Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Visible Light Mediated sp³ C-H Bond Functionalization of N-Aryl-1,2,3,4-tetrahydroisoquinolines via Ugi-type Three-component Reaction Yunyun Chen and Gaofeng Feng*

Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.

*Corresponding author. Tel: +86-575-88345682; E-mail address:chfeng@usx.edu.cn

Abstract: An efficient and high yield process for sp³ C-H bond functionalization of N-aryl-1,2,3,4-tetrahydroisoquinolines was disclosed through a visible light mediated photoredox Ugi-type reaction with carboxylic acids and isonitriles under aerobic conditions, by employing Ru(bpy)₃Cl₂ as photoredox catalyst and CH₃CN as solvent. CH₃CN was found to be crucial for the process and good to excellent yields were achieved for a large variety of N-aryl-1,2,3,4-tetrahydroisoquinolines, carboxylic acids, and isonitriles. The developed methodology was attractive for synthesis of a library of 1,2,3,4-tetrahydroisoquinolines.

Keywords: Photoredox catalysis; C-H bond functionalization; Ugi-type reaction; 1,2,3,4-tetrahydroisoquinoline; visible light mediated reaction

Introduction

Because of ubiquity of C-H bond in organic molecules, its direct functionalization to synthesize complex products, without prior introduction of activating groups, has

Organic & Biomolecular Chemistry Accepted Manuscript

attracted the attention of synthetic chemists.¹ Among the research area of C-H bond activation, direct functionalization of sp³ C-H bond adjacent to nitrogen atom in general and of 1,2,3,4-tetrahydroisoquinoline in particular, represent one of the forefront directions,² as 1,2,3,4-tetrahydroisoquinoline represents one of the privileged heterocyclic skeleton and a variety of its natural and unnatural derivates exhibited good biological activities.³ A large number of novel methods, focusing on new catalysts⁴ (such as CuBr, FeCl₃, SO₂Cl₂, and I₂), oxidants⁵ (such as MnO₂ and DDQ), photoredox catalysis,⁶ or enantioselective alternatives,⁷ were developed for this transformation since the pioneering work of Murahashi^{2f,2h,8} and Li.⁹ Despite the sp^3 progress C-H bond functionalization made thus far. of 1,2,3,4-tetrahedroisoquinoline through a multi-component reaction process was quite limited.¹⁰

Recently, visible light mediated photoredox catalysis has received much attention. As a result, a variety of novel transformations could be carried out under mild conditions in the presence of photoredox catalyst and visible light.¹¹ Despite the progress made thus far, to the best of our knowledge, photoredox-catalyzed multi-component process for C-H bond functionalization was scarce.¹² Recently, Rueping and co-workers¹³ reported a visible light photoredox-catalyzed three-component reaction of tertiary amine, isonitriles, and carboxylic acids, leading to sp³ C-H functionalization of tertiary amine, by using [Ir(ppy)₂byp]PF₆ as the catalyst and blue LEDs as the light source. Inspired by this novel work, we envisioned that sp³ C-H bond functionalization of N-aryl-1,2,3,4-tetrahydroisoquinolines might be achieved with

Organic & Biomolecular Chemistry

appropriate photoredox catalyst and light source through a Ugi-type reaction process. We reported herein a visible light mediated Ugi-type three-component process for efficient and high yield sp³ C-H bond functionalization of N-aryl-1,2,3,4-tetrahydroisoquinolines.

