 6.8)	197.6	69.6	40.2	11.8
13 a	4.42 (d, 5.5)	2.61 (qd, 7.3, 1.6)	1.29 (d, 7.3)	194.9	70.8	34.6	16.0
13b	3.84 (d, 12.5)	2.56–2.40 (m)	1.19 (d, 7.0)	196.2	72.2	35.3	15.4
13c	4.12 (d, 2.0)	2.86 (qd, 7.0, 4.5)	1.20 (d, 7.0)	195.5	75.3	37.1	15.0
13d	3.91 (d, 12.2)	2.62–2.57 (m)	1.11 (d, 7.3)	195.7	71.6	34.4	11.9

Table 4. Selected ¹H and ¹³C NMR spectral data.^{*a*}

^{*a*} Chemical shifts (δ) are given in parts per million (ppm) relative to δ_H 7.24 and δ_C 77.0 (central line of triplet) for CHCl₃ and CDCl₃, respectively. Data in parenthesis are coupling constants (*J*) given in Hz.

To further support the structural assignments, we also carried out the alkylation reactions of **12** with benzyl bromide to give *trans*-**14** and *cis*-**14**, which were subsequently reduced and hydrolyzed to afford compounds **15b**-**15d** and **16a**-**16d** (Scheme 2), by the procedures similar to that for transformation of *trans*-**8**/*cis*-**8** to **1b**-**1d** and **13a**-**13d**. A base-promoted

epimerization of the all-*cis* compound **15c** yielded **15a**, which is related to antroquinonol (**1a**) in the 4,5-*cis*-5,6-*trans* configuration.

Scheme 2. Synthesis of benzyl analogs 15a-d and the 1,3-transpositional isomers 16a-d. The X-ray crystal structures of all-*cis* isomers (±)-15c and (±)-16c are shown. The structural assignments of their counterparts (±)-1c and (±)-13c bearing farnesyl substituent, in lieu of the benzyl group, are supported by the crystal structures of (±)-15c and (±)-16c in combination with the detailed NMR analyses (¹H, ¹³C, COSY, NOESY, HSQC) and mechanistic rationale.

Attempts to obtain the single crystal of antroquinonol have not been realized, presumably due to high flexibility of the farnesyl substituent. Fortunately, 15b, 15c, 15d, 16b and 16c were crystalline compounds suitable to the X-ray diffraction analyses for rigorous structural elucidation (see SI). The pairs of the farnesylated and benzylated compounds (1a/15a, 1b/15b, 1c/15c, 1d/15d, 13a/16a, 13b/16b, 13c/16c and 13d/16d) all exhibited good correlations in the ¹H and ¹³C NMR spectra (see SI). The stereochemical relationship was supported by their NOESY spectra (see SI). For example, H-6 (at $\delta_{\rm H}$ 2.52) in antroquinonol (1a) displayed an NOE correlation with the methylene protons (at δ_H 2.22) of farnesyl substituent, indicating their orientation on the same face of cyclohexene ring. In a similar manner, H-5 (at $\delta_{\rm H} 2.00$) of 15a showed an NOE correlation with Me-6 at $\delta_{\rm H}$ 1.25, consistent with the 5,6-trans configuration. Furthermore, isomers in each series of 1a-d, 13a-d, 15a-d and 16a-d exhibited the same eluting order on silica-gel thin-layer chromatography. Accordingly, the least polar **b**-isomers were eluted out first, followed by **a**-, **d**- and **c**-isomers.

Conclusion

In our present study, we completed a concise synthesis of (\pm) -antroquinonol (1a) in 7 steps from the readily available starting material of 2,3,4-trimethoxyphenol, which was oxidized in methanol to give 2,3,4,4-tetramethoxycyclohexadienone (9). Michael reaction of 9 along with the subsequent alkylation and reduction reactions were applied to establish three

