Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Development of an efficient route toward meiogynin A-inspired dual inhibitors of $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Mcl}-1$ anti-apoptotic proteins

Sandy Desrat, Camille Remeur and Fanny Roussi* ${ }^{\text {a }}$
Received (in $X X X, X_{X X}$) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 2
${ }_{5}$ DOI: 10.1039/b000000x

Abstract

The synthesis, on a large scale, with very good yield and er via an efficient strategy, of a chiral 4substituted 2-cyclohexenone intermediate, was a milestone in the synthesis of seven analogues of meiogynin A , a natural sesquiterpenoid dimer. These compounds were elaborated in ten linear steps. Their binding affinities for $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Mcl}-1$, two proteins of the $\mathrm{Bcl}-2$ family, overexpressed in various 10 types of cancers, were evaluated. This enabled to further SAR studies en route to the elaboration of potent dual inhibitors of anti-apoptotic proteins of the Bcl-2 family.

Introduction

Meiogynin A $\mathbf{1}^{1}$ was isolated a few years ago from the bark of a
${ }_{15}$ Malaysian tree of the Annonaceae family. This compound is a natural inhibitor ${ }^{2}$ of $\mathrm{Mcl}-1$ and $\mathrm{Bcl}-\mathrm{xL}$, two antiapoptotic proteins of the Bcl-2 family, which are key players in apoptosis. ${ }^{3}$ They are divided into anti-apoptotic members such as $\mathrm{Bcl}-2, \mathrm{Bcl}-\mathrm{xL}$ and Mcl-1 and pro-apoptotic members such as Bax, Bak and Bid. The 20 anti-apoptotic proteins disable the pro-apoptotic ones by binding in a hydrophobic cleft through protein-protein interactions. Over the past decade, it has been shown that overexpression of the antiapoptotic $\mathrm{Bcl}-2, \mathrm{Bcl}-\mathrm{xL}$ or $\mathrm{Mcl}-1$ proteins is involved in the development of many kinds of cancers or confers resistance to
${ }_{25}$ apoptosis induced by standard anticancer therapies. ${ }^{4}$ Thus, this family of proteins represents an interesting target for tumour treatment. The most promising therapeutic approach consists of disrupting protein-protein interactions between anti- and proapoptotic members of the Bcl-2 family, using small molecule
${ }_{30}$ inhibitors. ${ }^{5}$ Some of these are currently in clinical or pre-clinical studies either as selective inhibitors of a subset of proteins ${ }^{6}$ or as pan-inhibitors. ${ }^{7}$
The biological properties and unique structure of meiogynin A 1, led us to consider its total synthesis via a biomimetic approach ${ }^{8}$ 35 and later on, to elaborate analogues to further SAR studies. ${ }^{9,10}$ Particularly, we showed that the cyclohexane moiety of meiogynin A could be replaced by an aromatic without influencing its biological activities. ${ }^{9}$ In this paper, we disclose the synthesis of analogues of type 2 , in which a modular chain ${ }_{40}$ replaced the lateral terpene chain of meiogynin A.

The main issue of this synthesis resides in the large-scale elaboration of a chiral 4 -substituted 2 -cyclohexenone 5, carrying a functionalizable lateral chain that could lead to various analogues of meiogynin A 1. In the literature, asymmetric routes 45 to such compounds are relatively limited ${ }^{11}$ and often require
multi-steps sequences or inconvenient experimental conditions. Two strategies were envisaged: an intramolecular aldol condensation of keto aldehyde 6 and a desymmetrization/oxidation from a prochiral cylohexanone 7.

Scheme 1 Retrosynthetic approach to analogues 2 of meiogynin A 1 and key intermediates involved.

Synthesis of chiral 2-cyclohexenone 5 by intramolecular aldol condensation

${ }_{55}$ First, a stepwise Robinson-type annulation employing an asymmetric Michael addition of a protected hydroxy-aldehyde to methyl vinyl ketone followed by a base-mediated ring closure was envisaged to prepare the functionnalizable cyclohexenone 5 (Scheme 1). Baran's ${ }^{12}$ and Nicolaou's ${ }^{13}$ groups elegantly
developed this strategy for the synthesis of dihydrojunenol and ent-7-epizingiberene respectively. In a similar fashion, the precursors of meiogynin A 1 and its aromatic derivatives were elaborated starting from both (R) - and (S)-citronellal. ${ }^{8}$ The group 5 of McQuade has recently disclosed that base mediated cyclisation of 2-monosubstituted-5-oxohexanals requires branching of the substituent to prevent partial epimerization due to the enolisation of the aldehyde intermediate. ${ }^{14}$ These observations highlighted the potential difficulty to keep the enantiomeric ratio determined 10 for compound 6 over the ring closure reaction.

The aldehyde precursor $\mathbf{9 a}$ was obtained in two steps from 1,4butanediol $\mathbf{8}$ by a mono-protection using TBSCl^{15} and oxidation with PCC. ${ }^{16}$ Then, an asymmetric addition to methyl vinyl ketone in presence of a catalytic amount of (R)-2,2-diphenylprolinol 15 methyl ether ${ }^{9,13,17}$ and ethyl 3,4-dihydroxybenzoate as co-catalyst (that could electrophilically activate the enone via hydrogen bond donation to the carbonyl oxygen) gave the desired TBS-protected Michael adduct $\mathbf{6 a}^{14}$ after 6 days with 79% yield and a good asymmetric induction (er $=93: 7$). ${ }^{18}$

Scheme 2 Synthesis of the chiral Michael adduct 6a. Reagents and conditions: (a) 8 (5 equiv.), TBSCl (1 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, $18 \mathrm{~h}, 98 \%$; (b) PCC (1.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 81 \%$; (c) Methyl vinyl ketone (1.2 equiv.), (R)-2,2-diphenylprolinol methyl ether ($5 \mathrm{~mol} \%$), ethyl 25 3,4-dihydroxybenzoate ($20 \mathrm{~mol} \%$), $4^{\circ} \mathrm{C}, 6 \mathrm{~d}, 79 \%$, er $=93: 7$.

Various conditions were investigated for the intramolecular aldol condensation of the keto-aldehyde 6a (Table 1). A catalytic amount of LiOH in i-PrOH was first used to carry out this reaction (entry 1) as Baran et al. ${ }^{19}$ reported that these conditions ${ }_{30}$ could avoid the epimerization of the chiral center. However, despite the fact that the 2-cyclohexenone 5a could be isolated with a good yield (86%), we observed partial epimerization (er $=73: 27$). The use of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH (entry 2) or a mixture of acetic acid and isopropylamine in toluene ${ }^{20}$ (entry 3) gave even 35 worst results with lower yields and complete erosion of optical purity. Only traces of cylohexenone 5a were detected when the substrate was heated with PTSA under Dean-Stark conditions (entry 4). In addition, whatever the conditions tested, variable amounts $(5-30 \%)$ of deprotected cyclohexenone were obtained. ${ }_{40}$ Finally, we used the procedure described by McQuade, ${ }^{14}$ who developed specific conditions to perform the aldol condensation reaction of unbranched systems, using the TFA salt of a proline catalyst 10 in hexane (entry 5). Nevertheless, in our hands, these conditions were not successful as poor conversion and partial loss 45 of optical purity were observed.

Table 1 Study of the intramolecular aldol condensation of $6 \mathbf{a}$.

Entry	Conditions	Yield (\%) ${ }^{a}$	$e r^{b}$
1	LiOH (0.1 equiv.), i - $\mathrm{PrOH}, \mathrm{rt}, 48 \mathrm{~h}$	86	73:27
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), $\mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$	51	61:39
3	AcOH (2 equiv.), $i-\mathrm{PrNH}_{2}$ (1 equiv.), toluene, $\mathrm{rt}, 18 \mathrm{~h}$	67	50:50
4	PTSA (1.2 equiv.), toluene, Dean Stark, $120^{\circ} \mathrm{C}, 48 \mathrm{~h}$	traces	$n \mathrm{nd}^{\text {c }}$
5	hexane, rt, 18 h	17	53:46

${ }^{a}$ Isolated yield obtained after purification on silica gel. ${ }^{b}$ Enantiomeric ${ }_{50}$ ratios were determined by chiral HPLC. ${ }^{c}$ Not determined.

These disappointing results prompted us to change the aldehyde intermediate, in case the TBS-hydroxy had a detrimental effect on the cyclisation reaction. Thus, three aldehydes possessing either a hydroxy group protected as an ester $\left(9 \mathbf{b}^{21}\right.$ and $\left.\mathbf{9 c}\right)$, or a terminal ${ }_{55}$ alkyne ($\mathbf{9} \mathbf{d}^{22}$) were prepared by oxidation of the corresponding alcohol 11b, 11c, ${ }^{23}$ 11d with PCC (Scheme 3). The alkyne function of $9 \mathbf{d}$ could be used to extend the lateral chain of the corresponding cyclohexenone, by Sonogoshira coupling.
They were directly engaged in asymmetric Michael addition to ${ }_{60}$ methyl vinyl ketone, leading to the keto-aldehydes $\mathbf{6 b}-\mathbf{d}$ with reasonable yields. The enantiomeric ratio of $\mathbf{6 b}$ and $\mathbf{6 d}$ could not be measured on chiral HPLC (Table 2, entries 1 and 3) although several conditions were tested on different columns. However the p-chlorobenzoyl compound 6c exhibited a good enantiomeric ${ }_{65}$ ratio of 80:20 (entry 2), slightly lower than the TBS-protected hydroxy one $\mathbf{6 a}$ (Scheme 1).