Results and Discussion

At the beginning of this study, the reaction conditions in terms of solvent was optimized using N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline 1a, cyclohexyl isonitrile 2a, and acetic acid 3a as the model substrates in the presence of 1 mol% of Ru(bpy)₃Cl₂ under visible light. According to the results illustrated in Table 1, it could be concluded that the reaction solvent played critical role for the process. Among the solvent screened, CH₃CN afforded the desired product 4a in the best isolated yield of 95% (entry 1), while toluene, CH₂Cl₂, and THF were not the good choice of solvent, as much lower yields were observed even prolonging the reaction time (entries 2-4). As reported in literature, iodine is an excellent catalyst in sp³ C-H bond functionalization of 1,2,3,4-tetrahydroisoquinoline under aerobic conditions,^{4c} thus it was then tried as the catalyst for the present Ugi-type three components reaction. However, only 1-cyclohexylaminocarbonyl-N-(4-methoxyphenyl)-1,2,3,4tetrahydroisoquinoline, formed through the nucleophilic addition of isonitrile to in-situ generated iminium iodide, was isolated in 62% and 53% yields (92% and 84% yields based on the recovered 1a) in MeOH and CH₃CN, respectively (entries 5-6, see supporting information). Attempts to improve the reaction conversion and yield, such as increasing the iodine loading to 30mol% and raising reaction temperature to 80 °C

Drganic & Biomolecular Chemistry Accepted Manuscript

were unsuccessful.

With the optimal conditions in hand, the substrate scope of the process was then investigated with varieties of N-aryl-1,2,3,4-tetrahydroisoquinolines 1, isonitriles 2, and carboxylic acids 3. Firstly, the substrate scope of acids 3 was carried out and the results are depicted in Scheme 1. Acrylic acid and *trans*-cinnamic acid were firstly tried under the optimized conditions, the desired products 4b and 4c were isolated in 68% and 84% yields, respectively. Benzoic acids with different substituents were then investigated. To our delight, the process was compatible with benzoic acids with both electron-donating and electron-withdrawing groups, afforded the corresponding products 4d-i in good to excellent yields, ranging from 69% to 86%. For example, the reaction of N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline, cyclohexyl isonitrile, and 2-methoxybenzoic acid or 4-methoxybenzoic acid in the presence of Ru(bpy)₃Cl₂ (1 mol%) in CH₃CN provided products 4e and 4f in 81% and 85% yields, respectively. While N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline, the reaction of cyclohexyl isonitrile and 3-nitrobenzoic acid afforded the desired product 4i in 69% yield under the same conditions. The structure of 4i was unambiguously assigned by X-ray crystallography as shown in Figure 1. Two kinds of heterocyclic acids, such as nicotinic acid and 2-furoic acid were then subjected to the reactions, the reactions underwent smoothly and the desired products 4k and 4l were isolated in excellent yield of 98% and 73%, respectively. The structure of 4k was also confirmed by X-ray crystallography as shown in Figure 1.

Having examined the scope of the visible light mediated Ugi-type three components

4

reaction with carboxylic acids, we then investigated the compatibility of different N-ary-1,2,3,4-tetrahydroisoquinolines. Thus, several kinds of N-ary-1,2,3,4-tetrahydroisoquinolines were then prepared through Buchwald-Hartwig amination of 1.2.3.4-isoquinoline and arvl iodide catalyzed by CuI in the presence of alcohol.¹⁴ glycol and K_3P_4 in isopropyl The isolated N-ary-1,2,3,4-tetrahydroisoquinolines were then subjected to the present visible light mediated three components reaction and the results were illustrated in Scheme 2. To our delight, N-ary-1,2,3,4-tetrahydroisoquinolines with different substitutions were compatible and the corresponding products could be isolated in good to excellent vields. For N-(3-methoxyphenyl)-1,2,3,4example, the reaction of tetrahydroisoquinoline, cyclohexyl isonitrile and acetic acid in the presence of 1mol% of Ru(bpy)₃Cl₂ in CH₃CN afforded product **4m** in 71% yield. Under the same reaction conditions, N-phenyl-1,2,3,4-tetrahydroisoquinoline and N-(4-methylphenyl)-1,2,3,4-tetrahydroisoquinoline gave the corresponding products 4n and 4o in better isolated yields of 86% and 84%, respectively. Moreover, N-aryl-1,2,3,4-tetrahydroisoquinolines bearing halides (3-F, 4-Cl, and 4-Br) also showed good compatibility, affording products 4p, 4q, and 4r in good to excellent vields.