contiguous stereocenters on the skeleton of benzoquinone-monoketal. This study demonstrates the first example for Michael reaction of 9 which is a highly electron-rich cyclohexadienone carrying four electron-donating methoxy substituents. Besides **1a**–d, their transpositional isomers $2\mathbf{a} - \mathbf{d}$ were obtained as a new chemical entity for potential evaluation of bioactivities.²⁷ We also prepared the analogous compounds 15a-d and 16a-d having benzyl substituent at the C-5 position. Their structures were rigorously established by meticulous NMR analyses with the assistance of X-ray diffractions of some crystalline compounds. By comparison of ¹H and ¹³C NMR spectra, the structures of **1a-d** and **13a-d** were also unambiguously elucidated by correlation with their counterpart 15a-d and 16a-d. These structural correlations were in agreement with mechanistic rationale of the reaction consequences. Therefore, natural (+)-antroquinonol was confirmed to the structure of 1a having the 4,5-cis-5,6-trans configuration. It is still worthy to investigate asymmetry Michael additions²⁸⁻³¹ of **9** and its analogs using chiral catalysis or auxiliaries. Along this line, our preliminary indicated asymmetric Michael reaction result that of 3,4,4-trimethoxycyclohexadienone with methylmetal reagent could be carried out, and the 1,4-adduct could be elaborated to an optically active antroquinonol D by a procedure similar to that delineated in Scheme 1. The asymmetric Michael reactions of other cyclohexadienone derivatives for the synthesis of optically active antroquinonol and its analogs are currently under investigation.

Experimental

General

Melting points were recorded on in open capillaries and are not corrected. Nuclear magnetic resonance (NMR) spectra were obtained on (400 MHz) or (500 MHz) spectrometer. Chemical shifts (δ) are given in parts per million (ppm) relative to δ_H 7.24 / δ_C 77.0 (central line of t) for CHCl₃/CDCl₃. The splitting patterns are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (double of doublets) and br (broad). Coupling constants (*J*) are given in Hz. Distorsionless enhancement polarization transfer (DEPT) spectra were taken to determine the types of carbon signals. The ESI–MS experiments were conducted on a high-resolution mass spectrometer.

All the reagents and solvents were reagent grade and were used without further purification unless otherwise specified. All solvents were anhydrous grade unless indicated otherwise. CH_2Cl_2 was distilled from CaH_2 . All non-aqueous reactions were carried out in oven-dried glassware under a slight positive pressure of argon unless otherwise noted. Reactions were magnetically stirred and monitored by thin-layer chromatography on silica gel using aqueous *p*-anisaldehyde as visualizing agent. Silica gel (0.040–0.063 mm particle size) was used for column chromatography. Flash chromatography was performed on silica gel of $60-200 \ \mu m$ particle size. Molecular sieves were activated under high vacuum at 220 °C over 6 hours.

Representative procedure for Michael reactions (Table 1, entry 14)

Under an atmosphere of nitrogen, a solution of CuCl (99 mg, 1.0 mmol) in THF (4 mL) was cooled to -50 °C, and MeMgBr (2.0 mmol, 2.0 mL of 1.0 M solution in THF) was added. The mixture was stirred at -50 °C for 1 h, and a solution of cyclohexadienone **9** (214 mg, 1.0 mmol) in THF (1 mL) was added dropwise. The mixture was stirred at -50 °C for 7 h, quenched with saturated aqueous NH₄Cl (5.0 mL), and then extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with 0.5 M NaOH (30 mL) and brine (30 mL). The organic phase was dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with elution of EtOAc/hexane (15:85) to yield a Michael addition product **12** (115 mg, 50% yield).

Representative procedure for alkylation reactions (Table 2, entry 2)

Under an atmosphere of nitrogen, lithium hexamethyldisilazide (LHMDS, 4.34 mmol, 4.3 mL of 1.0 M solution in THF) was added to a solution of cyclohexenone **12** (0.5 g, 2.17 mmol) in THF (5.0 mL) at -78 °C. The mixture was stirred for 2 h, and a solution of farnesyl bromide (1.2 g, 4.34 mmol) in THF (3.0 mL) was added at -78 °C. The dry-ice cooling bath was removed, and the mixture was allowed to warm to room temperature over a period of 5–12 h, quenched with water (5.0 mL), and then extracted with EtOAc (3 × 20 mL). The organic

phase was washed with brine (30 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on aluminum oxide with elution of EtOAc/ hexane (8:92) to yield the alkylation product **8** (890 mg, 95% yield) as a mixture of *trans* and *cis* isomers (1:1).