Scheme 3 Preparation of the Michael adducts $\mathbf{6 b - d}$. Reagents and conditions: (a) 8 (5 equiv.), AcOH (1 equiv.), $\mathrm{H}_{2} \mathrm{SO}_{4}$ (0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $70 \mathrm{rt}, 18 \mathrm{~h}, 98 \%$ (11b); (b) $\mathbf{8}$ (5 equiv.), p-chlorobenzoyl chloride (1 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 84 \%$ (11c); (c) PCC (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 74 \%$ (9b), 89% (9c), 34% (9d); (d) Methyl vinyl ketone (1.2 equiv.), (R)-2,2-diphenylprolinol methyl ether ($5 \mathrm{~mol} \%$), ethyl 3,4-dihydroxybenzoate ($20 \mathrm{~mol} \%$), $4{ }^{\circ} \mathrm{C}, 6 \mathrm{~d}, 51 \%$ ($\mathbf{6 b}$), 70% ($\mathbf{6 c}$), 36% 75 (6d).

The best conditions obtained for intramolecular aldol condensation of compound $\mathbf{6 a}$, ie $10 \mathrm{~mol} \%$ of LiOH in $i-\mathrm{PrOH}$, were applied on these aldehydes $\mathbf{6 b}$-d. In these conditions, the acetylated compound $\mathbf{6 b}$ led to complete degradation (Table 2, ${ }_{80}$ entry 1). The alkyne derivative $\mathbf{5 d}$ could be isolated with only 5% yield (low conversion) and with an er of 75:25, while the p chlorobenzoyloxy derivative 6c gave the corresponding cyclized product $\mathbf{5 c}$ with 32% yield but with a loss of optical purity ($e r=$ 68:32). The use of McQuade's conditions (catalyst 10 in hexane) ${ }_{85}$ was not successful (moderate conversion and partial loss of optical purity regardless of the substrate $\mathbf{6 b}$-d (Table 2, entries 13). The lack of solubility of these keto-aldehydes $\mathbf{6 b} \mathbf{- d}$ could explain the low conversion rate, and therefore the partial enolization.

Table 2 Aldol condensation of various Michael adducts $\mathbf{6 b}$-d: comparison of two different bases.

Entry	Substrate	$e r^{a}$	$\mathrm{LiOH}\left(0.1\right.$ equiv.) ${ }^{b}$		10 (0.2 equiv.) ${ }^{c}$	
					Yield	
1	6b	$n \mathrm{nd}^{e}$	$-{ }^{f}$	$\mathrm{nd}^{\text {c }}$	51	$\mathrm{nd}^{\text {c }}$
2	6 c	80:20	32	68:32	67	55:45
3	6d	$n d^{c}$	5	75:25	traces	68:32

${ }^{a}$ Enantiomeric ratios were determined by chiral HPLC. ${ }^{b}$ Reagents and conditions: LiOH (0.1 equiv.), $i-\mathrm{PrOH}, \mathrm{rt}, 48 \mathrm{~h} .{ }^{c}$ Reagents and conditions: 10 (0.2 equiv.), hexane, rt, $18 \mathrm{~h} .{ }^{d}$ Isolated yield obtained after purification on silica gel. ${ }^{e}$ Not determined. ${ }^{f}$ Degradation was observed.

Indeed, only a very little racemisation was observed in the course of the synthesis of meiogynin A and its aromatic analogues that 10 possess a branched lateral chain, whereas those unbranched ketoaldehydes 6a-d led to almost complete racemization. The screening of all these conditions and the poor results thus obtained in term of yield and enantiomeric excess are in line with McQuade's observation and prompted us to revise our synthetic 15 strategy for the preparation of optically active 2 -cyclohexenones 5.

Synthesis of chiral 2-cyclohexenone 5 by desymmetrization

We then turned our attention to the desymmetrization of a prochiral cyclohexanone, as an alternative method to the 20 asymmetric synthesis of $\mathbf{5}$. Kinetic deprotonation of prochiral cyclic ketones by chiral amide bases has been extensively studied in the early 90 's. ${ }^{24}$ In the literature, most of the examples deal with the desymmetrization of 4-t-butyl or 4isopropylcyclohexanones. ${ }^{25}$ We applied this strategy to the ${ }_{25}$ desymmetrization of various cyclohexanones $\mathbf{7 a - h}$, whose hydroxyethyl chain at position 4 was protected by various groups and that were prepared in 4 linear steps (Scheme 4). The p methoxyphenethyl alcohol $\mathbf{1 2}$ was submitted to a Birch reduction followed by cleavage of the methyl enol ether in acidic conditions. The remaining double bond of the 3-cyclohexenone 14 was then reduced by hydrogenation and gave the prochiral cyclohexanone $\mathbf{1 5}$ in 87% over the 3 steps. ${ }^{26}$ Different protecting groups were chosen for the alcohol in order to evaluate their influence on the desymmetrization. Silyl ethers 7a and 7e were ${ }_{35}$ obtained almost quantitatively using standard conditions. An acetyl, p-chlorobenzoyl, pivaloyl and trityl protecting group were also introduced with $78 \%, 97 \%, 79 \%$ and 92% yield respectively. To prepare the benzylated alcohol $\mathbf{7 g}$, silver(I) oxide was used as base because classical conditions (ie NaH and BnBr) led to 40 complete degradation of the starting cyclohexanone 15 .

These prochiral cyclohexanones $\mathbf{7 a} \mathbf{a}$ were converted to the corresponding cyclohexenones $\mathbf{5 a} \mathbf{- h}$ in a two-step procedure (Table 3).

45 Scheme 4 Preparation of the protected cyclohexanones 7a-h. Reagents and conditions: (a) Li (6 equiv.), t - $\mathrm{BuOH}, \mathrm{NH}_{3},-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$, THF, rt, 2 h ; (c) $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, \mathrm{H}_{2} \mathrm{~atm}$, rt, $18 \mathrm{~h}, 87 \%$ (3 steps); (d) TBSCl (1.05 equiv.), imidazole (2 equiv.), DMAP (0.05 equiv.), DMF, rt, 18 h , 98%; (e) $\mathrm{Ac}_{2} \mathrm{O}$ (5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), DMAP ($5 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, $502 \mathrm{~h}, 78 \%$; (f) p-chlorobenzoyl chloride (1.05 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 97 \%$; (g) TBDPSCl (1.05 equiv.), imidazole (2 equiv.), DMAP ($5 \mathrm{~mol} \%$), DMF, rt, $18 \mathrm{~h}, 98 \%$; (h) PivCl (1.05 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}, 79 \%$; (i) BnBr (1.1 equiv.), $\mathrm{Ag}_{2} \mathrm{O}$ (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}$, dark, 71%; (j) TrtCl (2 equiv.), pyridine, $70^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 5592%.

Indeed, after an enantioselective deprotonation with lithium $\operatorname{bis}\left((R)\right.$-1-phenylethyl)amide ${ }^{27}$ and in situ enolate quench with trimethylsilyl chloride, chiral silyl enol ether 16a-h intermediates could be obtained. They were immediately transformed into the ${ }_{60}$ expected 2-cyclohexenones $\mathbf{5 a - h}$, using Saegusa's oxidation conditions ${ }^{28}$ under O_{2} atmosphere in presence of catalytic amount of palladium(II) acetate.

Table 3 Synthesis of chiral cyclohexenones 5a-h by asymmetric desymmetrization.

| 7a-h | 16a-h |
| :--- | :--- | :--- | :--- |

${ }^{a}$ Reagents and conditions: (a) bis[(R)-1-phenylethyl]amine (1.1 equiv.), $n-\operatorname{BuLi}\left(1.2\right.$ equiv.), THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then TMSCl (5 equiv.), $7 \mathbf{a}-\mathrm{h}$ in THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, DMSO, $\mathrm{O}_{2} \mathrm{~atm}, \mathrm{rt}, 18 \mathrm{~h} .{ }^{b}$ Isolated yield over 2 steps obtained after purification on silica gel. ${ }^{c}$ 0 Enantiomeric ratios were determined by chiral HPLC. ${ }^{d}$ Not determined. ${ }^{e}$ Optimized yield.

Whatever the protecting group, the 2 -cylohexenones were generally isolated with good yields, except compound $\mathbf{5 b}$ (entry 2). Moreover a very good asymmetric induction was observed 75 during the formation of all the cylohexenones 5 (er between 91:9 and 94:6) except for the acetyl and pivaloyl derivatives $\mathbf{5 b}$ and $\mathbf{5 f}$ (entries 2 and 5) for which the er could not be measured. However, the partial separation obtained in chiral HPLC for these two compounds let us supposed that they should have an er in the ${ }_{80}$ same range. These results clearly emphasize that this strategy is a very convenient way to elaborate chiral 4-(2-hydroxyethyl)cyclohexan-1-one.

Cite this: DOI: 10.1039/c0xx00000x

Scheme 5 Formation of the decalin 2c. Reagents and conditions: (a) NaHMDS (2 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then Comins' reagent (3 equiv.), $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 99%; (b) KOAc (4 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{DMF}, \mathrm{CO} \mathrm{atm}, \mathrm{rt}, 7 \mathrm{~h}, 94 \%$; (c) $\mathbf{4 c}$ (1 equiv.), 17 ($20 \mathrm{~mol} \%$), benzene, $60^{\circ} \mathrm{C}, 8 \mathrm{~d}, \mathrm{dark}$, 98% (endo/exo 8:2), 75% (endo); (d) Jones reagent (2.5 equiv.), acetone, $\mathrm{rt}, 5 \mathrm{~h}, 98 \%$.

