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Catalytic synthesis of chiral spirocyclic ketones was Tgpe1 Screening of chiral ligands.?
accomplished via the Pd-catalyzed intramolecular a-arylation .
of a-substituted cyclic ketones. The obtained spirocyclic PEf;ﬁ?%f;?gﬁ ‘lA,?)
ketone could be converted into a bifunctional organocatalyst. 0 7

X Cs,CO3, toluene, 100 °C 8M
e

The spirobicyclic framework is frequently found in natural products OMe rac-1 2a
and biologically active compounds.’ In the last two decades, chiral E 10X Lizand Ti B Yield (%)° A
ligands and organocatalysts with a spiro skeleton have received gltry 1( ) 1gan ime (h) Yield (%) ee (%)
considerable attention in asymmetric catalysis because of their 1 a(B) — 24 88 B
unique structural properties and high asymmetric induction 2 Ia (S)-BINAP 24 75 50)
efficiency.>® However, enantioselective synthesis of optically pure 3 Ia (R)‘SDP 24 59 18 (R)
spirobicyclic compounds remains a formidable task because the 4e la (R)-I-Pr-PHOX 48 66 1T (R)
chiral catalysts must control not only the enantiodiscrimination but > la L1 48 42 15(S)
also the formation of the quaternary carbon center. Efficient 6 la (R,R)-DIOP 48 85 Rac
synthesis of chiral spirobicycles with multiple functional groups is  / la (R,R,S,S)-DlianPhos 24 12 61(S)
more challenging and attractive in organic asymmetric synthesis.>*¢* 8 la (S,S)-Benz.P 48 77 46 (R)
Herein, we report the facile synthesis of chiral spirobicycles 2 9 la' (S’RD)'JOSH’hOS 48 58 83 (S)
through the Pd-catalyzed intramolecular a-arylation of a-substituted 10 1a"(I) ~ (S,Rp)-Josiphos 96 39 53(S)

cyclic ketones 1. The combination of Pd(OAc),, (S,R;)-Josiphos and
K,COj; in 1,2-dimethoxyethane (DME) at 90 °C was effective for the
dynamic kinetic asymmetric transformation (DYKAT) in the a-
arylation of ketones 1. The functionalized spiro compound 2a could
be converted into the chiral acid—base organocatalyst.
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Fig. 1 Enantioselective Pd-catalyzed intramolecular a-arylation of a-
substituted cyclic ketones 1.

rac-1

This journal is © The Royal Society of Chemistry 2012

®Reaction condltlons 1/Pd(OAc),/chiral ligand = 1/0.01/0.15, Cs,CO5; (2 eq),
toluene (0.2 M). "H-NMR yield usmg CH,Br, as an internal standard.
“Determined by HPLC (Chiralpak IA). PdClz(PPh3)2 (10 mol %) was used.
*NaOt-Bu (3 eq) and L1 (22 mol %) were used.
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Transition metal-catalyzed o-arylation of carbonyl groups is a
powerful synthetic method for constructing a-arylated compounds;
however, asymmetric a-arylation of carbonyl units is still ongoing.’
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In 1997, Muratake and Natsume reported racemic synthesis of
spirobicycles 2 via Pd-catalyzed intramolecular a-arylation of cyclic
ketones 1 (Fig. 1a).% As a continuation of our study of spiro-type
catalysts,” we became interested in a DYKAT for spirocyclic ketones
2 (Fig. 1b) and their applications to new spiro-type organocatalysts.
Initially, we selected 1a (X = Br) as our model substrate (Table 1)
because the OMe group on the aromatic ring could be readily
transformed to a Br¢nsted acid region. Although the steric hindrance
caused by multiple substituents on the aromatic ring may prevent the
formation of the spiro skeleton, desired racemic 2a was formed in
88% yield under the reported conditions® (Table 1, entry 1). Next we
focused on searching for an appropriate chiral ligand to construct 2a
with high optical purity. The use of BINAP, SDP, i-Pr-PHOX, or N-
heterocyclic carbene ligand L1 provided desired spiro[4.4]nonanone
2a in  moderate-to-good  yields (42-75%) with low
enantioselectivities (up to 18% ee) (entries 2—5). The reaction with
(R,R)-DIOP afforded 2a in 85% yield as a racemic mixture (entry 6).
The ee values of 2a increased when P-chiral ligands such as
DuanPhos (61% ee, entry 7) and BenzP* (46% ee, entry 8) were
used. Among the chiral ligands tested,® only the Josiphos ligand,
which contains a ferrocene unit, produced good enantioselectivity
(83% ee, entry 9). Substrate 1a’ (X = I) failed to provide high
enantioselectivity of spiro[4.4]nonanone 2a (entry 10). The optimal
result for 2a (82% yield, 83% ee) was obtained when the reaction of
1a was performed in DME at 90 °C in the presence of K,CO; as a
base (Scheme 1).2