A sample of **8** (900 mg, 2.07 mmol) containing *trans* and *cis* isomers (1:1) was subjected to epimerization by treatment with NaH (8.0 mg, 0.21 mmol) in DMF (5.0 mL) at 25 °C for 24 h, giving the *trans* and *cis* isomers in a ratio of 1:3.

Representative procedures for reduction and hydrolysis (Table 3, entry 7)

Under an atmosphere of nitrogen, a solution of cyclohexenone **8** (0.9 g, 2.07 mmol) containing *trans* and *cis* isomers (1:1) in THF (5.0 mL) was stirred at –40 °C for 15 min, and L-Selectride (4.14 mmol, 4.2 mL of 1.0 M solution in THF) was added dropwise. The mixture was stirred at –40 °C for 5 h, quenched with water (5.0 mL), and then extracted with EtOAc (3×20 mL) and brine (30 mL). The organic phase was dried over MgSO₄, and concentrated under reduced pressure to give alcohol 7 as a mixture of diastereomers.

The above-prepared sample of 7, without further purification, was dissolved in $CHCl_3$ (5.0 mL), and oxalic acid (0.2 g, 2.17 mmol) was added at room temperature. The mixture was stirred for 10 min, quenched with water (5.0 mL), and then extracted with CH_2Cl_2 (3 × 20 mL). The organic phase was washed with brine (30 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel

with elution of EtOAc/hexane (15:85) to yield compounds **1b** (71 mg, 9% yield), **1c** (142 mg, 18% yield), **13a** (75 mg, 9% yield), **13b** (226 mg, 27% yield) and **13c** (214 mg, 27% yield).

Representative procedure for epimerization

Ketone 1c (30 mg, 0.077 mmol) in the 4,5-*cis*-5,6-*cis* configuration was dissolved in MeOH (4.0 mL), and K₂CO₃ (32 mg, 0.23 mmol) was added. The mixture was stirred at room temperature for 12 h, quenched with water (5.0 mL), and then extracted with CH_2Cl_2 (3 × 20 mL). The organic phase was washed with brine (30 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with elution of EtOAc/CH₂Cl₂ (5:95) to yield the isomer 1a (antroquinonol, 25 mg, 83% yield) in the 4,5-*cis*-5,6-*trans* configuration.

2,3,4-Trimethoxyphenol (10).¹³ A solution of 2,3,4-trimethoxybenzaldehyde (5.0 g, 36.7 mmol) and H₂O₂ (5.3 g of 31% aqueous solution, 48 mmol) in MeOH (50 mL) was added concentrated H₂SO₄ (0.5 mL) at room temperature. The mixture was stirred for 24 h, quenched with water, and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with elution of EtOAc/hexane (15:85) to yield phenol **10** (6.3 g, 95% yield). C₉H₁₂O₄; ¹H NMR (400 MHz, CDCl₃) δ 6.57 (1 H, d, *J* = 8.0 Hz), 6.50 (1 H, d, *J* = 8.0 Hz), 3.87 (3 H, br s), 3.83 (3 H, br s), 3.74 (3 H, br s). ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 143.3, 142.2, 140.5, 108.7, 107.6, 61.0, 60.7, 56.4. HRMS (negative mode)

Drganic & Biomolecular Chemistry Accepted Manuscript

calcd for C₉H₁₁O₄: 183.0657, found: *m*/*z* 183.0661 [M – H]⁻.