5 As no significant differences were observed between the protected cyclohexenones $\mathbf{5 a} \mathbf{- h}$ in terms of er and yield, the p chlorobenzoyl derivative 5c (entry 3) was selected to go further in the synthesis. Indeed, the chlorine atom could be used as an handle to extend the lateral chain by organometallic couplings.
${ }_{10}$ This robust synthetic pathway of six linear steps could be scaled up to 5 g of 4-substituted 2-cyclohexenone $5 \mathbf{c}$, which was isolated with an excellent overall yield of 78% and with a very good er (94:6).

Formation of the decalin core

15 The decalin core of analogues of meiogynin A was elaborated by a Diels-Alder cycloaddition reaction between the triene $\mathbf{3}$ and the dienophile 4c. Compound 3 was prepared in two steps from 4ethynylbenzyl alcohol. ${ }^{9}$ Compound $\mathbf{4 c}$ was obtained in 94% yield from the cyclohexenone 5c by a carbonylation of its triflate ${ }_{20}$ intermediate. ${ }^{10}$ The two partners were engaged in the Diels-Alder cycloaddition in presence of a substoichiometric amount of 2bromophenylboronic acid $\mathbf{1 7}^{\mathbf{2 9}}$ in benzene (Scheme 5). A complete conversion was observed after 8 days at $60^{\circ} \mathrm{C}$ and the cis-decalin 18 was isolated in 98% yield with very good chemo-,
25 regio-, and facial selectivities, as only one out of the two possible dienes of 3 reacted with dienophile $\mathbf{4 c}$, anti to its lateral chain. In addition, the diastereoselectivity was satisfying (albeit lower than when a chlorinated triene is used ${ }^{10}$), as a $8: 2$ mixture of endo and exo products 18 was obtained. The pure endo compound could be
30 isolated in 75% yield after purification on silica gel. Its structure was unambiguously assigned by comparison of its NMR spectra to those of natural meiogynin A^{1} and of its aromatic analogues ${ }^{9}$ that are very similar, particularly regarding the chemical shifts of
$\mathrm{H}-1(\mathrm{~m}, 3.31-3.38), \mathrm{H}-2(\mathrm{~m}, 5.18-5.22), \mathrm{H}-1^{\prime}(\mathrm{d}, 5.51)$ and $\mathrm{H}-8$ 35 and H-9 (m, 5.63-5.72). Finally, the desired functionalizable meiogynin A analogue 2c was obtained by Jones oxidation with 98% yield. It should be noted that alternative greener and/or catalytic conditions were unsuccessful, resulting either in recovery of the starting material or in degradation products.
${ }_{40}$ Extension of the lateral chain and biological evaluation on Bcl-xL and Mcl-1

The lateral chain of this pre-functionalized cis-decalin 2c was finally extended by Buchwald-Hartwig cross coupling with various nucleophiles (Scheme 6). In the presence of a 45 monodentate biaryl phosphine-Pd catalyst 20, aniline, phenol, alkylamine, amide, or sulphonamide led to the corresponding cross coupling product 21a-g with good to excellent yields 56% to 94% (Scheme 6).
2c

21e 78\%

21f 90\%

21c 91\%
21d 59\%

Scheme 6 Functionalization of the chlorobenzyl ester 2c by BuchwaldHartwig cross coupling.

The binding affinities to $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Mcl}-1$ of the final 5 compounds 21a-g, as well as those of their precursors $\mathbf{3}, 4 \mathbf{c}, 18$ and 2c were evaluated, using a fluorescence polarization assay adapted from Qian and co-workers ${ }^{30}$ (Table 4). The principle of this biological test is based on the competition of interaction between a small molecule inhibitor and a fluorescent pro${ }_{10}$ apoptotic peptide (BH3 domain of BAK protein or BID protein) with the antiapoptotic proteins Bcl-xL and Mcl-1. First of all, triene 3 and dienophile $\mathbf{4 c}$ are poor ligands of both proteins (entries 2 and 3). Second, almost all the analogues prepared show a higher affinity for both proteins than meiogynin A 1 (entry 1).
${ }_{15}$ The two p-chlorobenzoyl derivatives $\mathbf{1 8}$ and 2 c exhibit a good binding affinity toward Mcl-1 (entries 4 and 5). However, a difference was observed on the $\mathrm{Bcl}-\mathrm{xL} / \mathrm{Bak}$ displacement assay since the benzoic acid 2c seems to better bind into the $\mathrm{Bcl}-\mathrm{xL}$ cleft than the benzyl alcohol $\mathbf{1 8}\left(\mathrm{K}_{\mathrm{i}}=2.4\right.$ and $13.1 \mu \mathrm{M}$ ${ }_{20}$ respectively). Then, all the elongated compounds 21 have a significant binding affinity for both proteins although in same range as the chlorinated precursor $\mathbf{2 g}$, except 21c and 21 e . In fact, the p-cresyl ether 21c is ten times more active on the two proteins than meiogynin A 1 (entry 8). The benzamide analogue 21e 25 exhibits an excellent affinity for Mcl-1 of the order of 300 nM (entry 10), ie almost twenty times more active than the natural reference 1 . These very good results show that an elongation of the side chain with aromatic groups can improve the affinity. Moreover, the benzoic acid seems to be crucial for the interaction 30 with $\mathrm{Bcl}-\mathrm{xL}$ contrary to $\mathrm{Mcl}-1$.

Table 4 Biological evaluation of the ligands on Bcl-xL/Bak and Mcl1/Bid displacement assays.

Entry	Ligand	Bcl-xL/Bak binding affinity $^{a} \mathrm{~K}_{\mathrm{i}}^{b}(\mu \mathrm{M})$	Mcl-1/Bid binding affinity ${ }^{a} K_{\mathrm{i}}^{b}(\mu \mathrm{M})$
1	$\mathbf{1}$	8.3 ± 1.2	5.2 ± 1.2
2	$\mathbf{3}$	>23	>33
3	$\mathbf{4 c}$	>23	>33
4	$\mathbf{1 8}$	13.1 ± 0.8	2.0 ± 0.1
5	2c	2.4 ± 0.1	2.2 ± 0.1
6	21a	1.3 ± 0.1	1.2 ± 0.1
7	21b	3.8 ± 0.2	2.1 ± 0.1
8	21c	0.7 ± 0.1	0.5 ± 0.1
9	21d	2.4 ± 0.1	1.5 ± 0.1
10	21e	1.8 ± 0.1	0.3 ± 0.1
11	21f	3.5 ± 0.1	1.1 ± 0.2
12	21g	3.2 ± 0.7	1.5 ± 0.2

${ }^{a}$ Binding affinities were measured by fluorescence polarization after competition between the ligand and a fluorescein-labelled peptide ie BH 3 35 domain of BAK protein (F-Bak) or BID protein (F-Bid) to $\mathrm{Bcl}-\mathrm{xL}$ and Mcl-1. ${ }^{b} \mathrm{~K}_{\mathrm{i}}$ is the concentration of the ligand corresponding to 50% of the binding of the labelled reference compound, and corrected for experimental conditions (see experimental section).

Conclusions

${ }_{40}$ Seven analogues 21a-g of natural sesquiterpenoid dimer meiogynin A $\mathbf{1}$ were elaborated in ten linear steps. Their biological activity confirmed that replacement of the lateral terpene chain by a modular aromatic chain is beneficial for their binding affinities to Bcl-xL and Mcl-1. In addition, the key ${ }_{45}$ intermediate, the chiral 4 -substituted 2-cyclohexenone $\mathbf{5 c}$ was obtained on a large scale with very good yield and er using a highly selective two-step procedure from the corresponding cyclohexanone. This strategy was applied to the synthesis of a set of linear 4-substituted 2-cyclohexenones that could be useful ${ }_{50}$ intermediates for synthesis of natural compounds.

Experimental section

Materials and methods

All reagents and solvents were used as purchased from commercial suppliers or were purified/dried according to 55 Armarego and Chai. ${ }^{31}$ Purifications by column chromatography on silica gel were performed using Merck Silica Gel 60 (70-230 mesh) and purifications by preparative thin layer chromatography on silica gel using Merck Silica Gel $60 \mathrm{PF}_{254} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX500 instrument using ${ }_{60} \mathrm{CDCl}_{3}$, acetone- d_{6}, or $\mathrm{CD}_{3} \mathrm{OD}$ with trace mono-protonated residual solvents used as internal references. Chemical shifts (δ values) are given in parts per million (ppm), and multiplicity of signals are reported as follows: s, singlet; bs, broad singlet; d, doublet; t , triplet; q , quartet; dd, doublet of doublets; m , multiplet.
${ }_{65}$ HRMS analyses were obtained using a Waters LCT Premier instrument by ElectroSpray Ionization (ESI) or by Atmospheric Pressure Photo-Ionization (APPI). Melting points were measured with a Büchi Melting Point B-540 apparatus. Optical rotation, $[\alpha]_{D}^{20}$ values, were measured using an Anton Paar MCP 300 ${ }_{70}$ instrument and are expressed in deg. $\cdot \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1} \cdot \mathrm{dm}^{-1}$ for a concentration of compound in g.cm ${ }^{-1}$. IR spectrum of compound

2c was recorded on a Perkin Elmer Spectrum BX-FTIR spectrometer. Chiral HPLC was performed on a Waters Alliance 2695 apparatus.