Scheme 1 Substrate scope of Pd-catalyzed intramolecular a-arylation
of a-substituted cyclic ketones 1.

/(SR

K,CO3, DME, 90 °C, 16-144 h
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2a (R = OMe): 82%, 83% ee  2d (R = OBn): quant, 83% ee
2b (R = OMOM): 87%, 72% ee 2e (R=0Ts): 91%, 63% ee
2c¢ (R = OEt): 83%, 73% ee 2f (R=H):50%, 21% ee

MeO

OMe
2h: 90%, 61% ee

OMe
2i: 34%, 54% ee

MeO

OMe

2j:63%, 16% ee 21: 28%, 32% ee®
*Reaction conditions: 1/Pd(OAc),/chiral ligand = 1/0.05/0.075, K,CO; (2 eq),
DME (0.2 M), 90 °C. Yields of isolated 2. The ee of 2 was determined by HPLC
(Chiralpak IA for 2a, 2¢-21 Chiralpak OD-3 for 2b). ®DuanPhos was used insted
of the Josiphos.”

2k: 79%, 12% ee

The substrate scope is shown in Scheme 1. During our investigation
of the substituent effect on the aromatic ring in racemic la—1g, we
found that the benzyl group (1d: R = OBn) led to the best outcome;
spiro[4.4]nonanone 2d was obtained in quantitative yield with 83%
ee. Substrates 1f, which contained no alkoxy groups, gave
spiro[4.4]nonanones 2f with lower enantioselectivity (21% ee); thus
alkoxy substituents on the aromatic ring play an important role in the
enantiodiscrimination that produces the chiral spiro[4.4]nonanone
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skeleton. The present transformation constructed of spiro[4.5], [4.6],
and [5.5]alkanones 2h-21 in up to 61% ee. The absolute
configuration of spirocyclic ketone 2d was assigned as S by X-ray
analysis of deprotected product 3 (Scheme 2)."

Scheme 2 Determination of absolute configuration of the spirocyclic
ketone.

od 1) Pd/C, H,
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2) recrystallization

ORTEP drawing of 3

To demonstrate the potential utility of the spiro compounds, 2a
was transformed to chiral spiro-type organocatalyst 6. As
shown in Scheme 3, 2a (83% ee) underwent triflation and
phosphonation to give 4 with 66% yields in two steps. After
demethylation of 4, recrystallization of 5 (83% ee) produced
optically pure 5 in 60% yield. Finally, reduction of phosphine
oxide 5 afforded desired acid—base organocatalyst 6 in 92%
yield. To evaluate the catalytic activity of our spiro-type
organocatalyst, we used (S)-6 for the enantioselective aza-
Morita—Baylis—Hillman (aza-MBH) reaction, which is an atom-
economical C—C bond-forming reaction.!' Preliminary results
showed that spiro-type organocatalyst 6 promoted the aza-
MBH reaction of 7 with 8 to afford adduct 9 in 71 % yield with
54% ee.

Scheme 3 Preparation of acid—base organocatalyst 6 and its
application to the aza-MBH reaction.
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Conclusions
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We have developed the catalytic and enantioselective synthesis
through the Pd-catalyzed
intramolecular a-arylation of a-substituted cyclic ketones 1.

of spirocyclic ketones 2

Investigation into the reaction mechanism as well as the
development of new spiro-type ligands and organocatalysts
from 2 is currently underway.
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