2,3,4,4-Tetramethoxycyclohexa-2,5-dien-1-one (9).¹⁴ To a stirred solution containing 2,3,4-trimethoxyphenol (7, 2.0 g, 10.9 mmol) and powdered K₂CO₃ (3.0 g, 21.7 mmol) in anhydrous MeOH (45 mL) was added a solution of iodobenzene di(trifluoroacetate) (PIFA, 4.7 g, 10.9 mmol) in CH₃CN (22 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C to room temperature, diluted with water, and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with elution of EtOAc/hexane (20:80) to yield cyclohexadienone **9** (1.9 g, 81% yield). C₁₀H₁₄O₅; IR v_{max} (neat) 2994 2948, 2834, 1672, 1607, 1313, 1210, 1076, 951, 833, 740 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 6.48 (1 H, d, *J* = 10.4 Hz), 6.25 (1 H, d, *J* = 10.4 Hz), 4.16 (3 H, s), 3.74 (3 H, s), 3.31 (6 H, s). ¹³C NMR (100 MHz, CDCl₃) δ 182.9, 155.1, 140.0, 138.4, 129.9, 96.8, 60.9, 60.2, 51.1 (2 ×). HRMS calcd for C₁₀H₁₅O₅: 215.0919, found: *m/z* 215.0913 [M + H]⁺.

5-Methyl-2,3,4,4-tetramethoxycyclohex-2-en-1-one (12). $C_{11}H_{18}O_5$; IR v_{max} (neat) 2940, 2833, 1675, 1609, 1306, 1227, 1066, 994 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 4.09 (3 H, s), 3.64 (3 H, s), 3.28 (3 H, s), 3.26 (3 H, s), 2.72 (1 H, dd, J = 16.8, 4.3 Hz), 2.47 (1 H, td, J = 7.0, 4.3 Hz), 2.27 (1 H, dd, J = 16.8, 3.8 Hz), 0.97 (3 H, d, J = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 158.9, 138.3, 101.1, 60.9, 60.4, 51.0, 48.2, 41.1, 33.9, 14.5. HRMS calcd for $C_{11}H_{19}O_5$: 231.1232, found: m/z 231.1234 [M + H]⁺.

6-Farnesyl-5-methyl-2,3,4,4-tetramethoxycyclohex-2-en-1-one (8). The alkylation reaction of 12 with farnesyl bromide according to the representative procedure afforded compound 8 as a mixture of *trans* and *cis* isomers (1:1), which were inseparable on silica gel column. C₂₆H₄₂O₅; IR v_{max} (neat) 2965, 2927, 2853, 1673, 1615, 1450, 1265, 1087, 1025, 970, 873, 833 cm⁻¹. ¹H NMR (1:1 isomers, 400 MHz, CDCl₃) δ 5.05 (6 H, d, J = 6.0 Hz, olefinic protons), 4.09 (3 H, s, trans), 4.05 (3 H, s, cis), 3.63 (6 H, s), 3.28 (3 H, s, cis), 3.27 (3 H, s, *trans*), 3.24 (3 H, s, *trans*), 3.22 (3 H, s, *cis*), 2.80 (1 H, dt, *J* = 9.7, 4.4 Hz, *cis*), 2.69–2.51 (2 H, m), 2.40 (1 H, qd, J = 7.0, 4.4 Hz, *cis*), 2.35–2.23 (3 H, m, *trans*), 2.09–1.88 (17 H, m), 1.63 (6 H, s), 1.60 (6 H, s) 1.55 (12 H, s), 0.94 (3 H, d, J = 6.5 Hz, trans), 0.78 (3 H, d, J = 7.0 Hz, *cis*). ¹³C NMR (1:1 isomers, 100 MHz, CDCl₃) δ 196.4, 196.2, 158.8, 157.3, 145.0, 138.4, 137.2, 136.9, 135.0, 134.9, 131.2, 131.1, 124.4, 124.3, 124.2, 124.1, 124.0, 121.5, 121.4, 101.2, 101.1, 60.8, 60.7, 60.3, 60.2, 51.0, 50.9, 50.7, 49.2, 47.5, 47.0, 42.0, 39.9, 39.8, 39.7 (2 ×), 37.5, 35.7, 28.9, 26.7, 26.6, 26.5, 25.6 (2 ×), 24.5, 17.6 (2 ×), 16.1, 16.0, 15.9, 14.6, 9.4. HRMS calcd for $C_{26}H_{43}O_5$: 435.3110, found: m/z 435.3104 $[M + H]^+$.