1,4-Butanediol-1-acetate (11b). To a solution of 1,45 butanediol 8 ($8.8 \mathrm{~mL}, 100 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added, at rt, $\mathrm{AcOH}(5.6 \mathrm{~mL}, 98 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(0.3 \mathrm{~mL}$, $5 \mathrm{mmol}, 0.05 \mathrm{eq})$. The mixture was stirred for 18 h then water was added. The product was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times) and the combined organic phases were washed successively with 10 a saturate solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried over MgSO_{4} and concentrated under reduced pressure to give compound 11b as a colourless oil ($13.1 \mathrm{~g}, 97 \mathrm{mmol}, 98 \%$) that was used without further purification. The spectroscopic data were similar to those already reported in the literature. ${ }^{32}$
15 4-Hydroxybutyl 4-chlorobenzoate (11c). To a solution of 1,4-butanediol 8 ($11.1 \mathrm{~mL}, 125 \mathrm{mmol}, 5 \mathrm{eq}$) and $\mathrm{Et}_{3} \mathrm{~N}(7.0 \mathrm{~mL}$, 50 mmol , 2 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added p chlorobenzoyl chloride ($3.2 \mathrm{~mL}, 25 \mathrm{mmol}, 1 \mathrm{eq}$). The mixture was stirred at this temperature for 4 h and quenched with a ${ }_{20}$ saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was then extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane/EtOAc from $8: 2$ to $1: 1$ to obtain the ester as a ${ }_{25}$ yellow oil ($4.8 \mathrm{~g}, 21 \mathrm{mmol}, 84 \%$). $\mathrm{R}_{f}=0.3$ (heptane/EtOAc 6:4); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,139.3,130.9$ (2 C), 128.7, 128.6 ${ }_{30}$ (2 C), 65.0, 62.3, 29.1, 26.2 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$229.0626; found 229.0633.

4-Oxobutyl 4-chlorobenzoate (9c). To a suspension of molecular sieves $4 \AA$ in powder (5 g) in anhydrous dichloromethane (40 mL) was added the alcohol 11c (19.2 mmol ,
${ }_{35} 1$ eq). The mixture was cooled down to $0^{\circ} \mathrm{C}$ and PCC $(21.1 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added portionwise. After 1 h at rt , the mixture was filtered and the filtrate was concentrated under reduced pressure. The product was then purified by column chromatography on silica gel using heptane/EtOAc from 8:2 to
${ }_{40} 1: 1$ to give the corresponding aldehyde 9 c as colorless oil (3.9 g , $17 \mathrm{mmol}, 89 \%$) that was immediately engaged in the next reaction. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

${ }_{45}$ General procedure for the asymmetric $\mathbf{1 , 4}$-addition

A mixture of (R)-2,2-diphenylprolinol methyl ether ($190 \mathrm{mg}, 0.7$ $\mathrm{mmol}, 0.05 \mathrm{eq}$), ethyl 3,4-dihydroxybenzoate ($500 \mathrm{mg}, 2.8 \mathrm{mmol}$, $0.2 \mathrm{eq})$ and the aldehyde $9 \mathrm{a}-\mathbf{d}(13.8 \mathrm{mmol}, 1 \mathrm{eq})$ in methyl vinyl ketone ($1.35 \mathrm{~mL}, 16.6 \mathrm{mmol}, 1.2 \mathrm{eq}$) was stirred at $0{ }^{\circ} \mathrm{C}$ for ${ }_{50} 6$ days. The product was then isolated after purification by chromatography on silica gel.
(R)-2-[2-(tert-Butyldimethylsilyloxy)ethyl]-5-oxohexanal (6a). Obtained as a yellow oil (64% over 2 steps from 11a); $\mathrm{R}_{f}=$ 0.25 (heptane/EtOAc 9:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57$ $55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.12$ $(\mathrm{s}, 3 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, 0.08 (s, 6 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.8,204.1$, $60.5,48.6,40.7,32.5,30.0,25.8$ (3 C), 22.2, 18.2, -5.5 (2 C)
ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$273.1880; ${ }_{60}$ found 273.1882.
(\boldsymbol{R})-3-Formyl-6-oxoheptyl acetate ($\mathbf{6 b}$). Obtained as a yellow oil (38% over 2 steps from 11b); $\mathrm{R}_{f}=0.3$ (heptane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.01(\mathrm{~m}$, $\left.{ }_{65} 1 \mathrm{H}\right), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.4,203.3,170.7,61.8,48.2$, 40.2, 29.9, 27.9, 22.0, 20.7 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 223.0941$; found 223.0949.
(\boldsymbol{R})-3-Formyl-6-oxoheptyl 4-chlorobenzoate ($6 c$). Obtained 70 as a yellow oil (57% over 2 steps from 11c); $\mathrm{R}_{f}=0.4$ (heptane/EtOAc 6:4); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.65$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.37(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.16(\mathrm{~m}$, 1 H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.80(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$; HRMS (ESI): m/z 75 calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$295.0743; found 295.0731.
(\boldsymbol{R})-5-0xo-2-(prop-2-yn-1-yl)hexanal (6d). Obtained as a yellow oil (11% from commercial 11d); $\mathrm{R}_{f}=0.3$ (heptane/EtOAc 7:3); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$): $\delta 9.67 \quad(\mathrm{~d}, \quad J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ 80 $1.82(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.4,202.4$, 80.3, 70.8, 49.0, 40.0, 29.9, 21.7, 18.0 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$151.0765; found 151.0754 .

General procedure for the aldol condensation with LiOH

To a solution of the keto-aldehyde $\mathbf{6 a - d}(3.7 \mathrm{mmol}, 1 \mathrm{eq})$ in i ${ }_{85} \mathrm{PrOH}(15 \mathrm{~mL})$ was added LiOH. $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.1 \mathrm{eq})$. The mixture was stirred overnight at rt and concentrated under reduced pressure. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was then added and the product was extracted with MTBE (3 times). The combined organic phases were dried over MgSO_{4}, filtered and 90 concentrated under reduced pressure. The cyclohexenone 5a-c was obtained after purification by column chromatography on silica gel.

4-[2-(tert-Butyldimethylsilyloxy)ethyl]cyclohex-2-en-1-one (5a). Obtained as a colorless oil (86% from 6a); $\mathrm{R}_{f}=0.4$ 95 (heptane/EtOAc 8:2); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=9.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.66(\mathrm{~m}$, $2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H})$, 2.16-2.07 (m, 1 H$), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 0.89$ (s, 9 H), 0.05 (s, 6 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }_{100} \delta 199.8,155.2,128.9,60.4,37.2,36.8,33.0,28.5,25.9$ (3 C), 18.3, -5.4 (2 C) ppm; HRMS (ESI): m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 255.1775$; found 255.1777 .

2-(4-Oxocyclohex-2-en-1-yl)ethyl acetate (5b). Obtained as a colorless oil (51% from 6b); $\mathrm{R}_{f}=0.1$ (heptane/EtOAc $8: 2$); ${ }^{1} \mathrm{H}$ 105 NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.81$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (dd, $J=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 2 \mathrm{H})$, 2.37-2.29 (m, 1 H), 2.16-2.08 (m, 1 H), $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.79$ (m, 1 H), 1.76-1.64 (m, 2 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,170.8,153.5,129.3,61.7,36.6,33.2,33.0,28.4,20.8$ ${ }_{110} \mathrm{ppm}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$183.1016; found 183.1014.

2-(4-Oxocyclohex-2-en-1-yl)ethyl 4-chlorobenzoate (5c). Obtained as a white solid (70% from 6c); $\mathrm{R}_{f}=0.2$ (heptane/EtOAc 7:3); Mp = $44 \pm 2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.{ }_{115} \mathrm{CDCl}_{3}\right): \delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.88 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.40$
(m, 2 H), 2.68-2.59 (m, 1 H$), ~ 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), ~ 2.43-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H})$, 1.83-1.73 (m, 1 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.1$, 165.5, 153.3, 139.5, 130.9 (2 C), 129.5, 128.8 (2 C), 128.4, 62.5, 36.7, 33.4, 33.2, 28.5 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 279.0782$; found 279.0795 .

4-[2-(tert-Butyldimethylsilyloxy)ethyl]cyclohexan-1-one

(7a). To a solution of alcohol 15 ($400 \mathrm{mg}, 2.8 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (10 mL) under Ar atm. was added imidazole (380 mg , $\left.{ }_{10} 5.6 \mathrm{mmol}, 2 \mathrm{eq}\right)$, DMAP (10 mg) and tert-butyldimethylsilyl chloride ($445 \mathrm{mg}, 2.9 \mathrm{mmol}, 1.05 \mathrm{eq}$). The mixture was stirred at rt overnight and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was then extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4} and ${ }_{15}$ concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane/EtOAc 95:5 to obtain 7a as a colorless oil (710 mg , $2.76 \mathrm{mmol}, 98 \%$). $\mathrm{R}_{f}=0.4$ (heptane/EtOAc 8:2); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.28(\mathrm{~m}$, $204 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.40(\mathrm{dq}, J=4.8,12.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.2,61.0,40.8$ (2 C), 38.3, 32.7 (3 C), 25.9 (3 C), 18.3, -5.3 (2 C) ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}$298.2197; found ${ }_{25} 298.2198$.

