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Pd-catalyzed enantioselective intramolecular α-
arylation of α-substituted cyclic ketones: Facile 
synthesis of functionalized chiral spirobicycles 

Lulu Fan, Shinobu Takizawa,* Yoshiki Takeuchi, Kazuhiro Takenaka and Hiroaki 
Sasai* 

Catalytic synthesis of chiral spirocyclic ketones was 
accomplished via the Pd-catalyzed intramolecular α-arylation 
of α-substituted cyclic ketones. The obtained spirocyclic 
ketone could be converted into a bifunctional organocatalyst. 

The spirobicyclic framework is frequently found in natural products 
and biologically active compounds.1 In the last two decades, chiral 
ligands and organocatalysts with a spiro skeleton have received 
considerable attention in asymmetric catalysis because of their 
unique structural properties and high asymmetric induction 
efficiency.2,3 However, enantioselective synthesis of optically pure 
spirobicyclic compounds remains a formidable task because the 
chiral catalysts must control not only the enantiodiscrimination but 
also the formation of the quaternary carbon center.4 Efficient 
synthesis of chiral spirobicycles with multiple functional groups is 
more challenging and attractive in organic asymmetric synthesis.2,4g-k 
Herein, we report the facile synthesis of chiral spirobicycles 2 
through the Pd-catalyzed intramolecular α-arylation of α-substituted 
cyclic ketones 1. The combination of Pd(OAc)2, (S,Rp)-Josiphos and 
K2CO3 in 1,2-dimethoxyethane (DME) at 90 oC was effective for the 
dynamic kinetic asymmetric transformation (DYKAT) in the α-
arylation of ketones 1. The functionalized spiro compound 2a could 
be converted into the chiral acid–base organocatalyst. 
 

Fig. 1 Enantioselective Pd-catalyzed intramolecular α-arylation of α-
substituted cyclic ketones 1. 

Transition metal-catalyzed α-arylation of carbonyl groups is a 
powerful synthetic method for constructing α-arylated compounds; 
however, asymmetric α-arylation of carbonyl units is still ongoing.5 

Table 1 Screening of chiral ligands.a 
 
 
 
 

 
Entry 1 (X) Ligand Time (h) Yield (%)b ee (%)c

1d 1a (Br) ― 24 88 ― 
2 1a (S)-BINAP 24 75 5 (S) 
3 1a (R)-SDP 24 59 18 (R)
4 1a (R)-i-Pr-PHOX 48 66 11 (R)
5e 1a L1 48 42 15 (S)
6 1a (R,R)-DIOP 48 85 Rac 
7 1a (R,R,S,S)-DuanPhos 24 12 61 (S)
8 1a (S,S)-BenzP* 48 77 46 (R)
9 1a (S,Rp)-Josiphos 48 58 83 (S)
10 1a′ (I) (S,Rp)-Josiphos 96 39 53 (S)
aReaction conditions: 1/Pd(OAc)2/chiral ligand = 1/0.01/0.15, Cs2CO3 (2 eq), 
toluene (0.2 M). b1H-NMR yield using CH2Br2 as an internal standard. 
cDetermined by HPLC (Chiralpak IA). dPdCl2(PPh3)2 (10 mol %) was used. 
eNaOt-Bu (3 eq) and L1 (22 mol %) were used.  
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We have developed the catalytic and enantioselective synthesis 
of spirocyclic ketones 2 through the Pd-catalyzed 
intramolecular α-arylation of α-substituted cyclic ketones 1. 
Investigation into the reaction mechanism as well as the 
development of new spiro-type ligands and organocatalysts 
from 2 is currently underway. 
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