5-Farnesyl-4-hydroxy-6-methyl-2,3-dimethoxycyclohex-2-en-1-one (1a–1d):

(4,5-*Cis*-5,6-*trans*)-isomer 1a (antroquinonol)^{2,11}: C₂₄H₃₈O₄; ¹H NMR (500 MHz, CDCl₃)
δ 5.14 (1 H, t, J = 7.3 Hz), 5.07 (2 H, t, J = 6.7 Hz), 4.34 (1 H, d, J = 3.1 Hz), 4.05 (3 H, s),
3.65 (3 H, s), 2.52 (1 H, qd, J = 6.7, 11.0 Hz), 2.22 (2 H, t, J = 7.3 Hz), 2.12–1.92 (8 H, m),
1.74 (1 H, dtd, J = 10.9, 7.5, 3.4 Hz), 1.66 (3 H, s), 1.64 (3 H, s), 1.58 (6 H, s), 1.16 (3 H, d, J

= 6.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 160.4, 138.1, 135.9, 135.4, 131.1, 124.3, 123.9, 121.0, 68.0, 60.6, 59.2, 43.4, 40.3, 39.8, 39.7, 27.0, 26.8, 26.4, 25.7, 17.7, 16.1, 16.0, 12.3. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

(4,5-*Trans*-5,6-*trans*)-isomer **1b**: C₂₄H₃₈O₄; IR v_{max} (neat) 3439, 2967, 2851, 1666, 1614, 1450, 1280, 1073, 994, 791, 747 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 5.11 (1 H, t, *J* = 7.3 Hz), 5.05 (2 H, t, *J* = 6.4 Hz), 4.25 (1 H, d, *J* = 8.5 Hz), 4.10 (3 H, s), 3.64 (3 H, s), 2.60 (1 H, br s), 2.58–2.51 (1 H, m), 2.24–2.17 (1 H, m), 2.17–1.89 (9 H, m), 1.84–1.77 (1 H, m), 1.65 (6 H, s), 1.57 (6 H, s), 1.19 (3 H, d, *J* = 6.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 160.3, 138.7, 135.2, 135.2, 131.3, 124.3, 124.0, 118.8, 69.2, 60.7, 60.3, 45.9, 42.0, 40.0, 39.7, 26.7, 26.5, 26.3, 25.7, 17.7, 16.3, 16.0, 13.1. HRMS calcd for C₂₄H₃₉O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

(4,5-Cis-5,6-cis)-isomer **1c**: C₂₄H₃₈O₄; IR v_{max} (neat) 3424, 2922, 2850, 1737, 1612, 1450, 1231, 1043, 1012, 773 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 5.15–5.03 (3 H, m), 4.40 (1 H, br s), 4.07 (3 H, s), 3.65 (3 H, s), 2.46 (1 H, qd, J = 7.3, 4.3 Hz), 2.38–2.28 (1 H, m), 2.15–1.91 (11 H, m), 1.65 (3 H, s), 1.63 (3 H, s), 1.57 (6 H, s), 1.23 (3 H, d, J = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 199.2, 160.6, 137.4, 135.3, 135.2, 131.3, 124.3, 123.9, 121.5, 69.7, 60.5, 59.6, 44.1, 40.3, 39.8, 39.7, 26.8, 26.5, 25.7, 25.6, 17.7, 16.2, 16.0, 14.8. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: m/z 391.2854 [M + H]⁺.

(4,5-Trans-5,6-cis)-isomer 1d: C₂₄H₃₈O₄; IR v_{max} (neat) 3431, 2976, 2919, 2849, 1667,

Drganic & Biomolecular Chemistry Accepted Manuscript

1614, 1451, 1234, 1039, 969, 781, 750 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.13–5.02 (3 H, m), 4.29 (1 H, d, J = 4.4 Hz), 4.05 (3 H, s), 3.65 (3 H, s), 2.88 (1 H, qd, J = 6.8, 3.8 Hz), 2.38 (1 H, br s), 2.13–1.90 (11 H, m), 1.65 (3 H, s), 1.57 (6 H, s), 1.54 (3 H, s), 1.08 (3 H, d, J = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 158.9, 137.8, 135.5, 135.2, 131.3, 124.3, 123.9, 121.2, 69.6, 60.6, 59.5, 44.8, 40.2, 39.8, 39.7, 26.7, 26.5, 25.7, 25.5, 17.7, 16.1, 16.0, 11.8. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