2-(4-Oxocyclohexyl)ethyl acetate (7b). To a solution of alcohol $15(400 \mathrm{mg}, 2.8 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under Ar atm. was added $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.2 \mathrm{mmol}, 4 \mathrm{eq})$, DMAP (10 mg) and acetic anhydride ($800 \mu \mathrm{~L}, 8.4 \mathrm{mmol}, 3 \mathrm{eq}$). After 2 h at rt , the ${ }_{30}$ reaction mixture was quenched with water. The product was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times) and the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane/EtOAc 7:3 to obtain 7b as a colorless oil ($402 \mathrm{mg}, 2.2 \mathrm{mmol}, 78 \%$). $\mathrm{R}_{f}=0.3$ (heptane/EtOAc 7:3); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.25$ (m, 4 H), 2.06-2.02 (m, 2 H), 2.01 (s, 3 H), 1.86-1.76 (m, 1 H), $1.61(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{dq}, J=4.8,12.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.5,171.0,62.4,40.6$ (2 C), $4034.2,33.0,32.5(2 \mathrm{C}), 21.0 \mathrm{ppm}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+} 226.1438$; found 226.1438 .

2-(4-Oxocyclohexyl)ethyl 4-chlorobenzoate (7c). To a solution of alcohol $15(8.0 \mathrm{~g}, 56 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atm. was added $\mathrm{Et}_{3} \mathrm{~N}(23.5 \mathrm{~mL}, 169 \mathrm{mmol}, 3 \mathrm{eq})$ 45 and 4 -chlorobenzoyl chloride ($7.6 \mathrm{~mL}, 59 \mathrm{mmol}, 1.05 \mathrm{eq}$). The mixture was allowed to warm to rt overnight and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was then extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude ${ }_{50}$ product was purified by column chromatography on silica gel using heptane/EtOAc 8:2 to obtain 7c as a white solid $(15.3 \mathrm{~g}$, $55 \mathrm{mmol}, 97 \%$). $\mathrm{R}_{f}=0.2$ (heptane/EtOAc $8: 2$); $\mathrm{Mp}=58 \pm 2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.29(\mathrm{~m}, 4 \mathrm{H})$, ${ }_{55} 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 1.48 (dq, $J=5.0,12.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 211.3,165.6,139.4,130.9$ (2 C), 128.7 (2 C), 128.6, 63.2, 40.6 (2 C), 34.3, 33.1, 32.5 (2 C) ppm; HRMS (ESI): m/z
calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}$322.1204; found ${ }_{60} 322.1202$.

4-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclohexan-1-one

(7e). To a solution of alcohol 15 ($400 \mathrm{mg}, 2.8 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (10 mL) under Ar atm. was added imidazole (380 mg , $5.6 \mathrm{mmol}, 2 \mathrm{eq})$, DMAP (10 mg) and tert-butyldiphenylsilyl
${ }_{65}$ chloride $(770 \mu \mathrm{~L}, 2.9 \mathrm{mmol}, 1.05 \mathrm{eq})$. The mixture was stirred at rt overnight and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was then extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was ${ }_{70}$ purified by column chromatography on silica gel using heptane/EtOAc 95:5 to obtain 7e as a colorless oil $(1.05 \mathrm{~g}$, $2.76 \mathrm{mmol}, 98 \%$). $\mathrm{R}_{f}=0.4$ (heptane/EtOAc 8:2); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$), $7.43-7.38$ (m, $6 \mathrm{H}), 3.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.88(\mathrm{~m}$,
$753 \mathrm{H}), 1.58$ (q, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ (dq, $J=4.8,12.1 \mathrm{~Hz}, 2 \mathrm{H})$, 1.09 (s, 9 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.3,135.5$ (4 C), $134.8(2 \mathrm{H}), 127.6$ (6 C$), 61.8,40.7(2 \mathrm{C}), 38.0,32.6$ (3 C), 26.9 (3 C), 19.2 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 398.2510$; found 398.2514 .
${ }_{80}$ 2-(4-Oxocyclohexyl)ethyl pivalate (7f). To a solution of alcohol 15 ($400 \mathrm{mg}, 2.8 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under Ar atm. was added $\mathrm{Et}_{3} \mathrm{~N}$ ($780 \mu \mathrm{~L}, 5.6 \mathrm{mmol}, 2 \mathrm{eq}$) and pivaloyl chloride $360 \mu \mathrm{~L}, 2.09 \mathrm{mmol}, 1.05 \mathrm{eq})$. The mixture was stirred at rt overnight and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$.
${ }_{85}$ The product was then extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane/EtOAc 7:3 to obtain 7f as a light yellow oil (505 mg , $\left.{ }_{90} 2.2 \mathrm{mmol}, 79 \%\right) . \mathrm{R}_{f}=0.2$ (heptane/EtOAc 8:2); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.13(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.27$ (m, 4 H), 2.10-2.03 (m, 2 H), 1.89-1.79 (m, 1 H$), 1.65(\mathrm{q}, J=6.7 \mathrm{~Hz}$, 2 H), 1.44 (dq, $J=4.7,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.19$ (s, 9 H$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.6,178.5,62.4,40.7$ (2 C), ${ }_{95} 38.7,34.2,33.3,32.5$ (2 C), 27.2 (3 C) ppm; HRMS (ESI): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}$268.1907; found 268.1913.

4-(2-Benzyloxyethyl)cyclohexan-1-one (7g). To a solution of alcohol 15 ($400 \mathrm{mg}, 2.8 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under Ar atm. was added benzyl bromide ($370 \mu \mathrm{~L}, 3.1 \mathrm{mmol}, 1.1 \mathrm{eq}$) 100 followed by silver(I) oxide ($980 \mathrm{mg}, 4.2 \mathrm{mmol}, 1.5 \mathrm{eq}$). The mixture was stirred in the dark at rt overnight and filtered over a Celite pad. The filtrate was then concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using heptane/EtOAc from 95:5 to 105 7:3 to obtain 7 g as a colorless oil $(465 \mathrm{mg}, 2.0 \mathrm{mmol}, 71 \%) . \mathrm{R}_{f}=$ 0.3 (heptane/EtOAc 8:2); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.27$ (m, 4 H), 2.08-2.00 (m, 2 H), 1.98-1.89 (m, 1 H$) 1.63$ (q, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{dq}, J=4.8,12.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR 110 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.0,138.4,128.3$ (2 C), 127.6 (3 C), 73.0, 68.0, 40.7 (2 C), 35.3, 32.9, 32.6 (2 C) ppm; HRMS (APPI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$232.1458; found 232.1462 .

4-(2-Trityloxyethyl)cyclohexan-1-one (7h). A solution of alcohol $\mathbf{1 5}(400 \mathrm{mg}, 2.8 \mathrm{mmol}, 1 \mathrm{eq})$ and trityl chloride $(1.57 \mathrm{mg}$, $1155.6 \mathrm{mmol}, 2 \mathrm{eq})$ in pyridine (10 mL) under Ar atm. was heated at $70^{\circ} \mathrm{C}$ for 2 h . The mixture was then cooled to rt and a saturated
aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The compound was extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column 5 chromatography on silica gel using heptane/EtOAc 95:5 to obtain a white amorphous powder ($990 \mathrm{mg}, 2.6 \mathrm{mmol}, 92 \%$). $\mathrm{R}_{f}=0.5$ (heptane/EtOAc 7:3); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49$ (d, $J=7.6 \mathrm{~Hz} 6 \mathrm{H}$), $7.34(\mathrm{t}, J=7.6 \mathrm{~Hz} 6 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz} 3 \mathrm{H})$, $3.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 3 \mathrm{H})$, ${ }_{10} 1.67(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{dq}, J=4.8,12.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.1,144.3$ (3 C), 128.6 (6 C), 127.7 (6 C), 126.9 (3 C), 86.5, 61.4, 40.7 (2 C), 35.6, 33.0, 32.6 (2 C) ppm; HRMS (ESI): m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 407.1982; found 407.1987.
${ }^{15}$ General procedure for chiral desymmetrization followed by
Saegusa oxidation Saegusa oxidation