To further demonstrate the generality of the newly developed photoredox catalysis procedure, our attention was then turned to the substrate scope of isonitriles. Thus, several phenyl isonitriles with different substituents were prepared through dehydration of the corresponding N-aryl formamides¹⁵ in the presence of PPh₃, I₂, and

Organic & Biomolecular Chemistry Accepted Manuscript

Et₃N in CH_2Cl_2 .¹⁶ As shown in Scheme 3, phenyl isonitriles with both electron-donating group (4-OMe) and electron-withdrawing group (4-CN) afforded the desired products **4s** and **4t** in excellent yields of 80% and 88%, respectively. Delightedly, other four kinds of phenyl isonitriles (4-Cl, 3-Cl, 4-Br, and 4-OCF₃) were also compatible and good to excellent yields were observed. Moreover, when benzyl isonitrile was employed, the desired **4y** was isolated in 92% yield.

As illustrated in Figure 2, the plausible reaction pathway for the present visible light mediated Ugi-type three components reaction began with the photoexcitation of $Ru(bpy)_3^{2+}$ to $Ru(bpy)_3^{2+}$ under irradiation of visible light, which oxidizing N-aryl-1,2,3,4-tetrahydroisoquinoline **1** to its radical cation **A** through single-electron transfer and $Ru(bpy)_3^{2+}$ specie itself was reduced to $Ru(bpy)_3^{+}$. In the presence of oxygen, $Ru(bpy)_3^{+}$ was then oxidized to the ground state $Ru(bpy)_3^{2+}$ to complete the catalytic cycle and meanwhile, generated superoxide specie, which oxidize the radical cation **A** to the reactive iminium cation intermediate **B** through abstracting a hydrogen atom and an electron. The subsequent nucleophilic attach of isonitrile to intermediate **B** formed nitrillium ion **C**, which was trapped by carboxylic acids to form the key intermediate **D**. Subsequent rearrangement of intermediate **D** via nucleophilic attack of nitrogen atom to carbonyl carbon afforded the final imide product **4**.

Conclusion

In conclusion, we have developed an efficient and high yield process for sp^3 C-H bond functionalization of 1,2,3,4-tetrahydroisoquinolines. The process highlighted

visible light mediated and photoredox catalyzed three-component Ugi-type reaction under aerobic conditions. Using CH₃CN as solvent was found to be crucial to achieve high yields. Moreover, the developed process was compatible with a wide range of N-ary-1,2,3,4-tetrahydroisoquinolines, carboxylic acids, and isonitriles, and should be attractive for synthesis of libraries of 1,2,3,4-tetrahydroisoquinolines. Applying visible light mediated photoredox catalysis to other multi-component reaction for efficient synthesis of complex molecules is under investigation.

Experimental

Typical experimental procedure: To a 10 mL reaction vial was charged with magnetic stir bar, acetonitrile (2 mL), N-aryl-1,2,3,4-tetrahydroisoquinoline (0.25 mmol), acids (0.3 mmol), isonitriles (0.3 mmol), and Ru(bpy)₃Cl₂ (0.0025 mmol). After stirring at room temperature overnight under visible light irradiation (Philiphs household lamp, 12w), the reaction mixture was directly purified by column chromatography on silica gel to provide the corresponding products **4**.

Acknowledgements

Financial supports by National Natural Science Foundation of China (NO 21302130) and Science Technology Department of Zhejiang Province (NO 2014C31141) were acknowledged with thanks. We thank Dr. Tao Cai in Department of Chemistry, Xiaomen University for performing single-crystal X-ray diffraction experiment. We also thank Professor Zhan Lu in Department of Chemistry, Zhejiang University for helpful discussions.