5-Farnesyl-4-hydroxy-6-methyl-1,2-dimethoxycyclohex-1-en-3-one (13a–13d):

(4,5-*Cis*-5,6-*trans*)-isomer **13a**: C₂₄H₃₈O₄; IR ν_{max} (neat) 3468, 2961, 2920, 1666, 1610, 1456, 1280, 1044, 994, 800, 790 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 5.10–4.99 (3 H, m), 4.42 (1 H, d, *J* = 5.5 Hz), 4.01 (3 H, s), 3.65 (3 H, s), 3.57 (1 H, s), 2.61 (1 H, qd, *J* = 7.3, 1.6 Hz), 2.25–2.19 (1 H, m), 2.11–1.90 (9 H, m), 1.79–1.69 (1 H, m), 1.66 (3 H, s), 1.57 (6 H, s), 1.50 (3 H, s), 1.29 (3 H, d, *J* = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 194.9, 166.7, 138.0, 135.1, 133.5, 131.3, 124.3, 123.9, 121.9, 70.8, 60.6, 59.2, 44.9, 39.8, 39.7, 34.6, 26.7, 26.5, 25.7, 24.0, 17.7, 17.6, 16.1, 16.0. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

(4,5-Trans-5,6-trans)-isomer **13b**: C₂₄H₃₈O₄; IR v_{max} (neat) 3470, 2961, 2927, 1666, 1601, 1454, 1301, 1201, 1046, 984, 963, 802 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.18 (1 H, t, J = 7.5 Hz), 5.05 (2 H, t, J = 6.3 Hz), 4.04 (3 H, s), 3.84 (1 H, d, J = 12.5 Hz), 3.72 (1 H, s), 3.63 (3 H, s), 2.56–2.40 (2 H, m), 2.37–2.25 (1 H, m), 2.13–1.88 (8 H, m), 1.66 (3 H, s), 1.65 (3 H, s), 1.65

s), 1.63–1.60 (1 H, m), 1.59 (3 H, s), 1.57 (3 H, s), 1.19 (3 H, d, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 167.4, 138.4, 135.1, 133.5, 131.3, 124.3, 124.1, 118.7, 72.2, 60.6, 60.6, 46.1, 40.1, 39.8, 35.3, 26.8, 26.4, 25.7, 25.2, 17.7, 16.3, 16.0, 15.4. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

(4,5-*Cis*-5,6-*cis*)-isomer **13c**: C₂₄H₃₈O₄; IR v_{max} (neat) 3458, 2966, 2921, 2852, 1665, 1597, 1451, 1309, 1027, 975, 935, 775 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.14–5.01 (3 H, m), 4.12 (1 H, d, *J* = 2.0 Hz), 4.07 (3 H, s), 3.64 (3 H, s), 3.54 (1 H, br s), 2.86 (1 H, qd, *J* = 7.0, 4.5 Hz), 2.25 (1 H, m), 2.10–1.89 (10 H, m), 1.66 (3 H, s), 1.58 (3 H, s), 1.56 (3 H, s), 1.55 (3 H, s), 1.20 (3 H, d, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 166.8, 135.4, 135.0, 134.3, 131.2, 124.4, 124.1, 123.5, 75.3, 60.7, 60.4, 45.1, 39.8, 39.7, 37.1, 26.7, 26.5, 25.7, 22.1, 17.7, 16.0, 16.0, 15.0. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

(4,5-*Trans*-5,6-*cis*)-isomer **13d**: C₂₄H₃₈O₄; IR v_{max} (neat) 3450, 2967, 2920, 1666, 1600, 1450, 1280, 1073, 994, 791, 770 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 5.08–5.05 (3 H, m), 4.05 (3 H, s), 3.91 (1 H, d, J = 12.2 Hz), 3.65 (3 H, s), 2.62–2.57 (2 H, m), 2.13–1.88 (10 H, m), 1.66 (3 H, s), 1.64 (3 H, s), 1.58 (6 H, br s), 1.11 (3 H, d, J = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 195.7, 170.2, 137.5, 135.2, 133.6, 131.3, 124.4, 123.9, 120.3, 71.6, 60.8, 59.5, 43.4, 39.8, 39.7, 34.4, 26.8, 26.4 (2 ×), 25.7, 17.7, 16.3, 16.0, 11.9. HRMS calcd for C₂₄H₃₈O₄: 391.2848, found: *m/z* 391.2854 [M + H]⁺.