A 1.5 M solution of $n-\mathrm{BuLi}$ in hexanes $(14.2 \mathrm{~mL}, 21.4 \mathrm{mmol}$, $1.2 \mathrm{eq})$ was added dropwise to a solution of $\operatorname{bis}[(R)$-1phenylethyl]amine ($4.48 \mathrm{~mL}, \quad 19.6 \mathrm{mmol}, \quad 1.1 \mathrm{eq}$) in THF $20(150 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar atm . After $30 \mathrm{~min}, \mathrm{TMSCl}(11 \mathrm{~mL}$, $89 \mathrm{mmol}, 5 \mathrm{eq}$) was added, followed by a solution of the cyclohexanone $\mathbf{7 a - h}(17.8 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (30 mL) over a period of 1 h . After the addition was complete, the mixture was stirred for an additional 1 h at $-78^{\circ} \mathrm{C}$ and quenched with $\mathrm{Et}_{3} \mathrm{~N}$ $25(20 \mathrm{~mL})$. A saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was then added and the reaction mixture was allowed to warm to rt. After addition of water, the mixture was extracted with MTBE (3 times) and the combined organic phases were dried over MgSO_{4}. The solvent was then partially evaporated under reduced ${ }_{30}$ pressure and the residue was washed with a 0.5 M citric acid solution to remove the amine. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure to give the silyl enol ether 16a-h as a yellow oil. $\mathrm{Pd}(\mathrm{OAc})_{2}(200 \mathrm{mg}, 0.89 \mathrm{mmol}$, $0.05 \mathrm{eq})$ was then added to a solution of the 16a-h in dry DMSO ${ }_{35}(50 \mathrm{~mL}) . \mathrm{O}_{2}$ was bubbled through for 5 min and the resulting black mixture was stirred at rt under O_{2} atm. overnight. The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the product was extracted with MTBE (3 times). The combined organic phases were dried over MgSO_{4} and 40 concentrated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to give the cyclohexenone 5a-h.
(R)-4-[2-(tert-Butyldimethylsilyloxy)ethyl]cyclohex-2-en-1one (5a). Obtained as a colorless oil (63% from 7a); $\mathrm{R}_{f}=0.4$ 45 (heptane/EtOAc 8:2) ; $[\alpha]_{D}^{20}=-24.4^{\circ}$ (c 1.0, Acetone); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.90(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (dd, $J=9.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}$, $2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ ${ }_{50}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.8,155.2,128.9,60.4,37.2,36.8$, 33.0, 28.5, 25.9 (3 C), 18.3, -5.4 (2 C) ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 255.1775$; found 255.1777.
(\boldsymbol{R})-2-(4-Oxocyclohex-2-en-1-yl)ethyl acetate (5b). Obtained as a colorless oil (39% from 7b); $\mathrm{R}_{f}=0.1$ (heptane/EtOAc 8:2); ${ }_{55}[\alpha]_{D}^{20}=-52.7^{\circ}\left(c 1.0, \quad \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 6.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21-4.09 (m, 2 H), 2.56-2.42 (m, 2 H), 2.37-2.29 (m, 1 H), 2.16$2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}$,
$2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,170.8,153.5$, ${ }_{60} 129.3,61.7,36.6,33.2,33.0,28.4,20.8 \mathrm{ppm}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$183.1016; found 183.1014.
(R)-2-(4-Oxocyclohex-2-en-1-yl)ethyl 4-chlorobenzoate (5c). Obtained as a white solid (92% from 7c); $\mathrm{R}_{f}=0.2$ (heptane/EtOAc 7:3); $\mathrm{Mp}=44 \pm 2{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-45.0^{\circ}(c 2.0$, ${ }_{65} \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.56-$ $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.97$ (m, 1 H), 1.93-1.85 (m, 1 H$), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $70\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.1,165.5,153.3,139.5,130.9$ (2 C), 129.5, 128.8 (2 C), 128.4, 62.5, 36.7, 33.4, 33.2, 28.5 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$279.0782; found 279.0790 .
(\boldsymbol{R})-4-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclohex-2-en-1-
75 one (5e). Obtained as a colorless oil (88% from 7e);. $\mathrm{R}_{f}=0.5$ (heptane/EtOAc 8:2); $[\alpha]_{D}^{20}=-12.9^{\circ}\left(c 1.0\right.$, Acetone); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, \quad J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98$ (dd, $J=9.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.73-$ ${ }_{80} 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02$ (m, 1 H), 1.85-1.77 (m, 1 H), 1.73-1.62 (m, 2 H$), 1.09(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.7,155.1$ (2 C), 135.5 (4 C), 133.6, 129.7 (2 C), 128.9, 127.7 (4 C), 61.2, 37.1, 36.8, 32.9, 28.5, 26.9 (3 C), 19.2 ppm ; HRMS (ESI): m / z calcd. for ${ }_{85} \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$379.2088; found 379.2102.
(R)-2-(4-Oxocyclohex-2-en-1-yl)ethyl pivalate (5f). Obtained as a colorless oil (89% from 7f); $\mathrm{R}_{f}=0.2$ (heptane/EtOAc 8:2); $[\alpha]_{D}^{20}=-59.2{ }^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 6.85(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{90}$ 4.23-4.12 (m, 2 H$), 2.59-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.19-$ $2.11(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}$, $9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,178.4,153.7$, 129.4, 61.7, 38.7, 36.7, 33.4, 33.3, 28.5, 27.2 (3 C) ppm; HRMS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 225.1485$; found ${ }_{95} 225.1483$.
(R)-4-[2-(Benzyloxy)ethyl]cyclohex-2-en-1-one (5g). Obtained as a colorless oil (79% from $\mathbf{7 g}$); $\mathrm{R}_{f}=0.3$ (heptane/EtOAc 8:2) ; $[\alpha]_{D}^{20}=-50.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, ${ }_{100} 1 \mathrm{H}$), $5.97(\mathrm{dd}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.54(\mathrm{~m}$, $2 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H})$, 2.15-2.07 (m, 1 H$), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.7,154.8,138.2,129.0,128.4$ (2 C), 127.7, 127.6 (2 C), 73.1, 67.4, 36.8, 34.5, 33.3, 28.6 ppm ; 105 HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$231.1380; found 231.1383.

(\boldsymbol{R})-4-[2-(Trityloxy)ethyl]cyclohex-2-en-1-one (5h)

 Obtained as a white solid (83% from 7h); $\mathrm{R}_{f}=0.3$ (heptane/EtOAc 8:2); $\mathrm{Mp}=101 \pm 2{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{D}^{20}=-34.8^{\circ}(c 1.0$, ${ }_{110}$ Acetone); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $6 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.83(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.97(\mathrm{dd}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.19(\mathrm{~m}$, $2 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H})$, 2.05-1.97 (m, 1 H$), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67-$ $1151.57(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.7$, 154.9 , 144.1, 128.9 (3 C), 128.6 (6 C), 127.8 (6 C), 127.0 (3 C), 86.7,60.7, 36.8, 34.7, 33.3, 28.6 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$383.2006; found 383.1998.

Compound 18. A solution of triene 3 ($560 \mathrm{mg}, 2.6 \mathrm{mmol}$, $1 \mathrm{eq})$, dienophile $4 \mathbf{c}(805 \mathrm{mg}, \quad 2.6 \mathrm{mmol}, \quad 1 \mathrm{eq})$ and $2-$ 5 bromophenylboronic acid $\mathbf{1 7}(100 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.2 \mathrm{eq})$ in benzene (10 mL) was heated at reflux for 8 days. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography on silica gel using heptane/EtOAc/AcOH from 99:0:1 to 80:19:1 to obtain the endo ${ }_{10}$ decalin $\mathbf{1 8}$ as a white solid ($1.03 \mathrm{~g}, 2.0 \mathrm{mmol}, 75 \%$). $\mathrm{R}_{f}=0.3$ (heptane/EtOAc/AcOH 50:49:1); $\mathrm{Mp}=150 \pm 2{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-$ 168.0° ($c 1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.72-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}$, $\left.{ }_{15} J=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.22-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.31-4.20(\mathrm{~m}$, $2 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H})$, 2.07-1.96 (m, 4 H$), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.63$ (s, 3 H), 1.61-1.53 (m, 1 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.6,165.9,143.4,139.4,139.3,135.2,133.8,132.5,131.0$ 20 (2 C), 130.2, 128.7 (2 C), 128.6, 127.7, 126.8 (2 C), 126.1 (2 C), $119.4,65.0,63.1,48.5,43.8,34.8,31.8,31.0,29.0,28.3,23.3$, 16.1 ppm ; HRMS (ESI): m/z calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{ClO}_{5}[\mathrm{M}-\mathrm{H}]^{-}$ 519.1914; found 519.1949.

Compound 2c. To a solution of the benzyl alcohol 18 $25(640 \mathrm{mg}, 1.23 \mathrm{mmol}, 1 \mathrm{eq})$ in acetone $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a 2 M solution of Jones reagent in water $(1.3 \mathrm{~mL}, 2.60 \mathrm{mmol}$, 2.1 eq). After 3 h , a saturated solution of sodium metabisulfite was added and the compound was extracted with MTBE (3 times). The combined organic layers were dried over MgSO_{4} ${ }_{30}$ and concentrated under reduced pressure to obtain a solid. A column chromatography on silica gel using heptane/EtOAc/AcOH (80:19:1) followed by a precipitation in a mixture of EtOAc and heptane afforded 2c as a white solid ($648 \mathrm{mg}, 1.21 \mathrm{mmol}, 98 \%$). $\mathrm{R}_{f}=0.25$ (heptane $/ \mathrm{EtOAc} / \mathrm{AcOH}$ $\left.{ }_{35} 70: 29: 1\right) ; \mathrm{Mp}=211 \pm 2{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-262.5{ }^{\circ}(c 0.5, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.83-5.75$ (m, 2 H), 5.71 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.17$ $(\mathrm{m}, 1 \mathrm{H}), 4.46-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}$, $401 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.81-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 181.0,171.1,165.7,147.5,139.4,134.4,134.3,133.5,131.0$ (2 C), 129.9 (2 C), 129.7, 129.0, 128.7 (2 C), 126.8, 125.2 (2 C), 118.8, 63.1, 48.8, 44.7, 34.9, 34.9, 31.3, 31.1, 29.2, 28.2, 23.4,
${ }_{45} 15.6 \mathrm{ppm}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{ClO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 535.1882; found 535.1889.