References

- For selected examples: (a) L. Achermann, Acc. Chem. Res. 2014, 47, 281–295;
 (b) P. Arockiam, C. Bruneau, P. Dixneuf, Chem. Rev. 2012, 112, 5879–5918; (c)
 S. Neufeldt, M. Sanford, Acc. Chem. Res. 2012, 45, 936–946; (d) J.
 Wencel-Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740–4761; (e) D. Colby, R. Bergman, J. Ellman, Chem. Rev. 2010, 110, 624–655; (f) I. Mkhalid, J. Barnard, T. Marder, J. Murphy, J. Hartwig, Chem. Rev. 2010, 110, 890–931.
- For selected examples of sp³ C-H bond adjacent to nitrogen: (a) K. Jones, P. Karier, M. Klussmann, *ChemCatChem* 2012, *4*, 51–54; (b) E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Fares, M. Klussmann, *J. Am. Chem. Soc.* 2011, *133*, 8106–8109; (c) J. Allen, T. Lambert, *J. Am. Chem. Soc.* 2011, *133*, 1260–1262; (d) Y. Zhang, H. Peng, M. Zhang, Y. Cheng, C. Zhu, *Chem. Commun.* 2011, *47*, 2354–2356; (e) K. Alagiri, G. Siddappa, R. Kumara, K. Prabhu, *Chem. Commun.* 2011, *47*, 11787–11789; (f) S. Murahashi, T. Nakae, H. Terai, N. Komiya, *J. Am. Chem. Soc.* 2008, *130*, 11005–11012; (g) Z. Li, C. Li, *J. Am. Chem. Soc.* 2005, *127*, 6968–6969; (h) S. Murahashi, N. Komiya, H. Terai, T. Nakae, *J. Am. Chem. Soc.* 2003, *125*, 15312–15313.
- For selected examples: (a) A. Zhang, J. Neumeyer, R. Baldessarini, *Chem. Rev.* 2007, 107, 274–302; (b) K. Bentley, *Nat. Prod. Rep.* 2006, 23, 444–463; (c) D.
 Jack, R. Williams, *Chem. Rev.* 2002, 102, 1669–1730; (d) Q. Zhang, G. Tu, Y.
 Zhao, T. Cheng, *Tetrahedron* 2002, 58, 6795–6798; (e) A. Aladesanmi, C. Kelly, J.

Leary, J. Nat. Prod. 1983, 46, 127-131.

- (a) A. Tanoue, W. Yoo, S. Kobayashi, Org. Lett. 2014, 16, 2346–2349; (b) M. Ratnikov, X. Xu, M. Doyle, J. Am. Chem. Soc. 2013, 135, 9475–9479; (c) J. Dhineshkumar, M. Lamani, K. Alagiri, K. Probhu, Org. Lett. 2013, 15, 1092–1095; (d) E. Boess, C. Schmitz, M. Klussmann, J. Am. Chem. Soc. 2012, 134, 5317–5325.
- (a) X. Liu, B. Sun, Z. Xie, X. Qing, L. Liu, H. Lou, J. Org. Chem. 2013, 78, 3104–3112;
 (b) W. Muramatsu, K. Nakano, C. Li, Org. Lett. 2013, 15, 3650–3653.
- For selected examples, see: (a) J. Zhong, Q. Meng, B. Liu, X. Li, X. Gao, T. Lei, C. Wu, Z. Li, C. Tung, L. Wu, Org. Lett. 2014, 16, 1988–1991; (b) W. Fu, W. Guo, G. Zou, C. Xu, J. Fluorine Chem. 2012, 140, 88–94; (c) S. Zhu, M. Rueping, Chem. Commun. 2012, 48, 11960–11962; (d) M. Rueping, R. Koenigs, K. Poscharny, D. Fabry, D. Leonori, C. Vila, Chem.-Eur. J. 2012, 18, 5170–5174; (e) D. Freeman, L. Furst, A. Condie, C. Stephenson, Org. Lett. 2012, 14, 94–97; (f) G. Zhao, C. Yang, L. Guo, H. Sun, C. Chen, W. Xia, Chem. Commun. 2012, 48, 2337–2339; (g) M. Rueping, S. Zhu, R. M. Koenigs, Chem. Commun. 2011, 47, 12709–12711; (h) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny, D. C. Fabry, Chem. Commun. 2011, 47, 2360–2362; (i) M. Rueping, S. Zhu, R. M. Koenigs, Y. Yang, K. Loh, C. Tan, Green Chem. 2011, 13, 3341–3344.
- 7. (a) G. Zhang, Y. Ma, S. Wang, Y. Zhang, R. Wang, J. Am. Chem. Soc. 2012, 134,

12334–12337; (b) J. Zhang, B. Tiwari, C. Xing, X. Chen, R. Chi, Angew. Chem. Int. Ed. 2012, 51, 3649–3652.