Acknowledgments

We thank Ministry of Science and Technology in Taiwan for financial support and Golden Biotechnology Corporation in Taiwan for providing the authentic sample of natural (+)-antroquinonol for spectral comparison.

References:

- 1 Z.-H. Ao, Z.-H. Xu, Z.-M. Lu, H.-Y. Xu, X.-M. Zhang and W.-F. Dou, J. *Ethnopharmacol.*, 2009, **121**, 194–212.
- 2 T.-H. Lee, C.-K. Lee, W.-L. Tsou, S.-Y. Liu, M.-T. Kuo and W.-C. Wen, *Planta Med.*, 2007, **73**, 1412–1415.
- 3 M. Geethangili and Y.-M. Tzeng, *Evidence-Based Complem. Alt. Med.* 2011, art. no. 212641.
- 4 S.-Y. Liu, M.-T. Kuo and W.-C. Wen, US patent 2008/0119565 Al.
- 5 Y.-W. Lin, J.-H. Pan, R. H. Liu, Y.-H. Kuo, L.-Y. Sheen and B.-H. Chiang, *J. Sci. Food Agric.*, 2010, **90**, 1739–1744.
- S.-S. Yang, G.-J. Wang, S.-Y. Wang, Y.-Y. Lin, Y.-H. Kuo and T.-H. Lee, *Planta Med.*, 2009, 75, 512–516.
- 7 S.-C. Wang, T.-H. Lee, C.-H. Hsu, Y.-J. Chang, M.-S. Chang, Y.-C. Wang, Y.-S. Ho,

W.-C. Wen and R.-K. Lin, J. Agric. Food Chem., 2014, 62, 5625-5635.

- 8 C.-L. Ho, J.-L. Wang, C.-C. Lee, H.-Y. Cheng, W.-C. Wen, H. H.-Y. Cheng and M. C.-M. Chen, *Biomed Pharmacother.*, 2014, 68, 1007–1014.
- 9 V. B. Kumar, T.-C. Yuan, J.-W. Liou, C.-J. Yang, P.-J. Sung and C.-F. Weng, *Mutat. Res.*, 2011, 707, 42–52.
- 10 https://clinicaltrials.gov/ct2/show/NCT02047344?term=hocena&rank=2, accessed on November 14, 2014.
- 11 R. S. Sulake and C. Chen, Org. Lett. 2015, in press. DOI: 10.1021/acs.orglett.5b00046.
- 12 R. S. Sulake, Y.-F. Jiang, H.-H. Lin and C. Chen, J. Org. Chem., 2014, 79, 10820–10828.
- 13 M. Nikaido, R. Aslanian, F. Scavo, P. Helquist, B. Akermark and J.-E. Backvall, J. Org. Chem., 1984, 49, 4740–4741.
- 14 Y. Tamura, T. Yakura and J.-I. Haruta, J. Org. Chem., 1987, 52, 3927–3930.
- 15 A. J. Stern, J. J. Rohde and J. S. Swenton, J. Org. Chem., 1989, 54, 4413–4419.
- 16 Y. Takemoto, S. Kuraoka, N. Hamaue and C. Iwata, *Tetrahedron: Asymmetry*, 1996, 7, 993–996.
- 17 R. Imbos, M. H. G. Brilman, M. Pineschi and B. L. Feringa, Org. Lett., 1999, 1, 623-626.
- 18 S. Torii, N. Hayashi and M. Kuroboshi, Synlett, 1998, 599-600.
- M. F. Semmelhack, L. Keller, T. Sato, E. J. Spiess and W. Wulff, J. Org. Chem., 1985, 50, 5566–5574.