General procedure for Buchwald-Hartwig coupling on 2c

A mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}, 0.17 \mathrm{mmol}, 3 \mathrm{eq})$ and $3 \AA$ molecular sieves in powder (300 mg) was heated for 1 h at ${ }_{50} 300^{\circ} \mathrm{C}$ under vacuum. The flask was then cooled to rt under Ar atm. and the chlorinated compound $\mathbf{2 c}(30 \mathrm{mg}, 0.06 \mathrm{mmol}, 1 \mathrm{eq})$, the nucleophile $19(12 \mathrm{mg}, 0.11 \mathrm{mmol}, 2 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(3 \mathrm{mg}$, $0.003 \mathrm{mmol}, \quad 0.05 \mathrm{eq}), \quad$ 2-di-tert-butylphosphino-3,4,5,6-tetramethyl-2', $4^{\prime}, 6^{\prime}$ '-triisopropyl-1, ''-biphenyl ($4 \mathrm{mg}, 0.01 \mathrm{mmol}$,
$\left.{ }_{55} 0.15 \mathrm{eq}\right)$, and dry t-BuOH (1.5 mL) were successively added. The reaction mixture was heated at reflux for 72 h and then quenched with a 2 M HCl solution (3 mL). The molecular sieves was filtered off and washed with MTBE. Water was added to the
filtrate and the product was extracted with MTBE (3 times). The ${ }_{60}$ combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 99: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 97: 2: 1$.

Compound 21a. Obtained as a white solid (94\%); $\mathrm{R}_{f}=0.1$
$65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 99: 1\right) ; \mathrm{Mp}=186 \pm 2{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-205.3^{\circ}(c 0.5$, MeOH); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 12.00-10.00$ (brs, $2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.82$ (brs, 1 H), 7.47 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.18-7.12$ (m, 4 H), 7.04 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.27-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.38-$
$704.27(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.52$ $(\mathrm{m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.79(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta 175.6,167.5,166.6,150.4,149.4$, 139.8, 134.8, 134.4, 133.0, 132.9, 132.1 (2 C), 131.7, 131.3, ${ }_{55} 130.7$ (2 C), 130.4 (2 C), 129.6, 126.7 (2 C), 121.6 (2 C), 121.0, 120.1, 114.6 (2 C), 62.8, 48.9, 44.8, 36.1, 32.4, 31.8, 30.2, 29.3, 23.5, 20.8, 15.8 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 606.2850$; found 606.2830 .

Compound 21b. Obtained as a white solid (56%); $\mathrm{R}_{f}=0.05$ ${ }_{80}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 97: 2: 1\right) ; \mathrm{Mp}=187 \pm 2{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{D}^{20}=-$ $184.4^{\circ}(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 12.00-$ 10.00 (brs, 2 H), 7.96 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (d, $J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.67(\mathrm{~m}, 3 \mathrm{H})$, ${ }_{85} 5.26-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.74-$ $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.04(\mathrm{~m}$, $1 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.32-$ $1.25(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}): $\delta 175.6$, $167.5,156.7,154.9,151.8,149.4,134.8,134.4,133.9,133.0$,
${ }_{90} 132.1$ (2 C), 131.7, 131.3, 130.4 (2 C), 129.6, 126.6 (2 C), 125.1 (2 C), 125.0, 120.0, 116.8 (2 C), 113.6 (2 C), 62.6, 48.9, 44.8, 36.1, 32.6, 32.4, 31.6, 30.6, 23.5, 15.8 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 608.2643$; found 608.2664 .

Compound 21c. Obtained as a white solid (91%); $\mathrm{R}_{f}=0.15$ ${ }_{95}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 99: 1\right) ; \mathrm{Mp}=228 \pm 2{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-204.9^{\circ}(c 0.2$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 8.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.95$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 4 \mathrm{H}), 5.77-5.68(\mathrm{~m}, 3 \mathrm{H}), 5.25-$ $5.21(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 2 \mathrm{H})$, 3.49-3.42 (m, 1 H$), 2.74-2.66$ $100(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}): $\delta 175.7,167.8$, $166.2,163.2,154.2,149.2,135.2,134.7,134.4,133.8,132.4$ (2 C), 131.9, 131,5 (2 C), 131.2, 130.4 (2 C), 130.0, 126.6 (2 C), ${ }_{105} 125.5,121.0$ (2 C), 120.1, 117.7 (2 C), 63.4, 55.5, 48.9, 44.8, 35.9, 32.5, 31.8, 30.4, 23.5, 20.8, 15.9 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 625.1999$; found 607.2690.

Compound 21d. Obtained as a white solid (59\%); $\mathrm{R}_{f}=0.1$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 99: 1\right) ; \mathrm{Mp}=131 \pm 2{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-164.8^{\circ}(c 0.5$, ${ }_{110} \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 11.50-9.50$ (brs, $2 \mathrm{H}), 7.96$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.28$ (brs, 1 H$), 5.78-5.66(\mathrm{~m}, 3 \mathrm{H}), 5.25-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, 115 4.34-4.25 (m, 2 H$), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.58-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.76(\mathrm{~m}$,

4 H), 1.70-1.64 (m, 1 H), $1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone $-d_{6}$): $\delta 175.6,167.5,166.8,153.6,149.4,140.3,134.8$, 134.4, 133.0, 132.0 (2 C), 131.7, 131.3, 130.4 (2 C), 129.6, 129.3 (2 C), 128.1 (2 C), 127.8, 126.7 (2 C), 120.1, 118.7, 112.4 (2 C), 62.5, 48.9, 47.5, 44.8, 36.1, 32.4, 31.8, 30.3, 30.1, 23.5, 15.8 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 606.2850; found 606.2845.

Compound 21e. Obtained as a white solid (78\%); $\mathrm{R}_{f}=0.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 97: 2: 1\right) ; \mathrm{Mp}=244 \pm 2{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{D}^{20}=-$ ${ }_{10} 211.7^{\circ}$ (c 0.5, MeOH); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 9.72$ (s, 1 H), 8.05-7.90 (m, 8 H), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.69(\mathrm{~m}, 3 \mathrm{H}), 5.26-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.44-$ $4.33(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ ${ }_{15} 1.82(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta 175.7,167.6,166.5,166.4,144.8$, $143.2,140.3,134.8,134.4,133.3,133.1,132.9,131.8,131.3$, 131.2 (2 C), 130.4 (2 C), 130.0 (2 C), 128.5 (2 C), 126.7, 126.2, 120.2 (2 C), 120.1 (2 C), 63.3, 49.0, 44.8, 35.9, 32.5, 31.8, 31.0, ${ }_{20} 29.1,23.5,21.4,15.9 \mathrm{ppm}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 634.2799$; found 634.2830.

Compound 21f. Obtained as a white solid (90\%); $\mathrm{R}_{f}=0.3$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 97: 2: 1\right) ; \mathrm{Mp}=233 \pm 2^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-217^{\circ}$ (c $0.5, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 12.00-10.00$ 25 (brs, 2 H), 9.41 (brs, 1 H), 7.96 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 5.78-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.25-5.20(\mathrm{~m}, 1 \mathrm{H})$, 4.39-4.29 (m, 2 H), 3.50-3.42 (m, 1 H$), 2.73-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.60-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H})$, ${ }_{30} 1.96-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone $-d_{6}$): $\delta 175.6,167.5,166.1,149.3$, $144.9,143.4,137.8,134.8,134.4,132.8,131.8,131.6$ (2 C), 131.2, 130.6 (2 C), 130.4 (2 C), 129.6, 128.0 (2 C), 126.6 (2 C), 126.5, 120.0, 119.4 (2 C), 63.4, 48.9, 44.8, 35.8, 32.4, 31.7, 30.4, ${ }_{35} 29.3,23.5,21.4,15.8 \mathrm{ppm}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NNaO}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 692.2289$; found 692.2284 .

Compound 21g. Obtained as a white solid (92\%); $\mathrm{R}_{f}=0.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 99: 1\right) ; \mathrm{Mp}=151 \pm 2{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-185.4^{\circ}(c 0.5$, MeOH); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 12.00-9.50$ (brs, $\left.{ }_{40} 2 \mathrm{H}\right), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.80-5.66 (m, 3 H), 5.26-5.21 (m, 1 H$), 4.37-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.51-$ $3.41(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60-$ $2.51(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.77(\mathrm{~m}$, $\left.{ }_{45} 4 \mathrm{H}\right), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone $-d_{6}$): $\delta 175.6,167.5,166.9,153.6,149.4,140.5,134.8$, 134.4, 133.0, 132.1 (2 C), 131.7, 131.3, 130.4 (2 C), 129.6 (2 C), 129.3 (2 C), 127.1 (2 C), 126.7 (2 C), 120.1, 118.7, 112.1 (2 C), $62.5,49.0,45.3,44.8,36.1,36.0,32.5,31.9,31.2,30.6,23.5$, ${ }_{50} 15.9 \mathrm{ppm}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 620.3007; found 620.3022.