- (a) W. Lin, T. Cao, W. Fan, Y. Han, J. Kuang, H. Luo, B. Miao, X. Tang, Q. Yu, W. Yuan, J. Zhang, C. Zhu, S. Ma, *Angew. Chem. Int. Ed.* 2014, *53*, 277–281; (b) S. Murahashi, D. Zhang, *Chem. Soc. Rev.* 2008, *37*, 1490–1501; (c) S. Murahashi, T. Naota, N. Miyaguchi, T. Nakato, *Tetrahedron Lett.* 1992, *33*, 6991–6994.
- 9. (a) Z. Li, D. Bohle, C. Li, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928–8933; (b)
 Z. Li, C. Li, J. Am. Chem. Soc. 2004, 126, 11810–11811.
- (a) G. Jiang, J. Chen, J. Huang, C. Che, Org. Lett. 2009, 11, 4568–4571; (b) T.
 Ngouansavanh, J. Zhu, Angew. Chem. Int. Ed. 2007, 46, 5775–5778.
- (a) C. Prier, D. Rankic, D. MacMillan, *Chem. Rev.* 2013, *113*, 5322–5363; (b) L.
 Shi, W. Xia, *Chem. Soc. Rev.* 2012, *41*, 7687–7697; (c) J. Marayanam, C.
 Stephenson, *Chem. Soc. Rev.* 2011, *40*, 102–113.
- 12. J. Tang, J. Yue, F. Tao, G. Grampp, B. Wang, F. Li, X. Liang, Y. Shen, J. Xu, J. Org. Chem. 2014, 79, 7572–7582.
- 13. M. Rueping, C. vila, Org. Lett. 2013, 15, 2092–2095.
- 14. F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 2002, 4, 581–584.
- 15. J. Kim, D. Jang, synlett 2010, 2093–2096.
- 16. X. Wang, Q. Wang, Q. Luo, Synthesis 2014, 49–54.

^{*a*} Reaction conditions: N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (0.25 mmol), cyclohexyl isonitrile (0.3 mmol), acetic acid (0.3 mmol), Ru(bpy)₃Cl₂ (1 mol%), visible light, room temperature.

- ^{*b*} 10 mol% of I_2 was used as catalyst.
- ^c Isolated yield and the yield in parentheses is for 1-cylcohexylaminocarbonyl-N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline.
- ^d Yield based on the recovered **1a**.

^a Reaction conditions: N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (0.25 mmol),
 cyclohexyl isonitrile (0.3 mmol), carboxylic acids 3 (0.3 mmol), Ru(bpy)₃Cl₂ (1 mol%), CH₃CN,
 visible light, room temperature, overnight.

^{*a*} Reaction conditions: N-aryl-1,2,3,4-tetrahydroisoquinoline **1** (0.25 mmol), cyclohexyl isonitrile (0.3 mmol), acetic acid (0.3 mmol), $Ru(bpy)_3Cl_2$ (1 mol%), CH_3CN , visible light, room temperature, overnight.

Organic & Biomolecular Chemistry Accepted Manuscript

Scheme 3. Investigation of substrate scope with different isonitriles.^a

^a Reaction conditions: N-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (0.25 mmol),
 isonitriles 2 (0.3 mmol), acetic acid (0.3 mmol), Ru(bpy)₃Cl₂ (1 mol%), CH₃CN, visible light,
 room temperature, overnight.

14

Figure 1. Crystal structures of compounds 4i and 4k.

4i

4k

Figure 2. Plausible mechanism for visible light mediated Ugi-type three components reaction.