- 20 A. Nilsson and A. Ronlán, Tetrahedron Lett., 1975, 16, 1107–1110.
- 21 J.-M. Fang, J. Org. Chem., 1982, 47, 3464–3470.
- 22 M. Suzuki, A. Yanagisawa and R. Noyori, J. Am. Chem. Soc., 1988, 110, 4718–4726.
- 23 B. H. Lipshutz and M. R. Wood, J. Am. Chem. Soc., 1994, 116, 11689–11702.
- 24 D. R. Henton, K. Anderson and M. J. Manning, J. Org. Chem., 1980, 45, 3422-3433.
- 25 T. Y. S. But and P. H. Toy, Chem. Asian J., 2007, 2, 1340–1355.
- 26 A. J. Reynolds and M. Kassiou, Curr. Org. Chem., 2009, 13, 1610–1632.
- 27 C.-K. Chen, J.-J. Kang, W.-C. Wen, H.-F. Chiang and S.-S. Lee, J. Nat. Prod., 2014, 77, 1061–1064.
- 28 F. López, A. J. Minnaard and B. L. Feringa, Acc. Chem. Res., 2007, 40, 179-188.
- 29 S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard and B. L. Feringa, *Chem. Rev.*, 2008, **108**, 2824–2852.
- 30 T. Jerphagnon, M. G. Pizzuti, A. J. Minnaard and B. L. Feringa, *Chem. Soc. Rev.*, 2009,
 38, 1039–1075.
- 31 K. A. Kalstabakken and A. M. Harned, *Tetrahedron*, 2014, 70, 9571–9585.

Legends for Figures, Schemes and Tables:

- Figure 1. Chen's synthesis¹² of (±)-antroquinonol D via Michael reaction of 4a. The Michael reactions of cyclohexadienone 4b fail when nucleophile (Nu⁻) is an enolate generated from dimethyl malonate, an organocuprate reagent prepared from ethyl bromoacetate, or a combined reagent of organozinc with Cu(OTf)₂. PIDA represents an iodine(III) oxidizing reagent phenyliodine diacetate.
- Figure 2. Retrosynthetic analysis of antroquinonol (1a). PIFA: phenyliodine bis(trifluoroacetate).
- Figure 3. Three reaction modes of cyclohexadienone 9 with organocuprate reagent MeMgBr/CuX. The electron-transfer pathway led to phenol 10, which can be recycled to compound 9 by oxidation with PIFA in methanol. The 1,2-addition at carbonyl led to the product 11 due to hydrolysis on silica gel chromatography. The 1,4-addition at β-carbon gave the Michael adduct 12.
- Figure 4. Stereo- and regiochemistry in reduction of ketone 8. Subsequent hydrolysis of the reduction product 7 gave compound 1 and the 1,3-transpositional isomer 13.

Scheme 1. Synthesis of (\pm) -antroquinonol

Scheme 2. Synthesis of benzyl analogs 15a–d and the 1,3-transpositional isomers 16a–d. The X-ray crystal structures of all-*cis* isomers (±)-15c and (±)-16c are shown. The structural assignments of their counterparts (±)-1c and (±)-13c bearing farnesyl substituent, in lieu of

the benzyl group, are supported by the crystal structures of (\pm) -15c and (\pm) -16c in combination with the detailed NMR analyses (¹H, ¹³C, COSY, NOESY, HSQC) and mechanistic rationale.

- Table 1. Michael reaction of cyclohexadienone 9 with methyl metallic reagent, giving cyclohexenone 12.
- Table 2. Alkylation of ketone 12 with farnesyl bromide, giving compound 8.^a
- Table 3 Reduction of ketone 8 to alcohol 7, followed by hydrolysis in acidic conditions, gives

 compounds 1 and 13.
- Table 4. Selected ¹H and ¹³C NMR spectral data.^{*a*}

Table of Contents (Graphic Abstract)

Antroquinonol First example of Michael addition in highly electron-rich system R = farnesyl 头