Bel-xL and Mcl-1 Binding Affinity Assays

The binding affinities of compounds for $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Mcl}-1$ were evaluated by competition against fluorescently labelled reference ${ }_{55}$ compounds, Bak and Bid, respectively, as described by Qian et $a l .{ }^{30} \quad$ Bak, 5-Carboxyfluorescein-Bak, Bid and 5-carboxyfluorescein-Bid peptides (synthetized by PolyPeptide Laboratories) as well as Human 45-84/ C37 Bcl-xL and mouse

DN150/DC25 Mcl-1 proteins were used for this assay (for details ${ }_{60}$ on their sequences, see Azmi et al. ${ }^{33}$). Unlabeled peptides were dissolved in DMSO and labelled peptides were diluted in assay buffer, which contained $20 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{pH} 7.4), 50 \mathrm{mM} \mathrm{NaCl}$, $2 \mu \mathrm{M}$ EDTA, 0.05% Pluronic F-68, without pluronic acid for storage at $-20^{\circ} \mathrm{C}$. Liquid handling instrument, Biomek ${ }^{\circledR} \mathrm{NX}$ and ${ }_{65}$ Biomeck $^{\circledR} 3000$ (Beckman Coulter, Villepinte, France), were used to add protein and fluorescein-labelled peptides. 15 nM labelled BH3 peptide, 100 nM protein, and $100 \mu \mathrm{M}$ of unlabelled BH3 peptide or compound (first diluted in 10 mM DMSO and then buffer for final concentration from 10^{-9} to $10^{-4} \mathrm{M}$) into a final 70 volume of $40 \mu \mathrm{~L}$ were distributed in a 96 well black polystyrene flat-bottomed microplate (VWR 734-1622). The microplate was then incubated at room temperature for 1 h and shaken before fluorescent polarization measure. Fluorescence polarization in millipolarization units was measured with a Beckman Coulter Paradigm ${ }^{\circledR}$ using FP cartridge (λ ex 485 nm , $\lambda \mathrm{em} 535 \mathrm{~nm}$). The exposure time was 300 ms per channel. All experimental data were collected using the Biomek Software ${ }^{\circledR}$ (Beckman Coulter, Inc, Brea, CA, USA) and analysed using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA). Results are expressed as ${ }_{80}$ binding activity, i.e., percentage of inhibition of the binding of labelled reference compound, or as K_{i}, the concentration corresponding to 50% of such inhibition, and corrected for experimental conditions according to Kenakin rearranged equation, ${ }^{34}$ which is adapted from Cheng and Prusoff equation. ${ }^{35}$
${ }_{85}$ Unlabeled peptides Bak and Bid were used as positives control. The performance of the assays was monitored by use of Z factors as described by Zhang et al.. ${ }^{36}$ The Z ' factors for these assays are 0.8 (Bcl-xL/Bak) and 0.7 (Mcl-1/Bid) indicating that they should be robust assays.
90

Acknowledgments

The authors acknowledge the French Agence Nationale pour la Recherche (ANR2010-JCJC-702-1) for financial support.

Notes and references

95 ${ }^{\text {a }}$ Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris Sud, 1 av de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
E-mail: fanny.roussi@cnrs.fr
\dagger Electronic Supplementary Information (ESI) available. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ 100 NMR spectra for all new compounds, See DOI: 10.1039/b000000x/

1 M. Litaudon, H. Bousserouel, K. Awang, O. Nosjean, M.-T. Martin, M. E. Tran Huu Dau, H. A. Hadi, J. A. Boutin, T. Sévenet and F. Guéritte, J. Nat. Prod., 2009, 72, 480.
2 S. Desrat, A. Pujals, C. Colas, J. Dardenne, C. Geny, L. Favre, V. Dumontet, B. Iorga, M. Litaudon, M. Raphael, J. Wiels and F. Roussi Bioorg. Med. Chem. Lett., 2014, 24, 5086.
3 T. Moldoveanu, A. Viacava Follis, R. W. Kriwacki and D. R. Green, Trends in Biochem. Sciences, 2014, 39, 101.
4 M. R. Warr and J. C. Shore, Curr. Mol. Med. 2008, 8, 138 ; Reed, J. C. Blood, 2008, 111, 3322.

5 M. S. Davids and A. J. Letay, Clin. Oncol., 2012, 30, 3127 ; N. Bajwa, C. Lia and Z. Nikolovska-Coleska, Expert Opin. Ther. Patents, 2012, 22, 37.

6 L. Gandhi, D. Ross Camidge, M. Ribeiro de Oliveira et al. J. Clin. Oncol., 2011, 29, 909 ; G. Lessene, P. E. Czabotar, B. E. Sleebs, et al., Nat. Chem. Biol. 2013, 9, 390 ; A. J. Souers, J. D. Leverson, , E. R. Boghaert et al., Nat. Med. 2013, 19, 202.

7 C. A. Goard and A. D. Shimmer, Core Evid. 2013, 8, 15.
8 D. Fomekong Fotsop, F. Roussi, F., A. Leverrier, A. Brétéché and F. Guéritte, J. Org. Chem., 2010, 75, 7412.
9 J. Dardenne, S. Desrat, F. Guéritte and F. Roussi, Eur. J. Org. Chem., 2013, 2116.
10 S. Desrat, C. Remeur, C. Geny, G. Rivière, C. Colas, V. Dumontet, N. Birlirakis, B. I. Iorga and F. Roussi, Chem. Commun., 2014, 50, 8593.

11 N. Itagaki, M. Kimura, T. Sugahara and Y. Iwabuchi, Org. Lett., 2005, 7, 4185; S. A. Kozmin and V. H. Rawal, J. Am. Chem. Soc., 1999, 121, 9562; G. Stork, Pure \& Appl. Chem., 1989, 61, 439; M. Asaoka, T. Aida, S. Sonoda and H. Takei, Tetrahedron Lett., 1989, 50, 7075; M. L. Elliott, F. J. Urban and J. Bordner, J. Org. Chem., 1985, 50, 1752.
12 K. Chen and P. S. Baran, Nature, 2009, 459, 824.
13 K. C. Nicolaou, D. Sarlah, D. M. Shaw, Angew. Chemie. Int. Ed., 2007, 46, 4708.
14 T. I. Houjeiry, S. L. Poe and D. T. McQuade, Org. Lett., 2012, 14, 4394.

15 C. Taillier, B. Gille, V. Bellosta, and J. Cossy, J. Org. Chem., 2005, 70, 2097.
16 J. W. Cran, and M. E.Krafft, Angew. Chem., 2012, 51, 9398.
17 Y. Chi and S. H. Gellman, Org. Lett. 2005, 7, 4253.
18 For an overview of diarylprolinol ethers, see: C. Palomo, and A. Mielgo, Angew. Chem. Int. Ed. 2006, 45, 7876.
19 K. Chen, Y. Ishihara,M. Morón Galán, and P. S. Baran, Tetrahedron, 2010, 66, 4738.
20 H. Xue, J. Yang and P. Gopal, Org. Lett., 2011, 13, 5696.
21 C. Bonini, G. Righi and L. Rossi, Tetrahedron, 1992, 48, 9801.
22 X. Cheng, L. Li, M. Uttamchandani, and S. Q. Yao, Org Lett, 2014, 16, 1414 ; Y. Yan, J. Chen, L. Zhang, Q. Zheng, Y. Han, H. Zhang, D. Zhang, T.Awakawa, I. Abe, and W. Liu, Angew. Chemie. Int. Ed.,2013, 52, 12308.
23 H. Tsukamoto, T. Suzuki and Y. Kondo, Synlett 2007, 20, 3131.
24 For reviews see for example: P. J. Cox and N. S. Simpkins, Tetrahedron Asymmetry, 1991, 2, 1; K. Koga, Pure Appl. Chem., 1994, 66, 1487.
25 J. S. Clark, D. Vignard and A. Parkin, Org. Lett., 2011, 13, 3980.
26 M. Ihara, T. Taniguchi, K. Makita, M. Takano, M.Ohnishi, N. Taniguchi, K. Fukumoto and C. Kabuto, J. Am. Chem. Soc. 1993, 115, 8107.
27 K. Sugasawa, M. Shindo, H. Noguchi and K. Koga, Tetrahedron Lett., 1996, 37, 7377.
28 Y. Ito, T. Hirao and T. Saegusa, J. Org. Chem., 1978, 43, 1011; R. C. Larock, T. R. Hightower, G. A. Kraus, P. Hahn and D. Zheng, Tetrahedron Lett., 1995, 36, 2423.
29 R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem. 2008, 47, 2876
30 J. Qian, M. J. Voorbach, J. R. Huth, M. L. Coen, H. Zhang, S.-C. Ng, K.M. Comess, A.M. Petros, S.H. Rosenberg, U. Warrior and D. J. Burns Anal. Biochem. 2004, 328, 131.
31 W. L. F. Amarego and C. L. L. Chai in Purification of Laboratory Chemical, ed. Butterworth-Heinemann, Elsevier, Burlington, 6th edn., 2009
32 N. Kern, T. Dombray, A. Blanc, J. -M. Weibeland and P. Pale, J. Org. Chem., 2012, 77, 9227.
33 M. N. Azmi, C. Gény, A. Leverrier, M. Litaudon, V. Dumontet, N. Birlirakis, F. Guéritte, K. H. Leong, S. N. Abd. Halim, K. Mohamad and K. Awang, Molecules, 2014, 19, 1732.
34 Z. Nikolovska-Coleska, R. Wang, X. Fang, H. Pan, Y. Tomita, P. Li, P.P. Roller, K. Krajewski, N.G. Saito, J. A. Stuckey and S. Wang Anal. Biochem. 2004, 332, 261.
35 Y. Cheng and W. H. Prusoff, Biochem. Pharmacol. 1973, 22, 3099.

36 J. H. Zhang, T. D.Chung and K.R. Oldenburg, J. Biomol. Screen. 1999, 4, 67.

